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Abstract

Data can be distinguished according to volume atédeitypes and
distribution, and each of these characteristicsoseg constraints
upon the choice of applicable algorithms for thasualisation.
This has led to an abundance of often disparateritigic
techniques. Previous work has shown that a hydgdrighmic
approach can be successful in addressing the impladata
volume on the feasibility of multidimensional scaji (MDS).
This paper presents a system and framework in wigker can
easily explore algorithms as well as their hybrijanctions and
the data flowing through them. Visual programmimgl & novel
algorithmic architecture let the user semi—autocadlyi define
data flows and the co-ordination of multiple vieafsalgorithmic
and visualisation components. We propose that ppraach has
two main benefits: significant improvements in times of MDS
algorithms can be achieved, and intermediate viefvthe data
and the visualisation program structure can progigater insight
and control over the visualisation process.

CR Categories. 1.5.3 [Pattern recognition]: Clustering —
Algorithms; E.1 [Data Structures]: Graphs and nekspD.1.7
[Programming Techniques]: Visual Programming; 1.3.6
[Computer Graphics]: Methodology and Techniquesterhction
techniques;

Keywords: Data-flow, visual programming, multidimensional
scaling, multiple views, hybrid algorithms, comptgx

1 Introduction

There is a multitude of algorithms available foustering and
laying out abstract data. The different algoritbrapproaches
seem to be tailored to specific types of data. &ahgorithms
perform well with data sets of low cardinality adidhensionality,
such as the basic spring model [Eades 1984]. Ctlgarithms
work best with high cardinality data, an exampleatiich is the
self-organising majpr SOM [Kohonen et al. 2000]. In training, a
substantial training set allows the SOM to reveahplex non-
linear structure in a very large body of data.
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Other features of the data set also affect theicgiplity of
algorithms, such as data distribution. For exampleneans
clustering [MacQueen 1967] is most effective whea tata is
distributed in spherical Gaussian clusters [Bradkeyl Fayyad
1998].

In a working environment, corporate memory and gubgpecific

databases tend to start off small and graduallyvevimto large

information repositories. While it would be feasilib visualise
the inter-object relationships with a force-directdayout

algorithm in the infancy of such a database, it ddiecome less
and less effective as the database matures andndsnaamore
computationally feasible solution. Previous worls l&aown that
hybrid algorithmic approaches to visualisation scalp to

relatively high-volume data sets, even though soofethe

constituent algorithms would be too costly on ttoein if applied

to the entire set [Morrison et al. 2002]. This wbsluggest that
when applied to a growing database, algorithmipssisould be
bypassed in the repository’s infancy and incorgatags it
approaches maturity. Or, in the case that volulnetfates, the
hybrid algorithm could fluctuate and adapt with it.

We present an implemented system and frameworkc#IVE
(Hybrid Information Visualisation Environment) thattilises
direct manipulation to allow users to interactivedyeate and
explore hybrid MDS algorithms. Figure 1 shows serskots of
the system. Visual programming and a novel algonith
architecture are proposed as a means to let the semi—
automatically co-ordinate multiple views and intgieely steer
data flows.

This paper expands on a shorter version [Ross dmalm@rs
2003] in which we provided an account of earlierkvon HIVE.
Within the following pages we shall give a moreailed account
of HIVE's implementation of the data-flow model, sual
programming techniques and system architectureasuddiscuss
recent developments such as dynamic run-time |gaddf
algorithmic and visualisation components (Sectidnl.

The paper has seven sections. Section two descelksed work
including multidimensional scaling, the data-flowodel and
visual programming. Section three illustrates thgbrid
algorithmic framework, upon which the system isltouBection
four describes the HIVE architecture and implemioa Early
experience of using HIVE is discussed in sectior.fiFinally,
sections six and seven present future work and lesions
respectively.
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on the left illustrates interconnected poments that import,

transform and render multidimensional data. Theorilymic components collectively represent tO¢\NVN) hybrid MDS
algorithm of [Morrison et al. 2002]. Thick linesathlink modules represent data-flows while thingn@nnecting scatterplots
and other visualisations, represent the connecbehseen interlinked interactive views. The imagettee right shows the same
scatterplots enlarged and supplemented with ayfesha&ble component (bottom-right) and histogranwtt@m-left). The data
consists of 5000 points sampled from a 3D ‘S’ sagistribution.

