

Ross, G. and Chalmers, M. (2003) A visual workspace for constructing
hybrid MDS algorithms and coordinating multiple views. Information
Visualization 2(4):pp. 247-257.

http://eprints.gla.ac.uk/3768/

Deposited on: 18 October 2007

Glasgow ePrints Service
http://eprints.gla.ac.uk

A Visual Workspace for Constructing Hybrid MDS Algorithms and
Coordinating Multiple Views

Greg Ross* Matthew Chalmers†

Department of Computing Science,
University of Glasgow,

Glasgow,
United Kingdom

Abstract

Data can be distinguished according to volume, variable types and
distribution, and each of these characteristics imposes constraints
upon the choice of applicable algorithms for their visualisation.
This has led to an abundance of often disparate algorithmic
techniques. Previous work has shown that a hybrid algorithmic
approach can be successful in addressing the impact of data
volume on the feasibility of multidimensional scaling (MDS).
This paper presents a system and framework in which a user can
easily explore algorithms as well as their hybrid conjunctions and
the data flowing through them. Visual programming and a novel
algorithmic architecture let the user semi–automatically define
data flows and the co-ordination of multiple views of algorithmic
and visualisation components. We propose that our approach has
two main benefits: significant improvements in run times of MDS
algorithms can be achieved, and intermediate views of the data
and the visualisation program structure can provide greater insight
and control over the visualisation process.

CR Categories: I.5.3 [Pattern recognition]: Clustering –
Algorithms; E.1 [Data Structures]: Graphs and networks; D.1.7
[Programming Techniques]: Visual Programming; I.3.6
[Computer Graphics]: Methodology and Techniques – Interaction
techniques;

Keywords: Data-flow, visual programming, multidimensional
scaling, multiple views, hybrid algorithms, complexity

1 Introduction

There is a multitude of algorithms available for clustering and
laying out abstract data. The different algorithmic approaches
seem to be tailored to specific types of data. Some algorithms
perform well with data sets of low cardinality and dimensionality,
such as the basic spring model [Eades 1984]. Other algorithms
work best with high cardinality data, an example of which is the
self–organising map or SOM [Kohonen et al. 2000]. In training, a
substantial training set allows the SOM to reveal complex non-
linear structure in a very large body of data.
--
*e-mail: gr@dcs.gla.ac.uk
†e-mail: matthew@dcs.gla.ac.uk

Other features of the data set also affect the applicability of
algorithms, such as data distribution. For example, K-means
clustering [MacQueen 1967] is most effective when the data is
distributed in spherical Gaussian clusters [Bradley and Fayyad
1998].

In a working environment, corporate memory and project-specific
databases tend to start off small and gradually evolve into large
information repositories. While it would be feasible to visualise
the inter-object relationships with a force-directed layout
algorithm in the infancy of such a database, it would become less
and less effective as the database matures and demands a more
computationally feasible solution. Previous work has shown that
hybrid algorithmic approaches to visualisation scale up to
relatively high-volume data sets, even though some of the
constituent algorithms would be too costly on their own if applied
to the entire set [Morrison et al. 2002]. This would suggest that
when applied to a growing database, algorithmic steps could be
bypassed in the repository’s infancy and incorporated as it
approaches maturity. Or, in the case that volume fluctuates, the
hybrid algorithm could fluctuate and adapt with it.

We present an implemented system and framework called HIVE
(Hybrid Information Visualisation Environment) that utilises
direct manipulation to allow users to interactively create and
explore hybrid MDS algorithms. Figure 1 shows screen-shots of
the system. Visual programming and a novel algorithmic
architecture are proposed as a means to let the user semi–
automatically co-ordinate multiple views and interactively steer
data flows.

This paper expands on a shorter version [Ross and Chalmers
2003] in which we provided an account of earlier work on HIVE.
Within the following pages we shall give a more detailed account
of HIVE’s implementation of the data-flow model, visual
programming techniques and system architecture and also discuss
recent developments such as dynamic run-time loading of
algorithmic and visualisation components (Section 4.1.1).

The paper has seven sections. Section two describes related work
including multidimensional scaling, the data-flow model and
visual programming. Section three illustrates the hybrid
algorithmic framework, upon which the system is built. Section
four describes the HIVE architecture and implementation. Early
experience of using HIVE is discussed in section five. Finally,
sections six and seven present future work and conclusions
respectively.

2 Related work

The HIVE system permits users to easily create and experiment
with hybrid algorithms for generating visualisations of their data.
This process is a visual one in that algorithms and visualisations
are represented by visual components that afford direct
manipulation. The following sub-sections describe topics in the
literature that have influenced HIVE’s development.

2.1 Multidimensional scaling

In the application of MDS we are primarily concerned with a
lower dimensional representation of multivariate proximity data.
Such data are composed of elements or observations that have
three or more variables (multidimensional) and where the
similarity between one datum and any other can be quantified.
The appeal in reducing dimensionality is simple: to cater for
visualisation. For example, scatterplots are extremely useful
graphical tools, but they are restricted to a 2D spatial
representation – they only have two real axes.

