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Abstract 
This paper deais with proportional lot sizing and scheduling (PLSP) 

and gives some insights into the properties of this problem. Such insig hts 
may be useful for dev eloping heuristic aßd/or exact Solut ion procedur es. 
The emphasis of this paper is on thejmult i-level, multi-machiiie^ case. We 
provide a mixed-integer programming modef," relate it to other models 
that can be found in the literature, and discu ss characteristics which make 
solving instances of the PLSP-rnodel beco me a hard task. 

Keywords: Multi-level lot sizing, scheduling, initial inventory, lot Splitting, 
valid constraints, postprocessing 

1 Basic Assumptions 

Several items are to be produced in order to meet some known (or estimated) 
dynamic demand without backlogs and stockouts. Precedence relations among 
these items dehne an acyclic gozinto-structure of the general type. In contrast to 
many authors who allow demand for end items only, now, demand may occur for 
all items including component parts. The finite planning horizon is subdivided 
into a number of discrete time periods. Positive lead times are given due to 
technological restrictions such as cooling or transportation for instance. Fur-
thermore, items share common resources. Some (maybe all) of them are scarce. 
The capacities may vary over time. Producing one item requires an item-specific 
amount of the available capacity. All data are assumed to be deterministic. 

Items which a re produced in a period to meet some future demand must be 
stored in inventory and thus cause item-specific holding costs. Most authors 
assume that the holding costs for an item must be greater than or equal to the 
sum of the holding costs for all immediatepredecessors. They argue that holding 
costs are mainly opportunity costs for capital which occurs no matter a compon­
ent part is assembled or not. Two reasons persuade us to make no particular 
assumptions for holding costs. First, as it is usual in the chemical industry for 
instance, keeping some component parts in storage may require ongoing addi-
tional effort such as cooling, heating, or shaking. While these parts need no 
special treatment when processed, storing component parts might be more ex-
pensive than storing assembled items. Second, Operations such as cutting tin 
mats for instance make parts smaller and often easier to handle. The remaining 
"waste" can often be sold as raw material for other manufacturing processes. 
Hence, opportunity costs may decrease when component parts are assembled. 
However, it should be made clear that the assumption of gene ral holding costs 
is the most unrestrictive one. All models and methods developed under this 
assumption work for more restrictive cases as well. 

Each item requires at least one resource for which a setup State has to be 
taken into account. Production can only take place if a proper state is set 
up. Setting a resource up for producing a particular item incurs item-specific 
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setup costs which are assumed to be sequence independent. Setup times are not 
considered. Once a certain setup action is performed, the setup state is kept 
up until another setup changes the current state. Hence, same items which are 
produced having some idle time in-between do not enforce more than one setup 
action. To get things straight, note that some authors use the word changeover 
instead of setup in this context. 

The most fundamental assumption here is that for each resource at most 
one setup may occur within one period. Hence, at most two items sharing a 
common resource for which a setup state exists may be produced per period. 
Due to this assumption, the problem is known as the proportional lot sizing and 
scheduling problem (PLSP) [8, 14, 24]. By choosing the length of each time 
period appropriately small, the PLSP is a good approximation to a continuous 
time axis. It refines th e well-known discrete lot sizing and scheduling problem 
(DLSP) [7, 1 0, 17, 26, 31] as well as the continuous setup lot sizing problem 
(CSLP) [3, 20, 19]. Both assume that at most one item may be produced per 
period. All three models could be classified as small bücket models since only 
a few (one or two) items are produced per period. In contrast to this, the well-
known capacitated lot sizing problem (CLSP) [6,9, 11, 16, 25, 27, 28, 33, 34] 
represents a large bücket model since many items can be produced per period. 
Remember, the CLSP does not include sequence decisions and is thus a much 
"easier" problem. An extension of the single-level CLSP with partial sequence 
decisions can be found in [13]. In [15] a large bücket single-level lot sizing and 
scheduling model is discussed. 

