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Abstract

We are exploring the development and application of in-
formation visualization techniques for the analysis of new
extreme-scale supercomputer architectures. Modern super-
computers typically comprise very large clusters of com-
modity SMPs interconnected by possibly dense and often
nonstandard networks. The scale, complexity, and inherent
nonlocality of the structure and dynamics of this hardware,
and the systems and applications distributed over it, chal-
lenge traditional analysis methods. As part of theà la carte
team at Los Alamos National Laboratory, who are simu-
lating these advanced architectures, we are exploring ad-
vanced visualization techniques and creating tools to pro-
vide intuitive exploration, discovery, and analysis of these
simulations. This work complements existing and emerg-
ing algorithmic analysis tools. Here we gives background
on the problem domain, a description of a prototypical com-
puter architecture of interest (on the order of 10,000 proces-
sors connected by a quaternary fat-tree network), and pre-
sentations of several visualizations of the simulation data
that make clear the flow of data in the interconnection net-
work.

1 Introduction

The magnitude of the scientific computations targeted by
the US Department of Energy Accelerated Strategic Com-
puting Initiative (ASCI) project requires as-yet unavail-
able computational power. To facilitate these computations
ASCI plans to deploy massive computing platforms, possi-
bly consisting of tens of thousands of processors, capable
of achieving 10-100 teraOPS.

Better hardware design and lower development costs re-
quire performance evaluation, analysis, and modeling of
parallel applications and architectures, and in particular a

predictivecapability.
The tools of the trade in performance modeling and anal-

ysis are typically categorized as algorithmic/analytical anal-
ysis, statistical analysis, analysis with queuing theory, and
simulation. For systems of ASCI-proposed size and com-
plexity simulation is the predictive tool of choice, though
simulation may be considerably augmented by analytical
and statistical analysis [1]. Because of the sheer volume
of relevant data generated by a simulation run,visualization
is an important, potentially the primary, method of practical
data abstraction and comprehension.

1.1 Goals

The à la carte project seeks to develop a simulation-
based analysis tool for evaluating massively-parallel com-
puting platforms including current and future ASCI-scale
systems. While developing a general framework for build-
ing these simulations and analyzing them, an intermediate
goal is to model, and validate the model of, the ASCI Q
machine [2] with a realistic ASCI workload.

It is clear that simulating systems of the size and com-
plexity that we envision will require the use of parallel sim-
ulation [3]. DaSSF [4, 5], being developed at Dartmouth
College, is the current choice for discrete-event simulation.
Since this system does not include a visualization compo-
nent to aid in the analysis of the complex time-varying in-
teractions of the logical components, we are researching vi-
sualization methods independent of these tools. Because the
network connecting the processors in the simulated machine
is large and complex the visualization efforts have focused
on representations of spatial/temporal graphs.

The following section describes the approach we have
taken to visualize the results of these machine simulations,
the Flatland visualization tool used for the 3D interactive
environment, and the details of the models used to represent
the machine switch fabric.



2 Visualization Approach

Our visualization efforts focus on viewing the execution
of the simulation and on displaying the performance of the
simulated system. Visualization also aids in debugging the
simulation itself, in developing and evaluating the efficiency
of load balancing of the simulation entities, and in under-
standing synchronization between simulation timelines. Vi-
sualizing the simulated system allows end-users to under-
stand how varying workload or network interconnection ar-
chitecture affects the overall performance of an advanced or
novel architecture. They can also see communication pat-
terns in the network, levels of network usage, and the pres-
ence of bottlenecks. Our visualization approach includes
direct representations of the architecture as well as inno-
vative abstractions of the architecture and dynamics of the
system.

We assume each network switch has eight duplex I/O
ports; the ports may be linked to computational nodes or
to other switches. The network is organized into layers of
switches that connect only to the layers above and below:
for eight-port switches there are four upward connections
and four downward connections yielding a quaternary fat-
tree network: “quaternary” because each switch has four
connections in each direction; “fat” because the number of
switches per layer is the same for all layers.

Figure 1 illustrates the layout of such a network with 64
computational nodes and three layers of 16 switches each.

To aid in the following discussion, we introduce the
some formalism describing these interconnection networks
(or graphs). LetL be the number of layers in a com-
plete quaternary fat-tree network. Number the layers` =
1, . . . , L. Each layer has4L−1 switches, so we label these
with IDs x = 0, . . . , 4L−1 − 1. This means there are
sL = L · 4L−1 switches in the network andnL = 4L nodes
connected to it. Each portp of switchx in layer` connects
to four switches

yp = 4`
⌊ x

4`
⌋

+ 4`−1p+
(
x mod4`−1

)
(1)

in layer`+ 1 at portp+ 4, wherep = 0, 1, 2, 3.

