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Abstract 

Data can be distinguished according to volume, variable types and 
distribution, and each of these characteristics imposes constraints 
upon the choice of applicable algorithms for their visualisation. 
This has led to an abundance of often disparate algorithmic 
techniques. Previous work has shown that a hybrid algorithmic 
approach can be successful in addressing the impact of data 
volume on the feasibility of multidimensional scaling (MDS). 
This paper presents a system and framework in which a user can 
easily explore algorithms as well as their hybrid conjunctions and 
the data flowing through them. Visual programming and a novel 
algorithmic architecture let the user semi–automatically define 
data flows and the co-ordination of multiple views of algorithmic 
and visualisation components. We propose that our approach has 
two main benefits: significant improvements in run times of MDS 
algorithms can be achieved, and intermediate views of the data 
and the visualisation program structure can provide greater insight 
and control over the visualisation process. 

CR Categories: I.5.3 [Pattern recognition]: Clustering – 
Algorithms; E.1 [Data Structures]: Graphs and networks; D.1.7 
[Programming Techniques]: Visual Programming; I.3.6 
[Computer Graphics]: Methodology and Techniques – Interaction 
techniques;  

Keywords: Data-flow, visual programming, multidimensional 
scaling, multiple views, hybrid algorithms, complexity 

1 Introduction 

There is a multitude of algorithms available for clustering and 
laying out abstract data.  The different algorithmic approaches 
seem to be tailored to specific types of data.  Some algorithms 
perform well with data sets of low cardinality and dimensionality, 
such as the basic spring model [Eades 1984].  Other algorithms 
work best with high cardinality data, an example of which is the 
self–organising map or SOM [Kohonen et al. 2000]. In training, a 
substantial training set allows the SOM to reveal complex non-
linear structure in a very large body of data.  
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Other features of the data set also affect the applicability of 
algorithms, such as data distribution. For example, K-means 
clustering [MacQueen 1967] is most effective when the data is 
distributed in spherical Gaussian clusters [Bradley and Fayyad 
1998]. 

In a working environment, corporate memory and project-specific 
databases tend to start off small and gradually evolve into large 
information repositories. While it would be feasible to visualise 
the inter-object relationships with a force-directed layout 
algorithm in the infancy of such a database, it would become less 
and less effective as the database matures and demands a more 
computationally feasible solution. Previous work has shown that 
hybrid algorithmic approaches to visualisation scale up to 
relatively high-volume data sets, even though some of the 
constituent algorithms would be too costly on their own if applied 
to the entire set [Morrison et al. 2002]. This would suggest that 
when applied to a growing database, algorithmic steps could be 
bypassed in the repository’s infancy and incorporated as it 
approaches maturity.  Or, in the case that volume fluctuates, the 
hybrid algorithm could fluctuate and adapt with it.  

We present an implemented system and framework called HIVE 
(Hybrid Information Visualisation Environment) that utilises 
direct manipulation to allow users to interactively create and 
explore hybrid MDS algorithms. Figure 1 shows screen-shots of 
the system. Visual programming and a novel algorithmic 
architecture are proposed as a means to let the user semi–
automatically co-ordinate multiple views and interactively steer 
data flows. 

This paper expands on a shorter version [Ross and Chalmers 
2003] in which we provided an account of earlier work on HIVE. 
Within the following pages we shall give a more detailed account 
of HIVE’s implementation of the data-flow model, visual 
programming techniques and system architecture and also discuss 
recent developments such as dynamic run-time loading of 
algorithmic and visualisation components (Section 4.1.1).   

The paper has seven sections. Section two describes related work 
including multidimensional scaling, the data-flow model and 
visual programming. Section three illustrates the hybrid 
algorithmic framework, upon which the system is built. Section 
four describes the HIVE architecture and implementation. Early 
experience of using HIVE is discussed in section five. Finally, 
sections six and seven present future work and conclusions 
respectively. 



 

 

 

2 Related work 

The HIVE system permits users to easily create and experiment 
with hybrid algorithms for generating visualisations of their data. 
This process is a visual one in that algorithms and visualisations 
are represented by visual components that afford direct 
manipulation. The following sub-sections describe topics in the 
literature that have influenced HIVE’s development. 

2.1 Multidimensional scaling 

In the application of MDS we are primarily concerned with a 
lower dimensional representation of multivariate proximity data. 
Such data are composed of elements or observations that have 
three or more variables (multidimensional) and where the 
similarity between one datum and any other can be quantified. 
The appeal in reducing dimensionality is simple: to cater for 
visualisation. For example, scatterplots are extremely useful 
graphical tools, but they are restricted to a 2D spatial 
representation – they only have two real axes. 