2 A Mixed-Integer Programming Model 

An important variant of the PLSP is the one with multiple machines (PLSP-
MM) [24]. Several resources (machines) are available and each item is produced 
on an item-specific machine. This is to say that there is an unambiguous map-
ping from items to machines. Of course, some items may share a common 
machine. Special cases are the single-machine problem for which models and 
methods are given in [22, 23], a nd the problem with dedicated machines where 
items do not share a common machine. For the latter optimal solutions can be 
easily computed with a lot-for-lot policy [21]. 

Let us first introduce some notation. In Table 1 the decision variables are 
defined. Likewise, the parameters are explained in Table 2. Using this notation, 
we are now able to present a MlP-model formulation. 

J T 
(1) 

j=it=i 
subject to 
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Symbol Definition 
Ijt Inventory for item j at the end of period t. 
qjt Production quantity for item j in period t. 
Xjt Binary variable which indicates whether a setup for 

item j o ccurs in period t (xjt = 1) or not (xjt = 0). 
yjt Binary variable which indicates whether machine rrij 

is set up for item j at the end of period t (yjt = 1) 
or not (yjt = 0). 

Table 1: Decision Variables for the PLSP-MM , 

Ijt - Ij(t-1) + qjt - djt - ̂ 2 aj*9it t = \ T 
i£Sj ' " '' 

;„>E E 
iSSj r=t+l 

E 
jZJrr, 

_ j = l, • •J 
xjt > Vjt Uj(t-1) t = 1 T 

7 = 1 J 
Pj9jt ^ Cmjt(yj(t-l) + Vjt) ^ = 1 T 

E^^m, (7) 
j€Jm 

*,E{o,i} (*) 

(9) 

The objective (1) i s to minimize the sum of setup and holding costs. Equa-
tions (2) are the inventory balances. At the end of a period t we have in inventory 
what was in there at the end of period t — 1 plus what is produced minus ex­
terna! and internal demand. To fulfill internal demand we must respect positive 
lead times. Restrictions (3) guarantee so. Constraints (4) make sure that the 
setup state of each machine is uniquely defined at the end of each p eriod. Those 
periods in which a setup happens are spotted by (5). Note that idle periods 
may occur in order to save setup costs. Due to (6) production can only take 
place if there is a proper setup state either at the beginning or at the end of 
a particular period. Hence, at most two items can be manufactured on each 
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Symbol Definition 
(Xji "Gozinto"-factor. Its value is zero if item i is not an (Xji 

immediate successor of item j. Otherwise, it is the 
quantity of item j that is directly needed to 
produce one item i. 

Cmt Available capacity of machine m in period t. 
djt External demand for item j in period t. 
h3 Non-negative holding cost for having one unit of 

item j o ne period in inventory. 
h o Initial inventory for item j. 
3m Set of a ll items that share the machine m, 

i.e. 3m d= {j e {1, - - J} | rrij = m}. 
J Number of items. 
M Number of m achines. 
m.j Machine on which item j is produced. 
Pj Capacity needs for producing one unit of item j. 
S3 Non-negative setup cost for item j. 
Sj Set of immediate successors of item j, 

i.e. Sj d= {% £ {1,..J} | üji > 0}. 
T Number of p eriods. 
Vj Positive and integral lead time of item j. 
Vjo Unique initial setup State. 

Table 2: Parameters for the PLSP-MM 

machine per period. Capacity constraints are formulated in (7). Since the right 
hand side is a constant, overtime is not available. (8) dehne the binary-valued 
setup State variables, while (9) are simple non-negativity conditions. The reader 
may convince himself that due to (5) in combination with (1) setup variables xjt 

are indeed zero-one valued. Hence, non-negativity conditions are sufficient for 
these. For letting inventory variables Ijt be non-negative backlogging cannot 
occur. 