MDS has a relatively long history and there are many techniques.
In [Buja et al. 1998], two categorisations of MDS methods are
devised that are based upon the underlying mechanics of early
work in [Torgerson 1952], [Shepard 1962] and [Kruskal 1964].
Torgerson’s work is derived from the Eckart-Young SVD
approximation theorem [Eckart and Young 1936]. We feel that
the abundance of MDS techniques justifies our system, HIVE, as
a visual workspace in which it is possible to implement, combine
and compare them.

2.2 Visual programming

At around the time when scientific visualisation was being
established, the concept of visual programming was also
becoming prominent [Haeberli 1988; Upson et al. 1989].
Conventional programming languages, whether high level or low
level, tend to be built around a vocabulary where the ‘words’
consist of primitives (characters). Visual programming languages
are at a higher level of abstraction than conventional languages.
Haeberli [1988] states that a visual programming environment is
any system that has adopted a graphical 2D notation for the
creation of programs. The visual primitives that make up the
vocabulary of these programs are essentially representations of
well-defined aggregates and the (direct) manipulation of these
aggregates means that complex programs can be produced more
easily than with conventional languages. This is because the
abstraction allows a greater degree of code or function reuse and
the workings of the programs themselves are more readily
understood and communicated due to their visual and spatial
properties. It can also be argued that if the manipulation of the
visual constructs is flexible enough—for example, the user may
wish to place them arbitrarily on the display surface—then this
allows greater freedom for externalising the plans and thoughts of
the user [Hendry and Harper 1999].

Using visual programming for constructing InfoVis algorithms
reinforces our commitment to and interest in graphical interaction
in computing. With regard to the means-end relationship, the
means are a visual process and the end result is a tool that
produces the visual information originally sought after—
visualisations are useful for producing other visualisations.

Figure 1. Two screen-shots of the HIVE interface. The image on the left illustrates interconnected components that import,
transform and render multidimensional data. The algorithmic components collectively represent the O(N√N) hybrid MDS
algorithm of [Morrison et al. 2002]. Thick lines that link modules represent data-flows while thin ones, connecting scatterplots
and other visualisations, represent the connections between interlinked interactive views. The image on the right shows the same
scatterplots enlarged and supplemented with a fisheye table component (bottom-right) and histograms (bottom-left). The data
consists of 5000 points sampled from a 3D ‘S’ shaped distribution.

2.3 Data-flow model

Before visual programming was available in scientific
visualisation tools, the functional components of the tools were
hidden from the users and they had no control of the flow of data
between them. The stream of data from input through calculation
functions to mapping, filtering and rendering graphics and their
control was pre-set and the scientists and engineers had to make
do as best as they could for their tasks. In the words of Haeberli,
“Instead of the user driving an application, the user is often
driven and constrained by the application.”

Visual programming addressed a number of these problems,
moving away from these monolithic and static applications and
providing integrated environments where a user without
programming expertise could customise his or her applications.
Visual programming in the application design cycle takes the
form of a data–flow architecture. In this architecture, users are
presented with a library of modules—application components—
with specific functions. The users can select which modules will
be useful in their application and draw, via direct manipulation of
graphical representations, a block diagram and create connections
between modules for the data to flow through. This quick and
easy process meant that scientists and engineers could concentrate
on the problems being studied instead of dealing with the
overhead of re-coding and configuring monolithic applications.

2.4 Multiple-view co-ordination

Multiple view co–ordination allows two or more related views of
data to run concurrently, with views evolving as data flows into
them from some common ancestor in the data flow graph, or as
the user interacts with one of them. A well–known example of
this is brushing and linking [Becker and Cleveland 1987]. By co-
ordinating multiple views so that changes made in one view are
reflected in other views, interaction can be said to flow between
them. This lets the user focus on specific parts of the data set, and
see them within the context of other views.

In evaluating their snap-together visualisation system, North and
Shneiderman have found that this enhances user-performance in
data analysis tasks [North and Shneiderman 2000]. Co-ordination
of activity across multiple views gives the user greater control
over the visual representations of the data. This ultimately
nurtures discovery. In [Buja and Swayne 1996] it is described as
linking “…a graphical query to a graphical response”, and in
[Eick and Wills 1995] it is stated that it gives users the impression
that they are touching the data.

HIVE takes advantage of the data-flow model and visual
programming. To create a hybrid algorithm, a user drags
components from the system’s tool bar into the drawing region
(see figure 1) and then interconnects them by dragging links
between ports on the components. Not only is the data-flow set up
in this manner, but the view co-ordination can also be defined this
way. After connecting visualisation tools such as scatterplots to
the output ports of algorithmic components, ‘Select’ ports can be
linked between view components to establish ‘brush and link’
functionality.