2.1 Flatland: An Immersive Visualization Devel-
opment Framework

Flatland is an immersive visualization development
framework developed at the University of New Mexico as
part of the Homunculus Project [7]. It is used to facilitate
rapid prototyping and research in scientific and informa-
tion visualization, immersive environments and interfaces,
and human factors engineering. The Flatland infrastruc-
ture aids in creating and managing complex scene graphs
with OpenGL geometry, lighting, shadows, stereo render-

ing, and spatialized sound objects; dynamically loading ap-
plications without mutual interference; managing novel in-
put and output devices; navigation of the resulting virtual
spaces; and providing some basic, optional spatial reference
objects such as a landscape, stars, or sun.

One of the tenets of our approach to visualization is
that immersive 3D environments can offer unique advan-
tages over non-immersive three-dimensional graphics, or
two-dimensional plots, charts, or graphs. By placing the
user of these tools within the same context as the objects be-
ing viewed and allowing the user to navigate around them,
choosing their own point of view and using motion paral-
lax to comprehend the three-dimensional relationships be-
tween objects, and allowing the objects to cast shadows and
perhaps even to have behavior and emit sounds, a qualita-
tive improvement in comprehension of the data is achieved.
Figure 2 shows all of the representations referenced.

2.2 Direct Representation

To debug a simulation it is useful to have a visual rep-
resentation that clearly and explicitly represents all of the
simulated components. With the fat-tree connected mas-
sively parallel computing architectures, we started by laying
out the processors, NICs, and switches in several relatively
obvious direct representations. The first (Representation
DL) is a simple distribution of processors and NICs along
a line with the layers of switches above them, also along
a line. The second (Representation DC) involves wrapping
this line around into a circle, creating a sort of cone topped
with a cylinder. The third (Representation DR) is a rectan-
gular grid laydown of the processors, NICs and switches.
The visualization is animated so that the user can see the
progression of messages sent through the network.

Although the direct representations provide the highest
level of detail of message properties and component con-
nectivity, they suffer from the lack of scalability: the vi-
sual complexity of the display (i.e., number of overlapping
entities) becomes overwhelming when large models—more
than several hundred computational nodes—are displayed.
The ad hocattribute coloring capabilities make this repre-
sentation extremely valuable for debugging purposes, how-
ever. The largest machine we have studied is a 4096 node
machine with 6 layers of 1024 switches each. These rep-
resentations were overwhelmed at that scale. For a more
thorough description of these representations see the project
website [6].

2.3 Layered Block Representation

To address the scalability and visual complexity issues
of the direct representations we have developed a more ab-
stract model, motivated by the graph connection matrix,



Figure 1. Representation QS: Quaternary fat-tree network with 64 computational nodes (small circles
along the bottom) and three layers of 16 switches each (rectangles). Each switch has four duplex
connections to the layer above and four duplex connections to the layer below.

Figure 2. Six representations shown side-by-side in Flatland. Foreground, left to right: Repre-
sentation DL: direct linear, Representation DR: direct rectangular, Representation DC: direct cone,
Representation HT: H Tree, Representation F1: one fractal layout; Background: Representation LB:
layered block.



where switch layers are grouped together into aggregate
visual objects. The network is laid out on a square with
equally-spaced pillars along the diagonal representing the
computational nodes and their NICs. The various switch
layers are grouped by fours on succeeding levels below. For
example, the first level below the nodes consists of groups
of four switches, the second level consists of groups of six-
teen switches, etc. Figure 3 shows a view of this represen-
tation. When a processor sends a message to another pro-
cessor through the switching fabric, a line or “pipe” leaves
the processor and grows across the switching fabric until
it comes to the point on the implied connectivity matrix
where the two processors’ connection would normally be
indicated. At that point it makes a 90 degree turn and con-
tinues to grow until it reaches the destination processor. In
one mode of use the layered switch blocks change color as
they are involved in more and more communication traf-
fic, allowing the viewer to recognize the relative level of
utilization of each switch or switch group. It is also pos-
sible to subdivide a switch group vertically into individual
switches.