2 Related work

The HIVE system permits users to easily create exgkriment
with hybrid algorithms for generating visualisasoof their data.
This process is a visual one in that algorithms eisdalisations
are represented by visual components that afforcectdi
manipulation. The following sub-sections describpids in the
literature that have influenced HIVE’s development.

2.1 Multidimensional scaling

In the application of MDS we are primarily concedneith a
lower dimensional representation of multivariatexpmity data.
Such data are composed of elements or observati@ishave
three or more variables (multidimensional) and whehe
similarity between one datum and any other can umnified.
The appeal in reducing dimensionality is simple: cater for
visualisation. For example, scatterplots are exétgrmuseful
graphical tools, but they are restricted to a 2Datigp
representation — they only have two real axes.

MDS has a relatively long history and there are yri@ehniques.
In [Buja et al. 1998], two categorisations of MDSthods are
devised that are based upon the underlying mechasfiearly
work in [Torgerson 1952], [Shepard 1962] and [Kialsk964].
Torgerson’s work is derived from the Eckart-Yound/CS
approximation theorem [Eckart and Young 1936]. Wel fthat
the abundance of MDS techniques justifies our syst¢lVE, as
a visual workspace in which it is possible to inmpént, combine
and compare them.

2.2 Visual programming

At around the time when scientific visualisation swaeing

established, the concept ofisual programming was also
becoming prominent [Haeberli 1988; Upson et al. 998
Conventional programming languages, whether higkller low

level, tend to be built around a vocabulary whére twords’

consist of primitives (characters). Visual programgnlanguages
are at a higher level of abstraction than convealidanguages.
Haeberli [1988] states that a visual programmingrenment is

any system that has adopted a graphical 2D notdtiorthe

creation of programs. The visual primitives thatken up the
vocabulary of these programs are essentially reptadons of
well-defined aggregates and the (direct) manipofatdf these
aggregates means that complex programs can be qawdunore

easily than with conventional languages. This éxduse the
abstraction allows a greater degree of code ortimmeeuse and
the workings of the programs themselves are moealilse

understood and communicated due to their visual spatial

properties. It can also be argued that if the paation of the

visual constructs is flexible enough—for examples trser may
wish to place them arbitrarily on the display soefa-then this

allows greater freedom for externalising the pland thoughts of
the user [Hendry and Harper 1999].

Using visual programming for constructing InfoVifgarithms

reinforces our commitment to and interest in grephinteraction
in computing. With regard to the means-end retesidp, the
meansare a visual process and teed result is a tool that
produces the visual information originally soughftea—

visualisations are useful for producing other visadions.



2.3 Data-flow model

Before visual programming was available in sciéntif
visualisation tools, the functional components loé tools were
hidden from the users and they had no control effiibw of data
between them. The stream of data from input thHnazadculation
functions to mapping, filtering and rendering griaghand their
control was pre-set and the scientists and enginesd to make
do as best as they could for their tasks. In thedsof Haeberli,
“Instead of the user driving an application, theeuss often
driven and constrained by the application.”

Visual programming addressed a number of these lgsh

moving away from these monolithic and static aggilans and
providing integrated environments where a user auth
programming expertise could customise his or heliegtions.

Visual programming in the application design cytd&es the
form of a data—flow architecture. In this architeet users are
presented with a library of modules—application comgnts—

with specific functions. The users can select whigbdules will

be useful in their application and draw, via dire@nipulation of
graphical representations, a block diagram andema@nnections
between modules for the data to flow through. Tdusck and

easy process meant that scientists and engineglids @ancentrate
on the problems being studied instead of dealingh wihe

overhead of re-coding and configuring monolithiplégations.

2.4 Multiple-view co-ordination

Multiple view co—ordination allows two or more redd views of
data to run concurrently, with views evolving agadfiows into
them from some common ancestor in the data floytgrar as
the user interacts with one of them. A well-knowaraple of
this is brushing and linking [Becker and Cleveld@87]. By co-
ordinating multiple views so that changes maderia view are
reflected in other views, interaction can be saidlaw between
them. This lets the user focus on specific parthefdata set, and
see them within the context of other views.

In evaluating their snap-together visualisationtexyys North and
Shneiderman have found that this enhances usesrperfice in

data analysis tasks [North and Shneiderman 20a®pr@ination

of activity across multiple views gives the useeaer control
over the visual representations of the data. Tdltsnately

nurtures discovery. In [Buja and Swayne 1996% itiéscribed as
linking “...a graphical query to a graphical responseand in

[Eick and Wills 1995] it is stated that it giveseus the impression
that they aréouchingthe data.