Hybrid algorithms can exhibit a lower run-time than spring
models run upon the whole data set, as discussed in [Morrison et
al. 2003], but they also lend themselves to the production of
intermediate visualisations. The benefits of this hybrid approach

are two-fold: efficiency is enhanced and intermediate views
provide more insight into the data. For example, the hybrid
algorithm depicted in Figure 1 (left) uses a spring model of a
sample of the full data set, to gain an initial small-scale 2D layout.
In the left frame of Figure 1, scatterplots have been hooked up to
intermediate stages of the hybrid algorithm to allow for
comparison. The three layouts have been positioned by the user
on the right hand side of the frame. The sample layout is fed into
another module, which interpolates the remainder of the set to
produce a third and final scatterplot, shown in to the right of the
frame. In the right hand frame in the figure, the fisheye table
shows the layout points sorted on the x dimension and histogram
views have also been connected to depict the x and y distributions
of the 3D set. If we then use brushing to select a range of rows in
the table or a region in a histogram, we highlight the
corresponding points in the scatterplots and reveal more of the
structure of the data. An extension of the work presented in [Ross
and Chalmers 2003] allows for the neatly tiled layout of
visualisation components, as in the right hand frame of the figure.

3 Hybrid algorithmic architecture

HIVE has been inspired by some of the existing data-flow and
visual programming systems that are prominent in the literature
and common in the marketplace. Upson et al’s Application
Visualisation System (AVS) [Upson et al. 1989] and North and
Shneiderman’s snap-together system [North and Shneiderman
2000] are two good examples. AVS is predominantly aimed at
scientific visualisation, for modelling or simulating physical
processes such as fluid dynamics, and concentrates on channelling
data through algorithmic processes for transformation and
rendering. The emphasis here is on the data-flow. North and
Shneiderman’s snap-together system, on the other hand, is
concerned with information visualisation. In this system there is
less emphasis upon the algorithmic processes for transforming
data and more on the transformation of graphical representations
by way of multiple interconnected views. Here the flow of
interaction takes precedence.

HIVE borrows from the data-flow model of AVS to be flexible in
creating efficient algorithms for the visualisations, effectively
opening the algorithmic ‘black box’ and allowing the user to
interactively steer the flow of data. However, to be in line with the
goal of information visualisation, it concentrates on exploration
rather than simulation. This is achieved by supplementing the
data-flow with interaction flow across multiple views, rather like

Data
import

Data
transformation Render

Data
transformation Render

Render

Figure 2. Data-flow and view co-ordination combined.
Solid arrows represent data-flow between visual modules
and dashed arrows depict co-ordination links between
multiple views in HIVE.

the snap-together system (see Figure 2). It must be said, however,
that this approach does not come without drawbacks. It is
important to note that if the level of abstraction used in the visual
programming language is too low then there might be too many
visual modules, in that programming would become complicated
and the flow networks too large and hard to manage in the
available screen space. As exhibited by the left hand frame of
Figure 1, the modules used in only one hybrid algorithm can
potentially use up much of the display space making it difficult to
run more than one algorithm concurrently. One solution being
considered is to allow the user to dynamically increase the level of
abstraction by aggregating groups of modules, simplifying the
graph of interconnected modules and the programming task.

As well as implementing visual programming to steer data-flow
and co-ordinate multiple views, HIVE has at its core a novel
hybrid algorithmic framework, exploring a general approach to
the composition of efficient and flexible hybrid algorithms. The
choice of each algorithmic component is influenced by many
characteristics including computational cost, the cardinality,
dimensionality and distribution of the data, and the other
interaction components that might be used within a larger
workspace, such as scatterplots and fisheye tables. We suggest
that these choices can be made incrementally, so that the user
employs intermediate representations as they work with and
explore their data. We also suggest that the system can assist the
user by using a pre-authored classification of data—based on,
initially, cardinality and dimensionality of data sets—and a
corresponding classification of available algorithmic components
based on the classes of data each is suited for. This offers us an
incremental and combinatorial approach to the creation of
efficient and informative hybrid visualisations.

Our work has focused on data set cardinality, N, and the
dimensionality or number of variables associated with each

object: D. We roughly categorise D and N using an ordinal range
(high, medium and low), and then we can categorise an
algorithmic component with values of D and N for ‘good’ inputs
and for the component’s outputs, effectively stating our opinion
that the component is best suited to such combinations of D and
N. For example, we consider that the input to K-means clustering
should be medium to high in D and N, whereas a canonical O(N2)
spring model algorithm can only handle low N and low to medium
D.

As shown in Figure 3, the choice of components and how they are
connected allows one to solve familiar problems in new ways.
The hybrid algorithm of [Morrison et al. 2003] transforms a large
set of data of high D to low D. It can be thought of as a move
across the grid of combinations of D and N, stepping from (H, H)
to (L, H)—but taking an indirect route via (H, L) and (L, L) that
involves sampling, spring model layout of the sample, and
interpolation based on that intermediate representation.