MDS has a relatively long history and there are many techniques. 
In [Buja et al. 1998], two categorisations of MDS methods are 
devised that are based upon the underlying mechanics of early 
work in [Torgerson 1952], [Shepard 1962] and [Kruskal 1964]. 
Torgerson’s work is derived from the Eckart-Young SVD 
approximation theorem [Eckart and Young 1936]. We feel that 
the abundance of MDS techniques justifies our system, HIVE, as 
a visual workspace in which it is possible to implement, combine 
and compare them. 

 

 

2.2 Visual programming 

At around the time when scientific visualisation was being 
established, the concept of visual programming was also 
becoming prominent [Haeberli 1988; Upson et al. 1989].  
Conventional programming languages, whether high level or low 
level, tend to be built around a vocabulary where the ‘words’ 
consist of primitives (characters). Visual programming languages 
are at a higher level of abstraction than conventional languages. 
Haeberli [1988] states that a visual programming environment is 
any system that has adopted a graphical 2D notation for the 
creation of programs.  The visual primitives that make up the 
vocabulary of these programs are essentially representations of 
well-defined aggregates and the (direct) manipulation of these 
aggregates means that complex programs can be produced more 
easily than with conventional languages.  This is because the 
abstraction allows a greater degree of code or function reuse and 
the workings of the programs themselves are more readily 
understood and communicated due to their visual and spatial 
properties.  It can also be argued that if the manipulation of the 
visual constructs is flexible enough—for example, the user may 
wish to place them arbitrarily on the display surface—then this 
allows greater freedom for externalising the plans and thoughts of 
the user [Hendry and Harper 1999]. 

Using visual programming for constructing InfoVis algorithms 
reinforces our commitment to and interest in graphical interaction 
in computing.  With regard to the means-end relationship, the 
means are a visual process and the end result is a tool that 
produces the visual information originally sought after—
visualisations are useful for producing other visualisations. 

 

Figure 1. Two screen-shots of the HIVE interface. The image on the left illustrates interconnected components that import, 
transform and render multidimensional data. The algorithmic components collectively represent the O(N√N) hybrid MDS 
algorithm of [Morrison et al. 2002]. Thick lines that link modules represent data-flows while thin ones, connecting scatterplots 
and other visualisations, represent the connections between interlinked interactive views. The image on the right shows the same 
scatterplots enlarged and supplemented with a fisheye table component (bottom-right) and histograms (bottom-left). The data 
consists of 5000 points sampled from a 3D ‘S’ shaped distribution. 



 

 

 

2.3 Data-flow model 

Before visual programming was available in scientific 
visualisation tools, the functional components of the tools were 
hidden from the users and they had no control of the flow of data 
between them.  The stream of data from input through calculation 
functions to mapping, filtering and rendering graphics and their 
control was pre-set and the scientists and engineers had to make 
do as best as they could for their tasks. In the words of Haeberli, 
“Instead of the user driving an application, the user is often 
driven and constrained by the application.” 

Visual programming addressed a number of these problems, 
moving away from these monolithic and static applications and 
providing integrated environments where a user without 
programming expertise could customise his or her applications. 
Visual programming in the application design cycle takes the 
form of a data–flow architecture. In this architecture, users are 
presented with a library of modules—application components—
with specific functions. The users can select which modules will 
be useful in their application and draw, via direct manipulation of 
graphical representations, a block diagram and create connections 
between modules for the data to flow through. This quick and 
easy process meant that scientists and engineers could concentrate 
on the problems being studied instead of dealing with the 
overhead of re-coding and configuring monolithic applications. 

2.4 Multiple-view co-ordination 

Multiple view co–ordination allows two or more related views of 
data to run concurrently, with views evolving as data flows into 
them from some common ancestor in the data flow graph, or as 
the user interacts with one of them. A well–known example of 
this is brushing and linking [Becker and Cleveland 1987]. By co-
ordinating multiple views so that changes made in one view are 
reflected in other views, interaction can be said to flow between 
them. This lets the user focus on specific parts of the data set, and 
see them within the context of other views. 