HIVE takes advantage of the data-flow model andualis
programming. To create a hybrid algorithm, a useagsl
components from the system’s tool bar into the drgwegion

(see figure 1) and then interconnects them by dmnagtinks

between ports on the components. Not only is the-fiew set up
in this manner, but the view co-ordination can ddeaefined this
way. After connecting visualisation tools such aattrplots to
the output ports of algorithmic components, ‘Sélpcirts can be
linked between view components to establish ‘brasid link’

functionality.

Hybrid algorithms can exhibit a lower run-time thapring
models run upon the whole data set, as discusspdadrrison et
al. 2003], but they also lend themselves to thedyection of
intermediate visualisations. The benefits of thyrid approach

are two-fold: efficiency is enhanced and intermesliaiews
provide more insight into the data. For examples thybrid
algorithm depicted in Figure 1 (left) uses a springdel of a
sample of the full data set, to gain an initial Breeale 2D layout.
In the left frame of Figure 1, scatterplots haverbbooked up to
intermediate stages of the hybrid algorithm to walldor
comparison. The three layouts have been posititnyethe user
on the right hand side of the frame. The sampleuajs fed into
another module, which interpolates the remaindethef set to
produce a third and final scatterplot, shown irihte right of the
frame. In the right hand frame in the figure, tlighéye table
shows the layout points sorted on the x dimensiuh lastogram
views have also been connected to depict the »atistributions
of the 3D set. If we then use brushing to selaanae of rows in
the table or a region in a histogram, we highlighte
corresponding points in the scatterplots and reweade of the
structure of the data. An extension of the worlspreed in [Ross
and Chalmers 2003] allows for the neatly tiled latycof
visualisation components, as in the right hand &arthe figure.

3 Hybrid algorithmic architecture

HIVE has been inspired by some of the existing -flata and

visual programming systems that are prominent @& liferature
and common in the marketplace. Upson et al's Apfibo

Visualisation System (AVS) [Upson et al. 1989] addrth and
Shneiderman’s shap-together system [North and Sbemaan
2000] are two good examples. AVS is predominantiyed at
scientific visualisation, for modelling or simullag physical
processes such as fluid dynamics, and concentratesannelling
data through algorithmic processes for transformnatiand
rendering. The emphasis here is on the data-floartiNand
Shneiderman’s snap-together system, on the othed,h&s

concerned with information visualisation. In thisstem there is
less emphasis upon the algorithmic processes &msforming
data and more on the transformation of graphigaiegentations
by way of multiple interconnected views. Here tHewf of

interaction takes precedence.

Data
transformatiop———p»{ Render |«

Data Data
import transformatiofr P Render |«
L—Pp{ Render |q

Figure 2. Data-flow and view ocordination combine:
Solid arrows represent data-flow betwedsual module
and dashed arrows depict oddination links betwee
multiple views in HIVE.

HIVE borrows from the data-flow model of AVS to Bexible in
creating efficient algorithms for the visualisatsoneffectively
opening the algorithmic ‘black box’ and allowingethuser to
interactively steer the flow of data. However, toib line with the
goal of information visualisation, it concentrates exploration
rather than simulation. This is achieved by suppleting the
data-flow with interaction flow across multiple wis, rather like



the snap-together system (see Figure 2). It mushlik however,
that this approach does not come without drawbatkss
important to note that if the level of abstractissed in the visual
programming language is too low then there mightdmemany
visual modules, in that programming would becomemlicated
and the flow networks too large and hard to manimgéhe
available screen space. As exhibited by the leftdhftame of
Figure 1, the modules used in only one hybrid allgor can
potentially use up much of the display space makidifficult to
run more than one algorithm concurrently. One smiubeing
considered is to allow the user to dynamically éase the level of
abstraction by aggregating groups of modules, siyipy the
graph of interconnected modules and the programmaisig

As well as implementing visual programming to stdata-flow

and co-ordinate multiple views, HIVE has at its e@ novel
hybrid algorithmic framework, exploring a generagpeoach to
the composition of efficient and flexible hybridgalithms. The
choice of each algorithmic component is influendgd many

characteristics including computational cost, thardmality,

dimensionality and distribution of the data, ande tther
interaction components that might be used withinlaeger

workspace, such as scatterplots and fisheye taWessuggest
that these choices can be made incrementally, abthie user
employs intermediate representations as they woitk &nd

explore their data. We also suggest that the sysammassist the
user by using a pre-authored classification of -ddtased on,
initially, cardinality and dimensionality of dataets—and a
corresponding classification of available algoritbrmomponents
based on the classes of data each is suited fig.dffers us an
incremental and combinatorial approach to the weabf

efficient and informative hybrid visualisations.