It should be noted that in the previous example the representative
goal state of the data is equivalent to (L, H) in figure 3 – a low-
dimensional representation of each and every datum. However,
this might not always be the best representation. In cases where
there are a large number of elements in a data set it might be
better to aggregate groups of objects to avoid occlusion and save
screen space. For example, it might be wise to plot only cluster
centroids in a scatterplot and have another view updated with the
cluster members each time a centroid is selected. This
representation could be equivalent to the (L, M) state in Figure 3.

Tentative default values for these ordinal categories of data are as
follows. We derived these values from our own experience of
constructing hybrid algorithms, however, HIVE allows the user to
tailor them:

Low D < 3

3 <= Moderate D <= 100

High D > 100

Low N < 1000

1000 <= Moderate N <= 25000

 High N > 25000

The HIVE system has been designed and implemented with this
hybrid algorithmic approach in mind, and serves to provide a
workspace for experimental algorithm design and exploratory data
analysis. The visual modules that have been implemented so far
include a CSV data-importer, Chalmers’ 1996 spring model
[Chalmers 1996], radial interpolation [Morrison et al. 2002], K-
means [MacQueen 1967], neural PCA [Oja 1982], stochastic
sampling, scatterplot, histogram and fisheye table. These
components are the ingredients used in an algorithmic
‘cookbook’, in which components deemed to suit particular data
characteristics can be automatically connected to form hybrid
algorithmic paths that span the grid of Figure 3. Examples are
discussed in Section 5, following the next section’s discussion of
HIVE’s internal structure.

4. Implementation

The software has been implemented in Java SDK 1.4. The system
architecture, see Figure 4, has been designed to let users compose
visualisation tools using modular components for importing data,

Cardinality (N)

H, H H, M H, L

M, H M, M M, L

L, H L, M L, L

D
im

en
si

on
al

it
y

(D
)

Figure 3. Data input to components in a hybrid algorithmic
architecture can be categorised by the ranges of
dimensionality and cardinality they are best suited for—
high, medium or low. Each component transforms the data,
effectively moving across the 3x3 grid. Our hybrid layout
algorithm produces a low-dimensional layout of a large
high-dimensional data set i.e. a move from (H,H) to (L,H)
that involves several steps shown as dotted lines in the
figure: sampling, which reduces N, then a spring model of
the sample, which reduces D, and then interpolation, which
increases N.

algorithmic processing and graphical rendering. In general terms,
the architecture involves a graph manager that supports the user’s
composition of a flow of data through components such as
scatterplots, K-means clustering, spring model layouts, table
views and so forth. A hybrid algorithm generator allows HIVE to
semi-automatically load and connect algorithmic components.

4.1 Graph manager

The graph manager allows the user to incrementally create
executable networks of components. It employs a
scripting/composition model [Nierstrasz et al. 1991] to impose
constraints upon which modules can be connected and through
which ‘ports’, depending upon factors such as the categorisation
of data type mentioned in Section 3, as well as graph structure and
port polarity (input only, output only, two-way). A user can
manually connect together components, but be warned of
potentially unsuitable or inefficient connections. Another mode
offers an automatically generated default path through the grid of
Figure 3, instantiating components based on the system’s
classification of the input data set.

4.1.1 Visual modules

The graph manager defines three types of components to support
the construction of hybrid visualisations. These are (1) data source
components to allow the import of disparate data sets and perform
the required variable type transformations; (2) algorithmic
components to transform data into metadata and intermediate
representations; and finally, (3) visualisation components for
rendering. It should be noted that this system is not strictly a data-
flow model since it is not the original data that is passed between
components through links and ports, but references to the data and
any transformations that are applied. The primary benefit of this is
the more efficient support for tightly coupled interaction, e.g.
brushing.

To facilitate extensibility, the visual modules that represent
algorithmic processes and visualisations are all derived from a
common Java class. This means that to accommodate new
algorithms and visualisations, the programmer need only extend
the base class and implement his/her own specific methods. The
base class exhibits default behaviour such as allowing the user to
resize, transpose and rename modules via keyboard or mouse

commands. This class also contains the routines that handle port
declarations.

In another extension of the work described in [Ross and Chalmers
2003], the Java Reflection API [http://java.sun.com/api/] has been
employed in HIVE to dynamically load algorithmic and
visualisation components at run-time. Compiled visual module
classes reside within a specific folder in the system’s directory
structure. Periodically and without unduly impacting
performance, HIVE checks this folder for any new modules – any
class, that is, having the default visual module as its superclass. If
any are detected, the software creates a new drag-label for it in the
toolbar and the component is ready for use.

Within the Department of Computing Science of Glasgow
University, users of HIVE are already implementing their own
extended modules – one user has created diagnostic components
to measure layout stresses and run-times exhibited by hybrid
algorithms. With the ability to dynamically load visual modules,
users can now share their algorithmic or visualisation components
and incorporate them into HIVE while actively using it.