A DLSP-like model can be derived from the PLSP-model by adding 

PjQjt = CmjtVjt < = l' V (10) 

to the set of constraints. It can easily be verified t hat now at most one item 
can be produced per period. Typical for the DLSP is the so-called "all-or-
nothing" production. Having these equations introduced, the resulting model 
can be simplified. (6) and (7) are superfluous and can be dropped. Moreover, 
variables qjt can be eliminated by Substitution. Since adding constraints does 
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not decrease the optimal objective function value, we have given a proof that 
the optimal objective function value of a PLSP-instance is less than or equal 
to the optimal objective function value of the corresponding DLSP-instance. 
Moreover, if l ots of the same item are produced in different periods, then idle 
periods cannot occur in-between without enforcing a new setup which is in 
contrast to the PLSP. Furthermore, whereas in the PLSP-model the unequals 
sign in (4) can be replaced with an equals sign without changing anything, 
the DLSP-model must have an unequals sign. It should be remarked, that 
traditional DLSP-model formulations do not consider time varying capacities, 
i.e. Cmi — ... — Cmt — . • • = CmT fbr all m — 1,..., Äf. 

A CSLP-model formulation can be derived from the PLSP-model be adding 

PjQjt < Cm^yjt ^ _ i (11) 

to the set of constraints. The fact that at most one item can be produced per 
period should again be clear when looking at (4). Similar to what was done 
when we d erived the DLSP-model, some steps of s implification can reduce the 
size of the resulting model. As in the DLSP-case above, (6) and (7) can be 
dropped. Again, we now h ave a formal proof that the optimal objective function 
value of a PLSP-instance is always less than or equal to the objective function 
value of th e corresponding CSLP-instance. In analogy to the PLSP, the CSLP 
also allows idle periods in order to save setup costs. 

In summary, the PLSP can be seen as a generalization of the DLSP and the 
CSLP. With minor modifications all methods developed for the PLSP should be 
applicable to the latter ones eis well. However, t he reverse is not true. Efficient 
methods making use of restrictive assumptions need not work well for the PLSP. 
It comes out that an optimal Solution for a PLSP instance is less than or equal 
to an optimal Solution of the DLSP or the CSLP using the same data set. Since 
heuristic methods for the multi-level DLSP or the multi-level CSLP do not exist, 
there is no such benchmark for suboptimal procedures available for the PLSP. 

To transform the PLSP-model into a CLSP-model we must drop (4). The 
constraints 

(12) 

and 
(") 

are introduced instead. Note that setup costs are charged now in every period 
in which produetion takes place. Again, the resulting model can be drastically 
reduced. (5) and (6) are redundant. Moreover, w e can eliminate the variables 
Xjt by Substitution. Usually, vj = 0 is assumed for all or some j = 1,..., J si nce 
we have large (time) buckets in mind. This makes (3) obsolete for these items. 
It should be clear that once we give up (4) the resulting model does not support 
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sequence decisions any more. A g eneral Statement about the relation between 
optimal objective function values for PLSP-instances and corresponding CLSP-
instances cannot be made. 

3 Complexity Considerations 

Only very little theoretical research has been done on complexity issues1 for lot 
sizing (and scheduling) (see [29] for a review). Optimizing the single-level CLSP 
is known to be NP-hard [4]. So must be optimizing the multi-level CLSP. The 
complexity of the single-level, single-machine DLSP is examined in [30, 31]. 
While the feasibility problem is polynomially solvable, the optimization problem 
is claimed to be NP-hard. In [5] it is pointed out that the presented proof of 
this claim is false. Nevertheless, a correct proof a lso given in [5] shows t hat the 
optimization problem is (strongly) NP-hard. So must be the multi-level DLSP. 

Theoretical results for any variant of the CSLP or the PLSP are not pub-
lished yet. But, as we have learned from experience, for most multi-level PLSP 
instances it is quite a formidable task to find even a feasible Solution. Using 
heuristics to attack the PLSP-MM (and its extensions) thus seems to be an 
extremely good piece of ad vice. 

4 Derived Parameters 

Throughout this text it will be helpful to have some notation for certain Informa­
tion that can be derived from the parameters defined above. Also, evaluating the 
Parameters for some values not directly given deepens the understanding which 
is a motivation on its own right. 