In evaluating their snap-together visualisation system, North and 
Shneiderman have found that this enhances user-performance in 
data analysis tasks [North and Shneiderman 2000]. Co-ordination 
of activity across multiple views gives the user greater control 
over the visual representations of the data.  This ultimately 
nurtures discovery.  In [Buja and Swayne 1996] it is described as 
linking “…a graphical query to a graphical response”, and in 
[Eick and Wills 1995] it is stated that it gives users the impression 
that they are touching the data. 

HIVE takes advantage of the data-flow model and visual 
programming. To create a hybrid algorithm, a user drags 
components from the system’s tool bar into the drawing region 
(see figure 1) and then interconnects them by dragging links 
between ports on the components. Not only is the data-flow set up 
in this manner, but the view co-ordination can also be defined this 
way. After connecting visualisation tools such as scatterplots to 
the output ports of algorithmic components, ‘Select’ ports can be 
linked between view components to establish ‘brush and link’ 
functionality. 

Hybrid algorithms can exhibit a lower run-time than spring 
models run upon the whole data set, as discussed in [Morrison et 
al. 2003], but they also lend themselves to the production of 
intermediate visualisations. The benefits of this hybrid approach 

are two-fold: efficiency is enhanced and intermediate views 
provide more insight into the data. For example, the hybrid 
algorithm depicted in Figure 1 (left) uses a spring model of a 
sample of the full data set, to gain an initial small-scale 2D layout. 
In the left frame of Figure 1, scatterplots have been hooked up to 
intermediate stages of the hybrid algorithm to allow for 
comparison. The three layouts have been positioned by the user 
on the right hand side of the frame. The sample layout is fed into 
another module, which interpolates the remainder of the set to 
produce a third and final scatterplot, shown in to the right of the 
frame. In the right hand frame in the figure, the fisheye table 
shows the layout points sorted on the x dimension and histogram 
views have also been connected to depict the x and y distributions 
of the 3D set. If we then use brushing to select a range of rows in 
the table or a region in a histogram, we highlight the 
corresponding points in the scatterplots and reveal more of the 
structure of the data. An extension of the work presented in [Ross 
and Chalmers 2003] allows for the neatly tiled layout of 
visualisation components, as in the right hand frame of the figure. 

3 Hybrid algorithmic architecture 

HIVE has been inspired by some of the existing data-flow and 
visual programming systems that are prominent in the literature 
and common in the marketplace. Upson et al’s Application 
Visualisation System (AVS) [Upson et al. 1989] and North and 
Shneiderman’s snap-together system [North and Shneiderman 
2000] are two good examples. AVS is predominantly aimed at 
scientific visualisation, for modelling or simulating physical 
processes such as fluid dynamics, and concentrates on channelling 
data through algorithmic processes for transformation and 
rendering. The emphasis here is on the data-flow. North and 
Shneiderman’s snap-together system, on the other hand, is 
concerned with information visualisation. In this system there is 
less emphasis upon the algorithmic processes for transforming 
data and more on the transformation of graphical representations 
by way of multiple interconnected views. Here the flow of 
interaction takes precedence.  

HIVE borrows from the data-flow model of AVS to be flexible in 
creating efficient algorithms for the visualisations, effectively 
opening the algorithmic ‘black box’ and allowing the user to 
interactively steer the flow of data. However, to be in line with the 
goal of information visualisation, it concentrates on exploration 
rather than simulation. This is achieved by supplementing the 
data-flow with interaction flow across multiple views, rather like 

Data 
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Figure 2. Data-flow and view co-ordination combined. 
Solid arrows represent data-flow between visual modules 
and dashed arrows depict co-ordination links between 
multiple views in HIVE. 



 

 

 

the snap-together system (see Figure 2). It must be said, however, 
that this approach does not come without drawbacks. It is 
important to note that if the level of abstraction used in the visual 
programming language is too low then there might be too many 
visual modules, in that programming would become complicated 
and the flow networks too large and hard to manage in the 
available screen space. As exhibited by the left hand frame of 
Figure 1, the modules used in only one hybrid algorithm can 
potentially use up much of the display space making it difficult to 
run more than one algorithm concurrently. One solution being 
considered is to allow the user to dynamically increase the level of 
abstraction by aggregating groups of modules, simplifying the 
graph of interconnected modules and the programming task. 