4.1.2 Ports

Visual components ‘listen’ to each other by way of their ports.
When a programmer writes a component, he or she must declare
the ports that are necessary for the functioning and
communication of the component. Ports operate by extending the
Java ‘Observable’ class and implementing the ‘Observer’
interface [http://java.sun.com/api/], so that when a link is made
between two components, the ports at each end of the link register
with each other. This simple approach means that a component
can send a message to another connected component by sending
data through one of its (observable) output ports to the (observer)
input port of the other component.

There are five types of port that a visual component can
implement. These consist of the one-way data-in, data-out,
trigger-in and trigger-out ports, as well as the two-way ‘select’
port. When declaring ports, this type must be defined. However,
data-in and data-out ports may also define the structure of the data
that will pass through them as well as the variable types
comprising those data. Two forms of data structure that the ports
cater for are high–dimensional feature vectors that can consist of
real, integer, string and date variables, and 2D real–valued co-
ordinate vectors. Trigger-in and trigger-out ports can convey
arbitrary data structures. Their purpose is to allow algorithmic
modules to signify convergence and pass control to other module
– rather like control constructs in a conventional programming
language. Selection ports pass integer arrays of selected datum
indices between visualisation components.

Data
source

Figure 4. The system architecture of HIVE.

Composition
model

Graph manager

Visualisation
components

Algorithmic
components

Visual modules

Hybrid algorithm generator

LMH data
classification

Algorithmic
‘cookbook’

Figure 5. When HIVE is in link mode, all Swing
components are hidden while port representations are
rendered.

4.1.3 Linking and the composition model

The system’s composition model is responsible for laying down
the rules for which ports can be connected, based upon these port
types. These rules comprise the default composition model,
however visual component implementations can override them to
tighten or loosen connection constraints when required. An
overview of these rules is as follows:

polarity – one-way ports can only be connected to their
complement.

self-connection – ports on the same component cannot be
connected

fan-in – one input port can only be linked to one output port

fan-out – one output port can be linked to many input ports

data-structure compatibility – data-in and data-out ports can
only be connected when they are declared to handle the same data
structure.

data-variable compatibility – data-in and data-out ports can
only be connected when they are declared to handle the same
variable types.

Here we provide more detail that was not presented in [Ross and
Chalmers 2003]. The rules of the composition model constrain the
user to create only legal and sensible connections between
modules. To create a link, the user must place the system in ‘link
mode’. This is achieved via menu selection or by double-clicking
the black background of the drawing canvas. When in link mode,
HIVE hides all Java Swing GUI controls on each visual module,
such as buttons and sliders, before rendering the ports as grey
circles shown in Figure 5 (both links and ports are rendered using
the Java2D API). Input ports are drawn on the left-hand and
output ports on the right-hand side of each module and all ports
are labelled as to their purpose. Ports are not visible during the
normal mode of operation so that more space on the visual
modules can be allocated to GUI controls useful in controlling
algorithmic and visualisation parameters. While it would have
been possible to render ports off of the edges of modules, it was
felt that this would complicate the placement of port labels and
have made the resulting networks more cluttered.

The user creates a link between two modules by first placing the
mouse pointer over a port and holding down the mouse’s left
button. This changes the selected port’s colour to blue. There
might be several modules on the drawing canvas and each might
have several ports. To prevent the user from trying to make illegal
connections and to save time, HIVE looks at all other ports and
consults the composition model to see if a valid connection could
be made from the selected port. If so, the potential target port’s
colour is changed to pink. This visual feedback guides the user in
connecting modules. To complete the link’s creation, the user
simply drags the mouse from the selected port to one of the
highlighted ports. While doing this, HIVE provides additional
feedback by rendering a link from the initially selected port to the
current mouse position. When the mouse is dragged over a legal
terminating port, that port turns green, signifying that the user can
now release the mouse and the link will be made. Both data flow
links (between algorithmic modules) and view co-ordination links
(between visualisation modules) are made in this way. However,

to distinguish between them, data-flow links are rendered as
thicker lines while co-ordination links are thinner (Figure 1).

A link can be selected by clicking on it with the mouse, which
causes the link to turn red. When in link mode this causes the
corresponding ports to be highlighted to identify the link’s start
and destination ports. Once selected, the link can be deleted or it
can be dragged to bend it. Bending links allows the user to clarify
connections and tidy up the resulting graph.

4.2 Hybrid algorithm generation

There is one exception to the data-structure compatibility rule
above. This is to facilitate the semi-automatic generation of
hybrid algorithms and occurs when the user connects a high
dimensional output port such as the output of a data source
component, to a 2D input port such as the input to a scatterplot. In
this case HIVE classifies the data on the output port according to
the ordinal ranges of dimensionality and cardinality as described
in Section 3. Once this is complete, HIVE loads the appropriate
algorithm from a default set of hybrid algorithms – the
algorithmic ‘cookbook’. These algorithms have been pre-
classified in their applicability in spanning the grid of Figure 3,
and are inserted between the two components that the user had
originally connected, thus restoring adherence to the data-
structure compatibility rule described above.

When HIVE has finished this process the user can run or modify
the algorithm and visualise his/her data. It is suggested that this
functionality might aid inexperienced users of the system, as well
as encourage experimentation with hybrid algorithmic
conjunctions.