The layered representation provides a more compact dis-
play than the direct representation and is somewhat more
scalable, but it still suffers from similar problems once the
number of nodes approaches one thousand. It does have the
advantage of being able to show the activity in very large
systems (e.g., 4096 computational nodes) if the pipes show-
ing individual messages are suppressed. Unfortunately, the
connectivity matrix scale is of ordernL, which naturally
limits its scalability. At 4096 processors, individual proces-
sors, NICs, and even the first level of switches are smaller
than a single pixel when viewed in their entirety, even on a
high resolution screen (1600 × 1200). This is only a par-
tial limitation since two dominant modes of use are likely
to be a) macroscopic, attempting to understand the aggre-
gate dynamics of the system which will be mostly differen-
tiated at higher level switches, or b) microscopic, focusing
on following single messages through the system. Never-
theless, in this representation, full microscopic detail and
system wide macroscopic context cannot be apprehended
simultaneously.

2.4 General Framework for Representations of
Fat Trees

We now consider a general framework that allows us
to express the layout of computational nodes and network
switches in a two-dimensional compact scalable visualiza-
tion of a fat-tree. These representations efficiently pack the
switches into a planar image-like structure that utilizes the
hierarchical nature of the fat-tree. With this representation,
it is sufficient to consider only the switches in the network
layout, as each quadruplet of computational nodes connects

to only a single switch—the lowest-level switch in any lay-
out can be replaced by that switch and its four connected
nodes. The compact method maps switches in layers into
the spatial coordinates of cells in a 2D plane.

A general technique to code the plethora of possible fat-
tree compact 2D representations is a follows: Consider a
pair of generating functionsAn andBn which map the in-
tegers0, 1, 2, 3 to pixel coordinates; heren is a non-negative
integer specifying the scale of the mapping. It is very impor-
tant that the range of the functionsAn andBn are disjoint—
otherwise, switches on different layers will overlap on the
same cell. Since the fat-tree is quaternary, it is useful to
represent switch IDs in base four: namely, represent a num-
berx asx =

∑L−1
n=1 4n−1xn where thexn are its base-four

digits. We can now write the cell coordinates of switchx in
layer` out of a total ofL layers as:

FL,`(x) =



(0, 0) for L = 1∑L−1
n=` An(xn) for ` = 1∑L−1
n=` An(xn)

+
∑`−1
n=1Bn(xn) for 1 < ` < L∑L−1

n=1 Bn(xn) for ` = L

(2)

The layout is generated as the union of all the cell coordi-
nates of the switches:

L⋃
`=1

4L−1−1⋃
x=0

FL,`(x). (3)

Note that although we have considered two-dimensional
layouts here, the formalism extends to the three-
dimensional case.

2.5 Compact, Self-Similar, and Fractal Represen-
tations

Figure 4 shows two self-similar representations as im-
plemented in Flatland.

The previous direct and connection matrix methods,
which essentially scale withnL, fail to scale up to large
systems in several possible ways. While level of detail
management would help make thisdynamic rangeproblem
somewhat more graceful, it would not allow us to apprehend
each individual node, NIC and switch, all at the same time,
without improving thecompactnessof our layout. Thedi-
rect conerepresentation described in Section 2.2 scales by
approximatelynL, which is linear withnL, but thedirect
rectangularlayout scales by the

√
nL. Thus the 4096 node

system, for example, only requires an area on the order of
64× 64 units to display. This seems very promising but by
distributing the processors in a64 × 64 array, the majority
of the processors are in the middle of the area and simi-
larly, the switching layers, laid out in32× 32 arrays tend to



Figure 3. Representation LB: The network is laid out in a square with pillars representing nodes along
the diagonal. The first layer of switches is below this in groups of four (shown in red), the second
layer of switches is below that in groups of sixteen (shown in green)—subsequent layers are blue
(3rd), cyan (4th), magenta (5th), and yellow (6th). The switch groups brighten in color when one of
their switches is active, and the pipes represent individual messages passing through the switches
below them.

Figure 4. The H Tree representation (HT) is on the left, and a fractal representation F1 is on the right.



occlude each other nearly as badly. From this simple anal-
ysis, it appears that laying the processors, NICs, and each
switch layer out in two dimensions is compact enough for
our needs but leads immediately to occlusion problems.

Motivated by the somewhat self-similar nature of the fat-
tree, we investigated two different compact 2D representa-
tions, one inspired by a simple pair of fractal generators
as described in Section 2.5.1 and another inspired byH-
array radar antennaeas described in Section 2.5.2 below.
The similarities between these two representations lead us
to consider a more general representation of all layouts in
two dimensions of fat-trees.