Cardinality (N)

>

Dimensionality (D)
H
H

Figure 3. Data input to components in a hybrigbathmic
architecture can be categorised by the range
dimensionality and cardinality they are best suifed—
high, medium or low. Each component transformsdaia
effectively moving across the 3x3 grid. Our hybligout
algorithm produces a lowntiensional layout of a lar
high-dimensional data set i.e. a move fr@hH) to (L,H)
that involves several steps shown as dotted limeshd
figure: sampling, which reduces, then a spring model
the sample, which reduc& and then interpolation, hich
increasedN.

Our work has focused on data set cardinallyy, and the
dimensionality or number of variables associatedhweach

object:D. We roughly categorisB andN using an ordinal range
(high, medium and low), and then we can categordse
algorithmic component with values Bf andN for ‘good’ inputs
and for the component’s outputs, effectively sttour opinion
that the component is best suited to such combinsitofD and
N. For example, we consider that the input to K-nseclnstering
should be medium to high b andN, whereas a canonicgl(\?)
spring model algorithm can only handle Idland low to medium
D.

As shown in Figure 3, the choice of componentstaowl they are
connected allows one to solve familiar problemsew ways.
The hybrid algorithm of [Morrison et al. 2003] tsfarms a large
set of data of higlb to low D. It can be thought of as a move
across the grid of combinations BfandN, stepping from(H, H)

to (L, Hy—but taking an indirect route vigd, L) and(L, L) that
involves sampling, spring model layout of the sampand
interpolation based on that intermediate repretenta

It should be noted that in the previous examplerépeesentative
goal state of the data is equivalent(to H) in figure 3 — a low-
dimensional representation of each and every datdowever,
this might not always be the best representatiorcases where
there are a large number of elements in a datat seight be
better to aggregate groups of objects to avoidustmh and save
screen space. For example, it might be wise to qidy¢ cluster
centroids in a scatterplot and have another viedatgd with the
cluster members each time a centroid is selectedis T
representation could be equivalent to ¢heM) state in Figure 3.

Tentative default values for these ordinal categodf data are as
follows. We derived these values from our own ebgrere of
constructing hybrid algorithms, however, HIVE al®whe user to
tailor them:

LowD <3

3 <= Moderaté <= 100

High D > 100

Low N < 1000

1000 <= Moderat& <= 25000
High N > 25000

The HIVE system has been designed and implemenitbdthis
hybrid algorithmic approach in mind, and servesptovide a
workspace for experimental algorithm design andagpory data
analysis. The visual modules that have been impiésdeso far
include a CSV data-importer, Chalmers’ 1996 sprimgdel
[Chalmers 1996], radial interpolation [Morrison &t 2002], K-
means [MacQueen 1967], neural PCA [Oja 1982], stsiit
sampling, scatterplot, histogram and fisheye tabldese
components are the ingredients used in an algagthm
‘cookbook’, in which components deemed to suit ipatar data
characteristics can be automatically connectedoton fhybrid
algorithmic paths that span the grid of Figure 3af8ples are
discussed in Section 5, following the next secBatiscussion of
HIVE's internal structure.

4. Implementation
The software has been implemented in Java SDKThd system

architecture, see Figure 4, has been designed trsées compose
visualisation tools using modular components fopaming data,



algorithmic processing and graphical renderinggéneral terms,
the architecture involves a graph manager that@tpghe user's
composition of a flow of data through componentshsias
scatterplots, K-means clustering, spring model U&so table
views and so forth. A hybrid algorithm generatdowak HIVE to

semi-automatically load and connect algorithmic porents.