This is an area of the system that will benefit from aggregation.
Currently when a hybrid algorithm is loaded, all of the constituent
modules and their links are displayed. This might be confusing for
a target user who is interested only in the data and resultant
visualisations, not in the underlying algorithm. This area is

Figure 6. The top part of the image shows a link from a
data source to a sample module. The bottom half of the
image shows a link after the user has selected and bent it.

currently being investigated. We are experimenting with the
Piccolo toolkit for creating Zoomable User Interfaces (ZUIs)
[http://www.cs.umd.edu/hcil/jazz/]. Piccolo utilises the notion of
smooth semantic and logical zooming based on work in [Perlin
and Fox 1993] and [Bederson and Hollan 1994]. It provides a
library of classes and an API for integration with Java
applications to make particular elements of the target
application’s user interface zoomable.

Zooming is of interest in our application of module aggregation
because although we wish to condense the data flow graphs, we
still require details of constituent modules to be available on
demand. If several algorithmic modules are aggregated into one
module, this module could consist of a zoomable canvas – a view
- in which the aggregated sub-graph remains visible, albeit at a
much smaller scale and level of detail. In preserving the spatial
relationships of the aggregated modules, the user might find it
easier to zoom into a particular module and thus gain access to
any parameter controls contained. Or, during the process of
aggregation a specific module, perhaps containing controls that
govern the start and stop conditions of the whole algorithm, could
be selected and be displayed by default at the highest zoom level.
It is envisaged that this would be most useful when HIVE
automatically generates an algorithm. A module containing
critical controls would be foremost in the compound surrogate and
be immediately available to the user. The user would still be able
to zoom out of the default module and explore other components
in the hybrid algorithm.

The above also suggests that hybrid algorithms per se might span
intermediate stages of the space in Figure 3, i.e. aggregated
components could be interconnected to form hybrid-hybrid
algorithms. However, these algorithmic nesting and aggregation

issues are the focus of ongoing development and shall be subject
to user evaluation.

HIVE allows users to save algorithms and visualisations by
serialising module, link and port instances and writing them to
file. The default set of algorithms in the ‘cookbook’ is also stored
in this way in a ‘patterns’ folder within the system directory
structure. If the user modifies the HIVE-generated algorithm,
he/she can save it to this directory and specify that this should be
used the next time HIVE is prompted to generate an algorithm
under the same circumstance. That is, the data to be visualised is
in the same LMH categories and same type of visualisation is
requested.

5 Preliminary experience using HIVE

Early experience of the HIVE system was gained when exploring
a data set gathered from an eScience project within the Equator
Interdisciplinary Research Collaboration (www.equator.ac.uk).
The eScience team has set up a remote sensing probe at a frozen
lake in the Antarctic, which transmits data including ice thickness,
water temperature, UV radiation levels etc. to environmental
scientists at the University of Nottingham. The aim of this is to
learn about carbon cycling processes. The data set was composed
of 2202 probe measurements, each consisting of 16 variables
measured at five-minute intervals between 17th January 2003 and
31st January 2003. This was converted into CSV format before
importing it into HIVE.

Two algorithms were set up in parallel in HIVE and used to
perform dimensional reduction of the data so that they could be
rendered as a point distribution in scatterplots. One algorithm
consisted of a neural PCA component and the other was generated

Figure 7. The leftmost scatterplot shows the output of neural PCA. The middle scatterplot shows the data after
interpolation around the K-means centroids while the right scatterplot illustrates the output of the final spring model
component. The highlighted cluster is a small subset of erroneous PAR measurements. These clusters are much clearer
in the hybrid algorithm’s plots than with PCA. The histogram shows the PAR distribution at a depth of 10 metres. The
outlying peak (far-left) has been selected and this highlights the clusters in the scatterplots.

automatically after the user specified the data set and visualisation
tool, in this case a scatterplot. This latter algorithm was similar to
the hybrid algorithm illustrated in Figure 1 with the exception that
it used K-means instead of stochastic sampling in initially
reducing the representative cardinality. Both algorithms took less
than five seconds to run. By setting up these two algorithmic
paths in parallel, it was possible to directly compare the
visualisations produced (Figure 7).

One notable difference between the visualisations was a small
cluster made prominent by the hybrid spring model, especially in
the intermediate view after the interpolation phase, which was not
apparent in the PCA output. By linking a histogram and table to
the scatterplots it was found that this cluster of points represented
data where the photosynthetically active radiation (PAR)
measurements at a depth of 10 metres were invalid. It turned out
that these erroneous measurements were caused by the light level
exceeding the sensor’s maximum input threshold.