As well as implementing visual programming to steer data-flow 
and co-ordinate multiple views, HIVE has at its core a novel 
hybrid algorithmic framework, exploring a general approach to 
the composition of efficient and flexible hybrid algorithms. The 
choice of each algorithmic component is influenced by many 
characteristics including computational cost, the cardinality, 
dimensionality and distribution of the data, and the other 
interaction components that might be used within a larger 
workspace, such as scatterplots and fisheye tables. We suggest 
that these choices can be made incrementally, so that the user 
employs intermediate representations as they work with and 
explore their data. We also suggest that the system can assist the 
user by using a pre-authored classification of data—based on, 
initially, cardinality and dimensionality of data sets—and a 
corresponding classification of available algorithmic components 
based on the classes of data each is suited for. This offers us an 
incremental and combinatorial approach to the creation of 
efficient and informative hybrid visualisations. 

Our work has focused on data set cardinality, N, and the 
dimensionality or number of variables associated with each 

object: D. We roughly categorise D and N using an ordinal range 
(high, medium and low), and then we can categorise an 
algorithmic component with values of D and N for ‘good’ inputs 
and for the component’s outputs, effectively stating our opinion 
that the component is best suited to such combinations of D and 
N. For example, we consider that the input to K-means clustering 
should be medium to high in D and N, whereas a canonical O(N2) 
spring model algorithm can only handle low N and low to medium 
D. 

As shown in Figure 3, the choice of components and how they are 
connected allows one to solve familiar problems in new ways. 
The hybrid algorithm of [Morrison et al. 2003] transforms a large 
set of data of high D to low D. It can be thought of as a move 
across the grid of combinations of D and N, stepping from (H, H) 
to (L, H)—but taking an indirect route via (H, L) and (L, L) that 
involves sampling, spring model layout of the sample, and 
interpolation based on that intermediate representation. 

It should be noted that in the previous example the representative 
goal state of the data is equivalent to (L, H) in figure 3 – a low-
dimensional representation of each and every datum. However, 
this might not always be the best representation. In cases where 
there are a large number of elements in a data set it might be 
better to aggregate groups of objects to avoid occlusion and save 
screen space. For example, it might be wise to plot only cluster 
centroids in a scatterplot and have another view updated with the 
cluster members each time a centroid is selected. This 
representation could be equivalent to the (L, M) state in Figure 3. 

Tentative default values for these ordinal categories of data are as 
follows. We derived these values from our own experience of 
constructing hybrid algorithms, however, HIVE allows the user to 
tailor them: 

Low D < 3 

3 <= Moderate D <= 100 

High D > 100 

Low N < 1000 

1000 <= Moderate N  <= 25000 

 High N > 25000 

The HIVE system has been designed and implemented with this 
hybrid algorithmic approach in mind, and serves to provide a 
workspace for experimental algorithm design and exploratory data 
analysis. The visual modules that have been implemented so far 
include a CSV data-importer, Chalmers’ 1996 spring model 
[Chalmers 1996], radial interpolation [Morrison et al. 2002], K-
means [MacQueen 1967], neural PCA [Oja 1982], stochastic 
sampling, scatterplot, histogram and fisheye table. These 
components are the ingredients used in an algorithmic 
‘cookbook’, in which components deemed to suit particular data 
characteristics can be automatically connected to form hybrid 
algorithmic paths that span the grid of Figure 3. Examples are 
discussed in Section 5, following the next section’s discussion of 
HIVE’s internal structure. 

4. Implementation 

The software has been implemented in Java SDK 1.4. The system 
architecture, see Figure 4, has been designed to let users compose 
visualisation tools using modular components for importing data, 
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Figure 3. Data input to components in a hybrid algorithmic 
architecture can be categorised by the ranges of 
dimensionality and cardinality they are best suited for—
high, medium or low. Each component transforms the data, 
effectively moving across the 3x3 grid. Our hybrid layout 
algorithm produces a low-dimensional layout of a large 
high-dimensional data set i.e. a move from (H,H) to (L,H)
that involves several steps shown as dotted lines in the 
figure: sampling, which reduces N, then a spring model of 
the sample, which reduces D, and then interpolation, which 
increases N. 
 



 

 

 

algorithmic processing and graphical rendering. In general terms, 
the architecture involves a graph manager that supports the user’s 
composition of a flow of data through components such as 
scatterplots, K-means clustering, spring model layouts, table 
views and so forth. A hybrid algorithm generator allows HIVE to 
semi-automatically load and connect algorithmic components. 