4.1 Graph manager

The graph manager allows the user to incrementafbate
executable networks of components. It employs

scripting/composition model [Nierstrasz et al. 184 impose
constraints upon which modules can be connectedtlammaigh

which ‘ports’, depending upon factors such as thggorisation
of data type mentioned in Section 3, as well aplgsaructure and
port polarity (input only, output only, two-way).A user can
manually connect together components, but be warokd
potentially unsuitable or inefficient connectiomSnother mode
offers an automatically generated default pathugothe grid of
Figure 3, instantiating components based on theesys

classification of the input data set.

Hybrid algorithm generator

LMH data
classification

[l

Algorithmic
‘cookbook’

Graph manager

Visual modules

Data Visualisatior
—Y Composition components
source sn —
Algorithmic
components

Figure 4. The system architecture of HIVE.

4.1.1 Visual modules

The graph manager defines three types of componerstspport
the construction of hybrid visualisations. These @) data source
components to allow the import of disparate data aed perform
the required variable type transformations; (2) ogtgmic
components to transform data into metadata andniediate
representations; and finally, (3) visualisation paments for
rendering. It should be noted that this systenotsstrictly a data-
flow model since it is not the original data thafpiassed between
components through links and ports, but referetmése data and
any transformations that are applied. The primanydiit of this is
the more efficient support for tightly coupled irgtetion, e.g.
brushing.

To facilitate extensibility, the visual modules theepresent
algorithmic processes and visualisations are aliveé from a
common Java class. This means that to accommodaie n
algorithms and visualisations, the programmer nadg extend
the base class and implement his/her own speciéithods. The
base class exhibits default behaviour such as altpthe user to
resize, transpose and rename modules via keybaamioose

a

commands. This class also contains the routingshtradle port
declarations.

In another extension of the work described in [Rarsd Chalmers
2003], the Java Reflection API [http://java.sun.¢api] has been
employed in HIVE to dynamically load algorithmic dan
visualisation components at run-time. Compiled aismodule
classes reside within a specific folder in the eyss directory
structure.  Periodically and without unduly impagtin
performance, HIVE checks this folder for any newduies — any
class, that is, having the default visual modulésasuperclass. If
any are detected, the software creates a new dbagfor it in the
toolbar and the component is ready for use.

Within the Department of Computing Science of Gtagg
University, users of HIVE are already implementithgir own

extended modules — one user has created diagmastiponents
to measure layout stresses and run-times exhilbitechybrid

algorithms. With the ability to dynamically loadsuial modules,
users can now share their algorithmic or visuabsatomponents
and incorporate them into HIVE while actively using

4.1.2 Ports

Visual components ‘listen’ to each other by waytloéir ports.
When a programmer writes a component, he or she¢ dactare
the ports that are necessary for the functioningd an
communication of the component. Ports operate lbgnehng the
Java ‘Observable’ class and implementing the ‘Oleér
interface [http://java.sun.com/api/], so that wheerink is made
between two components, the ports at each endedintk register
with each other. This simple approach means thatraponent
can send a message to another connected compagneehding
data through one of its (observable) output partthé (observer)
input port of the other component.

‘Y6 Spring model 1

Datain
Initial positions

Gutput=
Starl Convergence trigoger

Figure 5. When HIVE is in link mode, all Swi
components are hidden while port representatioe
rendered.

There are five types of port that a visual compénean

implement. These consist of the one-way data-ina-dat,

trigger-in and trigger-out ports, as well as the-tmay ‘select’

port. When declaring ports, this type must be defirHowever,
data-in and data-out ports may also define thettre of the data
that will pass through them as well as the variablpes

comprising those data. Two forms of data structhes the ports
cater for are high—dimensional feature vectors tlaat consist of
real, integer, string and date variables, and 2&+«@lued co-
ordinate vectors. Trigger-in and trigger-out podan convey
arbitrary data structures. Their purpose is tovaligorithmic

modules to signify convergence and pass controtlier module
— rather like control constructs in a conventiopabgramming
language. Selection ports pass integer arrays letted datum
indices between visualisation components.



4.1.3 Linking and the composition model

The system’s composition model is responsible &ying down

the rules for which ports can be connected, baped these port
types. These rules comprise the default compositioodel,

however visual component implementations can aderthem to
tighten or loosen connection constraints when requi An

overview of these rules is as follows:

polarity
complement.

sdlf-connection — ports on the same component cannot be

connected
fan-in — one input port can only be linked to one oufpart
fan-out — one output port can be linked to many inputgort

data-structure compatibility — data-in and data-out ports can
only be connected when they are declared to hahdlsame data
structure.

data-variable compatibility — data-in and data-out ports can
only be connected when they are declared to hathdiesame
variable types.