The fisheye table view in Figure 7 has been sorted on PAR at
10m. The rows that correspond to the selection in the histogram
and scatterplots are highlighted. This table depicts the data
distribution over individual variables by colouring areas of each
cell proportional to the value it contains. In its application here, it
can be seen that the highlighted block of rows show that the
distribution of values they represent is uncharacteristic of the
other non-highlighted rows below them – the two regions appear
disjointed. Although this clearly reflects the erroneous data, they
would have been harder to identify without the help of the
connected scatterplot. This is because without the scatterplot the
user would have to sort each column in turn to look for such
uncharacteristic distributions. Fortunately in our case, the low-D
representation provided by the scatter plot (and underlying hybrid
algorithm) immediately caught out attention and made it easier to
manipulate the table to take a closer look.

The two algorithms used here are examples of ‘recipes’ that are in
the algorithmic cookbook mentioned in Section 3. Since the data
set used here is deemed to be of moderate cardinality and
dimensionality, K-means is applicable in reducing the
representative cardinality (centroids) to make it low enough for
Chalmers’ spring model to converge very quickly and reduce the
dimensionality to 2 dimensions. From here, the rest of the data set
is interpolated onto the layout to restore the representative
cardinality. A final spring model step is added to run for a small
constant number of iterations to refine the final layout. This
algorithm was generated by HIVE to span the grid in Figure 8
from (M, M) to (L, M). If however, the cardinality of the data set
was high, the algorithm would have had to span from (M, H) to
(L, H), in which case HIVE would have utilised stochastic
sampling instead of K-means in the initial phase, to speed things
up. The other algorithm used in the exercise, neural PCA, was
composed manually and can be regarded as a direct jump from
(M, M) to (L, M) with respect to the algorithmic space in Figure 8.

This exercise demonstrated the fact that some algorithms can be
more effective than others when employed in MDS. If PCA had
been used alone, the anomalous data might have been overlooked,
whereas the hybrid spring model made the cluster immediately
apparent. Also, the value of the intermediate view after
interpolation boosted the cluster’s separation and made it more
visible.

6 Ongoing and Future Work

Our ongoing work is focused on implementing further visual
modules to be included in the cookbook of hybrid algorithms that
will span the simple 3x3 space represented in Figure 3.
Algorithms considered include SOMs [Kohonen et al. 2000] and
Random Mapping [Kaski 1998]. We are also experimenting with
new algorithmic components such as Morrison and Chalmers’
O(N5/4) hybrid algorithm [Morrison and Chalmers 2003]. These
algorithms are being analysed with respect to the data types they
can handle, their complexity in time and space, whether or not
they produce visualisations as useful intermediate representations,
and the order in which they should be applied in a hybrid
conjunction. We will also investigate aggregation of visual
modules, as described in Section 4.2, as a means of increasing
abstraction and therefore simplifying visual programming. Given
a larger ‘palette’ of components and a means of aggregation, we
will then carry out user trials of the workspace and the framework
concentrating on finding usability concerns (and opportunities).
We shall strive to acquire test-participants from task domains in
which HIVE would be useful, such as the environmental scientists
studying the Antarctica data featured in Section 5. One of our
aims for empirical evaluation is to find a small project team that
would benefit from visualisations of multidimensional data and
whose use of the tool in anger would provide useful feedback.

One boundary issue that could impact on the implementation and
usage of the proposed HIVE framework relates to applicable data
formats. There are several well-established standards for encoding
and handling data including the hierarchical data format (HDF)
and others such as the common data format (CDF). For the HIVE
framework to be adopted as a feasible information visualisation
workspace in a non-experimental setting, the formats of data that
it should be capable of importing, modifying, and possibly
exporting, should employ these standards.

7 Conclusion

We have developed a framework based upon a novel hybrid
algorithmic architecture and visual programming to provide users
with interactive steering of data flows and multiple visualisations.

Figure 8. Dashed arrows represent the HIVE-
generated hybrid algorithm spanning the space from
M, M to L, M via (1) K-means (2) Chalmers’ spring
model and (3) Interpolation. The solid arrow
represents the manually instantiated PCA module.

Cardinality (N)

D
im

en
si

on
al

it
y

(D
)

H, H H, M H, L

M, H M, M M, L

L, H L, M L, L

(1)

(2)

(3)

(A)

This framework has been embodied in our HIVE software
(Hybrid Information Visualisation Environment). From early
experience with our prototype, we suggest that the hybrid
approach has two-fold benefits: significant improvements in run
times of MDS algorithms can be achieved, and intermediate views
of the data and the visualisation program structure can provide
greater insight and control over the visualisation process. In the
near future, we intend to carry out user trials to test this opinion,
and to derive system improvements and new design ideas.

Work on HIVE has progressed since reporting its development in
a companion paper [Ross and Chalmers 2003]. We have provided
more detail on its implementation of ports, visual modules and
composition model etc. Interface improvements such as in
reflection and view co-ordination have been outlined and the
direction our work is taking us, such as in algorithmic view
aggregation, new algorithms and user trials, has been illustrated.

The abundance and variety of algorithms for visualising
multidimensional data compound the need for assistance in
exploring them. In visualising not only the data but also the
computational devices for their transformation, we suggest that it
is easier to experiment, compare and learn good approaches to
gleaning more information from our data.