4.1 Graph manager 

The graph manager allows the user to incrementally create 
executable networks of components. It employs a 
scripting/composition model [Nierstrasz et al. 1991] to impose 
constraints upon which modules can be connected and through 
which ‘ports’, depending upon factors such as the categorisation 
of data type mentioned in Section 3, as well as graph structure and 
port polarity (input only, output only, two-way).  A user can 
manually connect together components, but be warned of 
potentially unsuitable or inefficient connections. Another mode 
offers an automatically generated default path through the grid of 
Figure 3, instantiating components based on the system’s 
classification of the input data set.  

4.1.1 Visual modules 

The graph manager defines three types of components to support 
the construction of hybrid visualisations. These are (1) data source 
components to allow the import of disparate data sets and perform 
the required variable type transformations; (2) algorithmic 
components to transform data into metadata and intermediate 
representations; and finally, (3) visualisation components for 
rendering. It should be noted that this system is not strictly a data-
flow model since it is not the original data that is passed between 
components through links and ports, but references to the data and 
any transformations that are applied. The primary benefit of this is 
the more efficient support for tightly coupled interaction, e.g. 
brushing. 

To facilitate extensibility, the visual modules that represent 
algorithmic processes and visualisations are all derived from a 
common Java class. This means that to accommodate new 
algorithms and visualisations, the programmer need only extend 
the base class and implement his/her own specific methods. The 
base class exhibits default behaviour such as allowing the user to 
resize, transpose and rename modules via keyboard or mouse 

commands. This class also contains the routines that handle port 
declarations.  

In another extension of the work described in [Ross and Chalmers 
2003], the Java Reflection API [http://java.sun.com/api/] has been 
employed in HIVE to dynamically load algorithmic and 
visualisation components at run-time. Compiled visual module 
classes reside within a specific folder in the system’s directory 
structure. Periodically and without unduly impacting 
performance, HIVE checks this folder for any new modules – any 
class, that is, having the default visual module as its superclass. If 
any are detected, the software creates a new drag-label for it in the 
toolbar and the component is ready for use. 

Within the Department of Computing Science of Glasgow 
University, users of HIVE are already implementing their own 
extended modules – one user has created diagnostic components 
to measure layout stresses and run-times exhibited by hybrid 
algorithms. With the ability to dynamically load visual modules, 
users can now share their algorithmic or visualisation components 
and incorporate them into HIVE while actively using it. 

4.1.2 Ports 

Visual components ‘listen’ to each other by way of their ports. 
When a programmer writes a component, he or she must declare 
the ports that are necessary for the functioning and 
communication of the component. Ports operate by extending the 
Java ‘Observable’ class and implementing the ‘Observer’ 
interface [http://java.sun.com/api/], so that when a link is made 
between two components, the ports at each end of the link register 
with each other. This simple approach means that a component 
can send a message to another connected component by sending 
data through one of its (observable) output ports to the (observer) 
input port of the other component. 

There are five types of port that a visual component can 
implement. These consist of the one-way data-in, data-out, 
trigger-in and trigger-out ports, as well as the two-way ‘select’ 
port. When declaring ports, this type must be defined. However, 
data-in and data-out ports may also define the structure of the data 
that will pass through them as well as the variable types 
comprising those data. Two forms of data structure that the ports 
cater for are high–dimensional feature vectors that can consist of 
real, integer, string and date variables, and 2D real–valued co-
ordinate vectors. Trigger-in and trigger-out ports can convey 
arbitrary data structures. Their purpose is to allow algorithmic 
modules to signify convergence and pass control to other module 
– rather like control constructs in a conventional programming 
language. Selection ports pass integer arrays of selected datum 
indices between visualisation components. 

Data 
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Figure 4. The system architecture of HIVE. 
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Figure 5. When HIVE is in link mode, all Swing 
components are hidden while port representations are 
rendered. 



 

 

 

4.1.3 Linking and the composition model 

The system’s composition model is responsible for laying down 
the rules for which ports can be connected, based upon these port 
types. These rules comprise the default composition model, 
however visual component implementations can override them to 
tighten or loosen connection constraints when required. An 
overview of these rules is as follows: 

polarity  – one-way ports can only be connected to their 
complement. 

self-connection – ports on the same component cannot be 
connected 

fan-in – one input port can only be linked to one output port 

fan-out – one output port can be linked to many input ports 

data-structure compatibility – data-in and data-out ports can 
only be connected when they are declared to handle the same data 
structure. 

data-variable compatibility –  data-in and data-out ports can 
only be connected when they are declared to handle the same 
variable types. 