Here we provide more detail that was not presemdBoss and
Chalmers 2003]. The rules of the composition medekstrain the
user to create only legal and sensible connectibesveen
modules. To create a link, the user must placesylstem in ‘link

mode’. This is achieved via menu selection or bykde-clicking

the black background of the drawing canvas. Wheimkmode,

HIVE hides all Java Swing GUI controls on each alsonodule,

such as buttons and sliders, before rendering thts @s grey
circles shown in Figure 5 (both links and ports rerdered using
the Java2D API). Input ports are drawn on the Heftd and
output ports on the right-hand side of each moaule all ports
are labelled as to their purpose. Ports are ndilgigluring the
normal mode of operation so that more space onvibeal

modules can be allocated to GUI controls usefutantrolling

algorithmic and visualisation parameters. Whilewibuld have
been possible to render ports off of the edges adutes, it was
felt that this would complicate the placement oftdabels and
have made the resulting networks more cluttered.

The user creates a link between two modules by fiecing the
mouse pointer over a port and holding down the msuteft
button. This changes the selected port's coloublte. There
might be several modules on the drawing canvaseactl might
have several ports. To prevent the user from tryangnake illegal
connections and to save time, HIVE looks at alleothorts and
consults the composition model to see if a validneztion could
be made from the selected port. If so, the potetaiget port's
colour is changed to pink. This visual feedbacldgaithe user in
connecting modules. To complete the link's creatithre user
simply drags the mouse from the selected port te ohthe
highlighted ports. While doing this, HIVE providesiditional
feedback by rendering a link from the initially setled port to the
current mouse position. When the mouse is dragged @ legal
terminating port, that port turns green, signifythgt the user can
now release the mouse and the link will be madéh Bata flow
links (between algorithmic modules) and view cokoation links
(between visualisation modules) are made in thig. Wiwever,

— one-way ports can only be connected to their

to distinguish between them, data-flow links aredered as
thicker lines while co-ordination links are thinr{€igure 1).

A link can be selected by clicking on it with theonse, which
causes the link to turn red. When in link mode tasises the
corresponding ports to be highlighted to identlig tink’s start
and destination ports. Once selected, the linkbzadeleted or it
can be dragged to bend it. Bending links allowsuther to clarify
connections and tidy up the resulting graph.

Sample 1
Data 1 Sample size:
* 2
Load data £ e 1 == 1
File: | #pply |
M=

B=

Sample 1

Dt 1 Sample size:
i i
Load data LR ==
File: | ety |
M=
D=

Figure 6. The top part of the image shows a liokfra
data source to a sample module. The bottom halfeof
image shows a link after the user has selectedbantlit.

4.2 Hybrid algorithm generation

There is one exception to the data-structure cabipigt rule

above. This is to facilitate the semi-automatic egation of
hybrid algorithms and occurs when the user connectsigh
dimensional output port such as the output of e daiurce
component, to a 2D input port such as the inpat $oatterplot. In
this case HIVE classifies the data on the output @ccording to
the ordinal ranges of dimensionality and cardigadis described
in Section 3. Once this is complete, HIVE loads éippropriate
algorithm from a default set of hybrid algorithms the

algorithmic ‘cookbook’. These algorithms have begne-

classified in their applicability in spanning thadgof Figure 3,
and are inserted between the two components tleatiser had
originally connected, thus restoring adherence he tata-
structure compatibility rule described above.

When HIVE has finished this process the user canorumodify
the algorithm and visualise his/her data. It isgasged that this
functionality might aid inexperienced users of fiystem, as well
as encourage experimentation with hybrid algorithmi
conjunctions.

This is an area of the system that will benefinfraggregation.
Currently when a hybrid algorithm is loaded, alltloé constituent
modules and their links are displayed. This mightbnfusing for
a target user who is interested only in the datd @ sultant
visualisations, not in the underlying algorithm. iSharea is
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currently being investigated. We are experimentimigh the

Piccolo toolkit for creating Zoomable User Intedac(ZUIs)

[http://iwww.cs.umd.edu/hcil/jazz/]. Piccolo utilsehe notion of
smooth semantic and logical zooming based on worfPerlin

and Fox 1993] and [Bederson and Hollan 1994]. tvigtes a
library of classes and an API for integration wittava
applications to make particular elements of the gdtr
application’s user interface zoomable.