2.5.1 Fractal Representation

We start with a fractal-based representation defined by

An(k) = 3n−1a(k) andBn(k) = 3n−1b(k) (4)

where

a(k) =


(0, 1) for k = 0
(1, 0) for k = 1
(0,−1) for k = 2
(−1, 0) for k = 3

(5)

and

b(k) =


(−1, 1) for k = 0
(1, 1) for k = 1
(1,−1) for k = 2
(−1,−1) for k = 3

. (6)

The functiona(k) places the lower-layer switches on the
sides of a square, while the functionb(k) places the higher-
layer ones on the corners of the same square. The3n−1

coefficient in Eq. (4) ensures that subsequent squares are
appropriately scaled to a larger size. Figure 5 shows the
fractal for the first severalL—one can plainly see the self-
similarity between networks of different sizes.

This layout has the advantage that in scales well—one
can represent the 6144 switches of a six-layer fat-tree in
a 243 × 243 cell area, for instance. It has a disadvantage
that the switches for different layers are interleaved, mak-
ing it somewhat difficult to visually separate the activity in
different network layers. We have used animated versions
of these layouts to successfully distinguish the distribution
of messages in two 4096-computational-node applications
with different communication patterns, however.

2.5.2 “Fat H” Representation

We can address the problem of switch layers being inter-
leaved in Representation F1 in a new representation defined
by

An(k) = (n+ 2)2n−2b(k) andBn(k) = 2n−2b(k). (7)

In this case both the lower and upper level switches lie on
the corners of a square, but the coefficient(n+2) in Eq. (7)
forces the lower level switches onto the corners of a larger
square. Thus the more central groups of switches are in
higher layers. Figure 6 illustrates this.

This representation has a fractal dimensiond = 2, which
“efficiently” fills two-dimensional space but is not techni-
cally fractal (since it does not have fractional dimension).
One can see this in Figure 6 in that the highest, central layer
of switches occupies a smaller region of the diagram rela-
tive to the layers below asL increases. Hence, the layout
is not self-similar as a function ofL. One could rectify this
situation by altering the scaling factors in Eq. (7) at the ex-
pense of letting higher layers take relatively more area in
the diagram.

2.5.3 Additional Representations

We can also reformulate other representations in terms of
the formalism of Equation (2). In general, to create ad-
ditional representations, one only needs to choose a pair
(An(k), Bn(k)) whose ranges do not overlap.

2.5.4 Comparison

It is instructive to compare the advantages and disadvan-
tages of some of the fat-tree representations we have cre-
ated so far. Table 1 ranks all six representations in terms of
usability metrics.

3 Conclusion

The representations developed here have been useful in
helping both casual observers and researchers intimate with
the topology of the architecture of the proposed ASCI Q
machine get a better intuitive understanding of its structure.
Animating the output from the simulations has been useful
in troubleshooting the simulation. So far, the only simula-
tions which have been run are of a uniform distribution of
communication and a distribution which approximates the
kinds of calculations done on volumetric grids where each
cell in a grid communicates only with its nearest neighbors.
We have been able to see, in the block structure and early
compact, self-similar representations, the characteristic dif-
ferences between these two distributions, most notably the
localization of message traffic in the latter example and the
attendant reduction in utilization of higher switch levels.

As we continue to investigate and refine the compact,
self-similar representations, and begin to use all the repre-
sentations to analyze the behaviour of more interesting data
sets, we hope to see more subtle features in these data sets
and most importantly in more realistic models of applica-
tion mixes running on these machines.
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Figure 5. Representation F1: The six panels show placement of switches (circles) for the represen-
tation generated by Eq. (4) for L = 1, . . . , 6.

L=1 L=2 L=3

L=4 L=5 L=6

 

Figure 6. Representation HT: The six panels show placement of switches (circles) for the represen-
tation generated by Eq. (7) for L = 1, . . . , 6.



Property QS DL DC DR LB F1 HT
Microscopic Detail very very very very yes somewhat somewhat
Scalability no no somewhat yes somewhat yes very
Visual Complexity very high high moderate high moderate moderate low

Table 1. Advantages and disadvantages of various representations.

3.1 Future Work

Future work includes: Elaborating the H Tree and Fractal
representations (HT and F1) with color, shape, and size cod-
ing; Extending the nearly two-dimensional, compact, self-
similar representations into three dimensions; Exploring
other self-similar representations; Adding optional, explicit
representation of message traffic. We also plan to apply
these same visualizations to real message traffic obtained
from these systems as they are built and instrumented. We
also anticipate that these tools can be used to analyze ap-
plication level message traffic such as is generated by MPI
or OpenMP based parallel programs. We are evaluating the
data formats used by the Vampir performance analysis tools
as a possible bridge to allow us to use those tools as well as
to use our tools on Vampir trace data.
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