Here we provide more detail that was not presented in [Ross and 
Chalmers 2003]. The rules of the composition model constrain the 
user to create only legal and sensible connections between 
modules. To create a link, the user must place the system in ‘link 
mode’. This is achieved via menu selection or by double-clicking 
the black background of the drawing canvas. When in link mode, 
HIVE hides all Java Swing GUI controls on each visual module, 
such as buttons and sliders, before rendering the ports as grey 
circles shown in Figure 5 (both links and ports are rendered using 
the Java2D API). Input ports are drawn on the left-hand and 
output ports on the right-hand side of each module and all ports 
are labelled as to their purpose. Ports are not visible during the 
normal mode of operation so that more space on the visual 
modules can be allocated to GUI controls useful in controlling 
algorithmic and visualisation parameters. While it would have 
been possible to render ports off of the edges of modules, it was 
felt that this would complicate the placement of port labels and 
have made the resulting networks more cluttered. 

The user creates a link between two modules by first placing the 
mouse pointer over a port and holding down the mouse’s left 
button. This changes the selected port’s colour to blue. There 
might be several modules on the drawing canvas and each might 
have several ports. To prevent the user from trying to make illegal 
connections and to save time, HIVE looks at all other ports and 
consults the composition model to see if a valid connection could 
be made from the selected port. If so, the potential target port’s 
colour is changed to pink. This visual feedback guides the user in 
connecting modules. To complete the link’s creation, the user 
simply drags the mouse from the selected port to one of the 
highlighted ports. While doing this, HIVE provides additional 
feedback by rendering a link from the initially selected port to the 
current mouse position. When the mouse is dragged over a legal 
terminating port, that port turns green, signifying that the user can 
now release the mouse and the link will be made. Both data flow 
links (between algorithmic modules) and view co-ordination links 
(between visualisation modules) are made in this way. However, 

to distinguish between them, data-flow links are rendered as 
thicker lines while co-ordination links are thinner (Figure 1). 

A link can be selected by clicking on it with the mouse, which 
causes the link to turn red. When in link mode this causes the 
corresponding ports to be highlighted to identify the link’s start 
and destination ports. Once selected, the link can be deleted or it 
can be dragged to bend it. Bending links allows the user to clarify 
connections and tidy up the resulting graph. 

4.2 Hybrid algorithm generation 

There is one exception to the data-structure compatibility rule 
above. This is to facilitate the semi-automatic generation of 
hybrid algorithms and occurs when the user connects a high 
dimensional output port such as the output of a data source 
component, to a 2D input port such as the input to a scatterplot. In 
this case HIVE classifies the data on the output port according to 
the ordinal ranges of dimensionality and cardinality as described 
in Section 3. Once this is complete, HIVE loads the appropriate 
algorithm from a default set of hybrid algorithms – the 
algorithmic ‘cookbook’. These algorithms have been pre-
classified in their applicability in spanning the grid of Figure 3, 
and are inserted between the two components that the user had 
originally connected, thus restoring adherence to the data-
structure compatibility rule described above.  

When HIVE has finished this process the user can run or modify 
the algorithm and visualise his/her data. It is suggested that this 
functionality might aid inexperienced users of the system, as well 
as encourage experimentation with hybrid algorithmic 
conjunctions.  

This is an area of the system that will benefit from aggregation. 
Currently when a hybrid algorithm is loaded, all of the constituent 
modules and their links are displayed. This might be confusing for 
a target user who is interested only in the data and resultant 
visualisations, not in the underlying algorithm. This area is 

Figure 6. The top part of the image shows a link from a 
data source to a sample module. The bottom half of the 
image shows a link after the user has selected and bent it. 



 

 

 

currently being investigated. We are experimenting with the 
Piccolo toolkit for creating Zoomable User Interfaces (ZUIs) 
[http://www.cs.umd.edu/hcil/jazz/]. Piccolo utilises the notion of 
smooth semantic and logical zooming based on work in [Perlin 
and Fox 1993] and [Bederson and Hollan 1994]. It provides a 
library of classes and an API for integration with Java 
applications to make particular elements of the target 
application’s user interface zoomable.  

Zooming is of interest in our application of module aggregation 
because although we wish to condense the data flow graphs, we 
still require details of constituent modules to be available on 
demand. If several algorithmic modules are aggregated into one 
module, this module could consist of a zoomable canvas – a view 
- in which the aggregated sub-graph remains visible, albeit at a 
much smaller scale and level of detail. In preserving the spatial 
relationships of the aggregated modules, the user might find it 
easier to zoom into a particular module and thus gain access to 
any parameter controls contained. Or, during the process of 
aggregation a specific module, perhaps containing controls that 
govern the start and stop conditions of the whole algorithm, could 
be selected and be displayed by default at the highest zoom level. 
It is envisaged that this would be most useful when HIVE 
automatically generates an algorithm. A module containing 
critical controls would be foremost in the compound surrogate and 
be immediately available to the user. The user would still be able 
to zoom out of the default module and explore other components 
in the hybrid algorithm. 