Zooming is of interest in our application of modalggregation
because although we wish to condense the datadtaphs, we
still require details of constituent modules to &eailable on
demand. If several algorithmic modules are aggeehaito one
module, this module could consist of a zoomableraarn- a view
- in which the aggregated sub-graph remains visialleeit at a
much smaller scale and level of detail. In presghe spatial
relationships of the aggregated modules, the usghtnfind it
easier to zoom into a particular module and thus gacess to
any parameter controls contained. Or, during thecgss of
aggregation a specific module, perhaps containogrols that
govern the start and stop conditions of the whigerighm, could
be selected and be displayed by default at theektgtoom level.
It is envisaged that this would be most useful whHeiVE
automatically generates an algorithm. A module aioimig
critical controls would be foremost in the compowudrogate and
be immediately available to the user. The user datill be able
to zoom out of the default module and explore ottenponents
in the hybrid algorithm.

The above also suggests that hybrid algoritherssemight span
intermediate stages of the space in Figure 3, daggregated
components could be interconnected to form hybyiokid

algorithms. However, these algorithmic nesting agdregation

issues are the focus of ongoing development anldl lIshaubject
to user evaluation.

HIVE allows users to save algorithms and visuaheet by

serialising module, link and port instances andtimgi them to
file. The default set of algorithms in the ‘cooklbdes also stored
in this way in a ‘patterns’ folder within the systedirectory

structure. If the user modifies the HIVE-generatddorithm,

he/she can save it to this directory and speciy this should be
used the next time HIVE is prompted to generatealgorithm

under the same circumstance. That is, the date tadoalised is
in the same LMH categories and same type of visatdin is

requested.

5 Preliminary experience using HIVE

Early experience of the HIVE system was gained wégsioring
a data set gathered from an eScience project witlenEquator
Interdisciplinary Research Collaboration (www.equatc.uk).
The eScience team has set up a remote sensing @re@bfozen
lake in the Antarctic, which transmits data inchglice thickness,
water temperature, UV radiation levels etc. to emnental
scientists at the University of Nottingham. The athis is to
learn about carbon cycling processes. The dateagitomposed
of 2202 probe measurements, each consisting of akables
measured at five-minute intervals betweef{ I@nuary 2003 and
31 January 2003. This was converted into CSV forneibrie
importing it into HIVE.

Two algorithms were set up in parallel in HIVE anded to
perform dimensional reduction of the data so thaltcould be
rendered as a point distribution in scatterplotaie Glgorithm
consisted of a neural PCA component and the othsrgenerated



automatically after the user specified the datasdtvisualisation
tool, in this case a scatterplot. This latter athon was similar to
the hybrid algorithm illustrated in Figure 1 withetexception that
it used K-means instead of stochastic sampling ritially
reducing the representative cardinality. Both atpars took less
than five seconds to run. By setting up these tlgmriahmic
paths in parallel, it was possible to directly camp the
visualisations produced (Figure 7).

One notable difference between the visualisatioas & small
cluster made prominent by the hybrid spring modspecially in
the intermediate view after the interpolation phaggich was not
apparent in the PCA output. By linking a histogrand table to
the scatterplots it was found that this clustepahts represented
data where the photosynthetically active radiatiiRAR)
measurements at a depth of 10 metres were invalidrned out
that these erroneous measurements were causee bgthlevel
exceeding the sensor’'s maximum input threshold.

The fisheye table view in Figure 7 has been sodedAR at
10m. The rows that correspond to the selectiorhinhistogram
and scatterplots are highlighted. This table depitte data
distribution over individual variables by colourirsgeas of each
cell proportional to the value it contains. Inagplication here, it
can be seen that the highlighted block of rows shbat the
distribution of values they represent is uncharétte of the
other non-highlighted rows below them — the twoioeg appear
disjointed. Although this clearly reflects the ereous data, they
would have been harder to identify without the help the
connected scatterplot. This is because withoutstiaterplot the
user would have to sort each column in turn to Iéok such
uncharacteristic distributions. Fortunately in @ase, the low-D
representation provided by the scatter plot (ardktying hybrid
algorithm) immediately caught out attention and endckasier to
manipulate the table to take a closer look.