Acknowledgements

We thank Luc Girardin and Dominique Brodbeck (Macrofocus)
for the ‘S’ data set used in Figure 1, Alistair Morrison (U.
Glasgow) for earlier work on the hybrid algorithms in Figures 1
and 3, and Stefan Rennick Egglestone and Chris Greenhalgh (U.
Nottingham) for the Antarctic data.

References

Bradley, P. S., Fayyad, U. M. 1998. Refining Initial Points for K-
Means Clustering. Proceedings of the Fifteenth International
Conference on Machine Learning 1998. 91-99.

Buja, A., Cook, D., Swayne, D. F. 1996. Interactive high-
dimensional data visualization. Journal of Computational and
Graphical Statistics 1996, 78-99.

Buja, A., Swayne, D. F. Littman, M. Dean, N. 1998. XGvis:
Interactive data visualization with multidimensional scaling.
Submitted to Journal of Computational and Graphical Statistics.

Becker, R., Cleveland, W. 1987. Brushing scatterplots.
Technometrics 29, 2, 127-142.

Bederson, B. B., Hollan, J. D. 1994. Pad++: A zooming graphical
interface for exploring alternate interface physics. Proceedings of
the ACM Symposium on User Interface and Software Technology
(UIST’94). 17-26.

Chalmers, M. 1996. A Linear Iteration Time Layout Algorithm
for Visualising High-Dimensional Data. Proceedings of IEEE
Visualization 1996, San Francisco, 127-132.

Eades, P. A. 1984. A heuristic for graph drawing. Congressus
Numerantium 42.

Eckart, C., Young, G. 1936. The approximation of one matrix by
another of lower rank. Psychometrika, 1, 3, 211-218.

Eick, S. G., Wills G. J. 1995. High Interaction Graphics.
European Journal of Operational Research 84, 445-459.

Haeberli, P. E., 1988. ConMan: a visual programming language or
interactive graphics. Computer Graphics, 22, 4, 103-111.

Hendry, D.G., Harper, D. J., 1999. An informal information--
seeking environment. Journal of the American Society for
Information Science, 48, 11, 1036-1048.

Kaski, S. 1998. Dimensionality reduction by random mapping:
Fast similarity computation for clustering. Proceedings
International Joint Conference on Neural Networks 1, 413-418.

Kruskal, J. 1964, Multidimensional scaling by optimising
goodness of fit to a non-metric hypothesis. Psychometrika, 29, 1-
27.

Kohonen, T., Kaski, S., Lagus, K., Salojrvi, J., Paatero, V.,
Saarela, A. 2000. Self Organization of a massive document
collection. IEEE Transaction Neural Networks, 11, 3, 574-585.

MacQueen, J., 1967. Some methods for classification and analysis
of multivariate observations. Proceedings of 5th Berkeley
Symposium, 281-297.

Morrison, A., Chalmers, M. 2003. Improving Hybrid MDS with
Pivot-Based Searching. To appear in Proceedings of the IEEE
Symposium on Information Visualization 2003.

Morrison, A., Ross, G., Chalmers, M. 2002. A hybrid layout
algorithm for sub-quadratic multidimensional scaling.
Proceedings of the IEEE Symposium on Information
Visualization. 152-158.

Morrison, A., Ross, G., Chalmers, M. 2003. Fast
Multidimensional Scaling through Sampling, Springs and
Interpolation. Information Visualization 2, 1. 68-77.

Nierstrasz, O., Tsichritzis D., Vicki de Mey, Stadelmann, M.
1991. Objects + Scripts = Applications. Proceedings of ESPRIT
Conference. Kluwer Academic Publishers, 534-552

North, C., Shneiderman, B. 2000. Snap-together visualization: can
users construct and operate coordinated visualizations?
International Journal of Human-Computer Studies 53, 715-739.

Oja, E., 1982. A Simplified Neuron Model as a Principal
Component Analyzer, Journal of Mathematical Biology 15, 267--
273.

Perlin, K., Fox, D. 1993. Pad – An alternative approach to the
computer interface. Proceedings of the ACM SIGGRAPH. 57-64.

Ross, G., Chalmers, M. 2003. A visual workspace for hybrid
multidimensional scaling algorithms. To appear in Proceedings of
the IEEE Symposium on Information Visualization 2003.

Shepard, R. N. 1962. The analysis of proximities:
multidimensional scaling with an unknown distance function.
Psychometrika, 27, 2, 125-140.

Torgerson, W. S. 1952. Multidimensional scaling: I. Theory and
method. Psychometrika, 17, 401-419

Upson, C., Faulhaber Jr, T., Kamens, D., Laidlaw, D., Schlegel,
D., Vroom, J., Gurwitz, R., Van Dam, A., 1989. The application
visualization system: a computational environment for scientific
visualization. IEEE Computer Graphics and Applications. 30-42.

	Citation_temp.pdf
	http://eprints.gla.ac.uk/3768/