The above also suggests that hybrid algorithms per se might span 
intermediate stages of the space in Figure 3, i.e. aggregated 
components could be interconnected to form hybrid-hybrid 
algorithms. However, these algorithmic nesting and aggregation 

issues are the focus of ongoing development and shall be subject 
to user evaluation. 

HIVE allows users to save algorithms and visualisations by 
serialising module, link and port instances and writing them to 
file. The default set of algorithms in the ‘cookbook’ is also stored 
in this way in a ‘patterns’ folder within the system directory 
structure. If the user modifies the HIVE-generated algorithm, 
he/she can save it to this directory and specify that this should be 
used the next time HIVE is prompted to generate an algorithm 
under the same circumstance. That is, the data to be visualised is 
in the same LMH categories and same type of visualisation is 
requested. 

5 Preliminary experience using HIVE 

Early experience of the HIVE system was gained when exploring 
a data set gathered from an eScience project within the Equator 
Interdisciplinary Research Collaboration (www.equator.ac.uk). 
The eScience team has set up a remote sensing probe at a frozen 
lake in the Antarctic, which transmits data including ice thickness, 
water temperature, UV radiation levels etc. to environmental 
scientists at the University of Nottingham. The aim of this is to 
learn about carbon cycling processes. The data set was composed 
of 2202 probe measurements, each consisting of 16 variables 
measured at five-minute intervals between 17th January 2003 and 
31st January 2003. This was converted into CSV format before 
importing it into HIVE. 

Two algorithms were set up in parallel in HIVE and used to 
perform dimensional reduction of the data so that they could be 
rendered as a point distribution in scatterplots. One algorithm 
consisted of a neural PCA component and the other was generated 

Figure 7. The leftmost scatterplot shows the output of neural PCA. The middle scatterplot shows the data after 
interpolation around the K-means centroids while the right scatterplot illustrates the output of the final spring model 
component. The highlighted cluster is a small subset of erroneous PAR measurements. These clusters are much clearer 
in the hybrid algorithm’s plots than with PCA. The histogram shows the PAR distribution at a depth of 10 metres. The 
outlying peak (far-left) has been selected and this highlights the clusters in the scatterplots. 



 

 

 

automatically after the user specified the data set and visualisation 
tool, in this case a scatterplot. This latter algorithm was similar to 
the hybrid algorithm illustrated in Figure 1 with the exception that 
it used K-means instead of stochastic sampling in initially 
reducing the representative cardinality. Both algorithms took less 
than five seconds to run. By setting up these two algorithmic 
paths in parallel, it was possible to directly compare the 
visualisations produced (Figure 7). 

One notable difference between the visualisations was a small 
cluster made prominent by the hybrid spring model, especially in 
the intermediate view after the interpolation phase, which was not 
apparent in the PCA output. By linking a histogram and table to 
the scatterplots it was found that this cluster of points represented 
data where the photosynthetically active radiation (PAR) 
measurements at a depth of 10 metres were invalid. It turned out 
that these erroneous measurements were caused by the light level 
exceeding the sensor’s maximum input threshold.  

The fisheye table view in Figure 7 has been sorted on PAR at 
10m. The rows that correspond to the selection in the histogram 
and scatterplots are highlighted. This table depicts the data 
distribution over individual variables by colouring areas of each 
cell proportional to the value it contains. In its application here, it 
can be seen that the highlighted block of rows show that the 
distribution of values they represent is uncharacteristic of the 
other non-highlighted rows below them – the two regions appear 
disjointed. Although this clearly reflects the erroneous data, they 
would have been harder to identify without the help of the 
connected scatterplot. This is because without the scatterplot the 
user would have to sort each column in turn to look for such 
uncharacteristic distributions. Fortunately in our case, the low-D 
representation provided by the scatter plot (and underlying hybrid 
algorithm) immediately caught out attention and made it easier to 
manipulate the table to take a closer look. 