To start with, let us analyze the gozinto-structure a bit more. We already 
have defined the set of immediate successors Sj of an item j. The set of imme-
diate predecessors Vj of an item j can be defined as follows: 

Vj = {i = 1, | j £ Si} j = l,(14) 

On the basis of this, the set of all successors Sj and the set of all predecessors 
Vj, respectively, of an item j are given as 

Sj = Sj u{k £ Si | i £ Sj} j = 1,..., J (15) 

and 
Vid- VjUikePi | i&Vj) j = (16) 

:An introduction into the theory of com plexity would ne ed mo re Space than this sec tion 
and is out of th e scope of this text. We refer to [12]. 
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Producing one unit of item j triggers the production of preceding items. The 
internal demand idji for an item i caused by producing one item j is computed 
as 

C 1 , i f j = i 
idjiü \ 0 , , 'Vitts (17) 

12 akjidki (= J2kes Qikldjk) , oth erwise 
l k€Vj 

for j, i = 1,..., J where it should be emphasized that the case j = i does not 
indicate cyclic struktures, but eases the notation. 

The expression 

, des f 0 , if Vj = 0 
aepj — < max {vt-+ dept} , otherwise 3 — 1,(18) 

L t€^>j 
defines the depth of an item. The low level code llcj of an item j, informally 
given in Chapter 2, can be restated more formally: 

„ def ( 0 , if = 0 
\ l + max{/icj} , otherwise j — 1, (19) 
l 

The net requirement nrj of an item j c an be computed in an item-by-item 
stepwise manner. To describe the calculation we assume a technological ordering 
without loss of general ity, i.e. 

j <i => j gVi j}i — 

must hold. By the way, no te 

j < i => llcj < IIa j, i = 1, - • •, J 

would be fine as well, but gives less freedom for l abeling items. Remember that 
only acyclic gozinto-structures are taken into account. The adjacency matrix 
representation of a gozinto-structure can thus always be written in triangulär 
form 

/ 0 ••• 0 N 

021 

031 a32 

\ QJI aJ2 • • • a-j(j-i) 0 / 
Furthermore, we make use of an auxiliary function 

The procedure to determine nrj can now be given as in Table 3. Without 
loss of generality, we subsequently assume that every item has a positive net 
requirement. 
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nrj := J2t=i djt for all.?' = 1,..., 
for j = 1 to j = J 

nrj '•= X I \ nrj+ T, üjinri - h j o 
ieSj 

Table 3: A Method to Compute the Net Requirement 

5 Another Point of View: Gozinto-Trees 

For illustrating graphically which item causes what internal demand one can 
convert matrices of gozinto-factors into acyclic but general graphs. While these 
pictures are compact and easy to read, they misleadingly reflect the preced-
ence relations for scheduling items.2 A representation that directly reveals the 
precedence relations in a feasible schedule is gained by Converting a general 
gozinto-graph into an assembly structure by copying n odes with more than one 
successor. Figure 1 gives an example (see also [1] where this point of view helps 
to solve problems with complex product struktures). Note, both representations 
contain exactly the same information and thus are equivalent. We will use the 
term gozinto-tree to refer to the gozinto-structure when converted into an as­
sembly strukture. It should be clear that the gozinto-tree actually is a forest, if 
the gozinto-structure contains more than one end item. 

Since gozinto trees will play a key role in the methods to be presented, we 

Compare the gra phical rep resentation of a gozinto-structure with an activ ity-on—node 
network as used in proj ect scheduling. In the latte r one , prece dence relations in the graph 
correspond to precedence relations that must be respected in every feasible schedule. 
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give here a formal definition of a gozinto-tree. Assume a matrix of gozinto-
factors to be given. Then, a set denoted as Tj represents the gozinto-tree with 
item j being its root node. This set is recursiveiy defined by 

T3 °- {(J, IJ r,-)} j = (21) 
*€7>j 

The pair in the set Tj represents the root node in the corresponding gozinto-
(sub-)tree. At the first position, we have the number of th e item. At position 
number two, all immediately preceding nodes are shown. E.g., consider the 
gozinto-tree given in Figure 1: 

r, = {(1, {(2, {(4,0)}), (3, {(4,0)}), (4,0)})} 

6 Initial Inventory 

In the single-level case one can assume without loss of generality that the initial 
inventory Ijo is zero for all items j = 1 The reason for this is that 
positive stock levels can be mapped to externa! demands before the planning 
process begins. The rule to do so is very simple. Initial inventory of an item j 
is used to fulfill external demand in a period t only if all externa! demands in 
periods r where 1 < r < t are also met by the initial inventory. More formally, 
Ij0 > ST=I 4'r must hold if external demand in period t should be met by initial 
inventory. In the case that Tjo > djt holds, item j need not be produced 
at all. It is trivial to see that the preprocessed instance is feasible if and only 
if the original instance is feasible. And, the optimum objective function value 
of the preprocessed instance equals the optimum objective function value of the 
original instance. 