The two algorithms used here are examples of ‘etifhat are in
the algorithmic cookbook mentioned in Section 3icBithe data
set used here is deemed to be of moderate catginatid
dimensionality, K-means is applicable in reducindpe t
representative cardinality (centroids) to makeoit lenough for
Chalmers’ spring model to converge very quickly aeduce the
dimensionality to 2 dimensions. From here, the oé¢he data set
is interpolated onto the layout to restore the esentative
cardinality. A final spring model step is addedrtio for a small
constant number of iterations to refine the finaydut. This
algorithm was generated by HIVE to span the gridrigure 8
from (M, M) to (L, M). If however, the cardinality of the data set
was high, the algorithm would have had to span f(dnH) to

(L, H), in which case HIVE would have utilised stochastic
sampling instead of K-means in the initial phasespeed things
up. The other algorithm used in the exercise, ndR@A, was
composed manually and can be regarded as a dineqt from
(M, M) to (L, M) with respect to the algorithmic space in Figure 8.

This exercise demonstrated the fact that some itigts can be
more effective than others when employed in MDSPTA had
been used alone, the anomalous data might havedveenoked,
whereas the hybrid spring model made the clustenddiately
apparent. Also, the value of the intermediate viafter
interpolation boosted the cluster's separation aradle it more
visible.

6 Ongoing and Future Work

Our ongoing work is focused on implementing furthésual
modules to be included in the cookbook of hybrigbathms that
will span the simple 3x3 space represented in EigGt
Algorithms considered include SOMs [Kohonen et2800] and
Random Mapping [Kaski 1998]. We are also experiingnivith
new algorithmic components such as Morrison and|rGérs’
O(N" hybrid algorithm [Morrison and Chalmers 2003]. $kae
algorithms are being analysed with respect to tita tiypes they
can handle, their complexity in time and space, théreor not
they produce visualisations as useful intermedigpeesentations,
and the order in which they should be applied irhydorid
conjunction. We will also investigate aggregatioh \dsual
modules, as described in Section 4.2, as a meafx&asing
abstraction and therefore simplifying visual pragnaing. Given
a larger ‘palette’ of components and a means ofeggdion, we
will then carry out user trials of the workspacel éime framework
concentrating on finding usability concerns (anganrunities).
We shall strive to acquire test-participants framkt domains in
which HIVE would be useful, such as the environrakstientists
studying the Antarctica data featured in SectiorOBe of our
aims for empirical evaluation is to find a smalbject team that
would benefit from visualisations of multidimensiardata and
whose use of the tool in anger would provide uskfetiback.

One boundary issue that could impact on the impihéation and
usage of the proposed HIVE framework relates tdiegipe data
formats. There are several well-established stalsdfar encoding
and handling data including the hierarchical datangt (HDF)

and others such as the common data format (CD#&i).thie HIVE

framework to be adopted as a feasible informatizalisation
workspace in a non-experimental setting, the fosnoéitdata that
it should be capable of importing, modifying, andssgibly

exporting, should employ these standards.

Cardinality (N)

Dimensionality (D)

<

Figure 8. Dashed arrows represent the HIVE
generated hybrid algorithm spanning the space

M, M to L, M via (1) K-means (2) Chalmers’ spg
model and (3) Interpolation. The solid ar
represents the manually instantiated PCA mo

7 Conclusion

We have developed a framework based upon a nouatichy
algorithmic architecture and visual programmingtovide users
with interactive steering of data flows and mukipisualisations.



This framework has been embodied in our HIVE sofewa
(Hybrid Information Visualisation Environment). Fno early
experience with our prototype, we suggest that kybrid
approach has two-fold benefits: significant imprmests in run
times of MDS algorithms can be achieved, and inégliate views
of the data and the visualisation program structizme provide
greater insight and control over the visualisagacess. In the
near future, we intend to carry out user trialdetst this opinion,
and to derive system improvements and new des&asid

Work on HIVE has progressed since reporting itsettggment in
a companion paper [Ross and Chalmers 2003]. We prawided
more detail on its implementation of ports, visnaddules and
composition model etc. Interface improvements swash in
reflection and view co-ordination have been outirend the
direction our work is taking us, such as in aldoric view
aggregation, new algorithms and user trials, has likistrated.

The abundance and variety of algorithms for visiadj
multidimensional data compound the need for assistain
exploring them. In visualising not only the datat lalso the
computational devices for their transformation, suggest that it
is easier to experiment, compare and learn goodoappes to
gleaning more information from our data.
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