The two algorithms used here are examples of ‘recipes’ that are in 
the algorithmic cookbook mentioned in Section 3. Since the data 
set used here is deemed to be of moderate cardinality and 
dimensionality, K-means is applicable in reducing the 
representative cardinality (centroids) to make it low enough for 
Chalmers’ spring model to converge very quickly and reduce the 
dimensionality to 2 dimensions. From here, the rest of the data set 
is interpolated onto the layout to restore the representative 
cardinality. A final spring model step is added to run for a small 
constant number of iterations to refine the final layout. This 
algorithm was generated by HIVE to span the grid in Figure 8 
from (M, M) to (L, M). If however, the cardinality of the data set 
was high, the algorithm would have had to span from (M, H) to 
(L, H), in which case HIVE would have utilised stochastic 
sampling instead of K-means in the initial phase, to speed things 
up. The other algorithm used in the exercise, neural PCA, was 
composed manually and can be regarded as a direct jump from 
(M, M) to (L, M) with respect to the algorithmic space in Figure 8. 

This exercise demonstrated the fact that some algorithms can be 
more effective than others when employed in MDS. If PCA had 
been used alone, the anomalous data might have been overlooked, 
whereas the hybrid spring model made the cluster immediately 
apparent. Also, the value of the intermediate view after 
interpolation boosted the cluster’s separation and made it more 
visible. 

6 Ongoing and Future Work 

Our ongoing work is focused on implementing further visual 
modules to be included in the cookbook of hybrid algorithms that 
will span the simple 3x3 space represented in Figure 3. 
Algorithms considered include SOMs [Kohonen et al. 2000] and 
Random Mapping [Kaski 1998]. We are also experimenting with 
new algorithmic components such as Morrison and Chalmers’ 
O(N5/4) hybrid algorithm [Morrison and Chalmers 2003]. These 
algorithms are being analysed with respect to the data types they 
can handle, their complexity in time and space, whether or not 
they produce visualisations as useful intermediate representations, 
and the order in which they should be applied in a hybrid 
conjunction. We will also investigate aggregation of visual 
modules, as described in Section 4.2, as a means of increasing 
abstraction and therefore simplifying visual programming. Given 
a larger ‘palette’ of components and a means of aggregation, we 
will then carry out user trials of the workspace and the framework 
concentrating on finding usability concerns (and opportunities). 
We shall strive to acquire test-participants from task domains in 
which HIVE would be useful, such as the environmental scientists 
studying the Antarctica data featured in Section 5. One of our 
aims for empirical evaluation is to find a small project team that 
would benefit from visualisations of multidimensional data and 
whose use of the tool in anger would provide useful feedback. 

One boundary issue that could impact on the implementation and 
usage of the proposed HIVE framework relates to applicable data 
formats. There are several well-established standards for encoding 
and handling data including the hierarchical data format (HDF) 
and others such as the common data format (CDF).  For the HIVE 
framework to be adopted as a feasible information visualisation 
workspace in a non-experimental setting, the formats of data that 
it should be capable of importing, modifying, and possibly 
exporting, should employ these standards. 

7 Conclusion 

We have developed a framework based upon a novel hybrid 
algorithmic architecture and visual programming to provide users 
with interactive steering of data flows and multiple visualisations. 

Figure 8. Dashed arrows represent the HIVE-
generated hybrid algorithm spanning the space from 
M, M to L, M via (1) K-means (2) Chalmers’ spring 
model and (3) Interpolation. The solid arrow 
represents the manually instantiated PCA module. 
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This framework has been embodied in our HIVE software 
(Hybrid Information Visualisation Environment). From early 
experience with our prototype, we suggest that the hybrid 
approach has two-fold benefits: significant improvements in run 
times of MDS algorithms can be achieved, and intermediate views 
of the data and the visualisation program structure can provide 
greater insight and control over the visualisation process. In the 
near future, we intend to carry out user trials to test this opinion, 
and to derive system improvements and new design ideas. 

Work on HIVE has progressed since reporting its development in 
a companion paper [Ross and Chalmers 2003]. We have provided 
more detail on its implementation of ports, visual modules and 
composition model etc. Interface improvements such as in 
reflection and view co-ordination have been outlined and the 
direction our work is taking us, such as in algorithmic view 
aggregation, new algorithms and user trials, has been illustrated. 

The abundance and variety of algorithms for visualising 
multidimensional data compound the need for assistance in 
exploring them. In visualising not only the data but also the 
computational devices for their transformation, we suggest that it 
is easier to experiment, compare and learn good approaches to 
gleaning more information from our data. 
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