In the multi-level case there are some strings attached which do not keep 
things that easy. A small example certainly bringe this out best. Suppose J — 2 
items are manufactured on a single machine. The gozinto-structure is given in 
Figure 2. Let the planning horizon be T = 4. All relevant data are given in 
Table 4. Points worth to be highlighted are that the machine is in.itia.lly set up 
for item 1 (yio = 1) and that there is a positive initial inventory for item 2 
(/2 o = 10). 

Now a ssume that we p roceed as we would d o in the single-level case. That 
is, before we start with the planning process we e liminate the initial inventory 
during a preprocessing phase. Since the initial inventory meets the external 
demand for item 2 in period 2, the result is an instance without initial inventory 
where external demand for item 1 is left only. The optimum Solution for the 
remaining instance is defined by a lot-for-lot policy (q23 = Qi4 = = 10). 
The optimum objective function value is si + s2 + h2ho + &202i9i4 = 1,900. 

The optimum Solution fo r the unmodified instance is given in Table 5. Its 
objective function value is 52 + ^2(^20 — ®2i?n) + hi(T- l)?n +hi(T — 2)gn = 
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Figure 2: A G ozinto-Structure with Two Items 

djt t = 1 2 3 4 hj s.i Pi Vj Vj o IjO 
3 = 1 10 20 900 1 1 1 
j = 2 10 10 800 1 1 10 
Cu 15 15 15 15 

Table 4: Parameters of the Example 

1,350 < 1,900. 

Qjt < = 1 2 3 4 
3 = 1 5 5 
3 = 2 10 

j with yjt = 1 1 2 2 2 

Table 5: An Optimum Solution of the Example 

Apparently, something goes wrong when eliminating initial inventory to get 
an instance with zero init ial inventory. As pointed out for the single-Ievel case, 
initial inventory of an item j can be mapped to demand in a period t without 
harm only if all other demand for item j in earlier periods can also be met by the 
initial inventory. In the multi—level case we have exter nal as well as internal de­
mand. But only the external demand is known by time. The time when internal 
demand occurs is not known unless a production plan is constructed. Hence, in 
general there cannot be a preprocessing procedure that eliminates initial invent­
ory. As a consequence, multi-level lot sizing and scheduling procedures must 
take initial inventory into account. 

Eventually, a rather unexpected phenomenon should be mentioned which 
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may occur if positive initial inventory comes along with multi-level gozinto-
structures. Surprisingly, initial inventory may be the reason for producing items 
with out any demand for it. Consider, for instance, the example above, this time, 
assuming djt = 0 for j ~ 1,..., J and t = 1,..., T. In an Optimum Solution no 
production takes place. The optimum objective function value, however, is not 
zero, but h2l2oT = 400 for keeping 10 units of item 2 four periods in inven tory. 
Suppose, hi < h2. Then, the optimum result would be to produce gn = 10 
units of item 1 in period 1 which uses the initial inventory of item 2 u p. Since 
there exists no demand for item 1, we have I2T = 10, and the optimum objective 
function value is hiqnT < h2I2oT. 

7 Schedules 

Discovering certain properties that optimum Solutions must have allows to reduce 
the set of feasible Solutions among which an optimum Solution is to be and among 
•which we should try to find a good feasible Solution. We will now show tha t due 
to the combination of m ulti-level gozinto-structures and general holding costs 
a "nice" property of o ptimum schedules is no longer valid, though it is in the 
single-level case. 

To avoid unnecessary repetitions let us assume once and for all the following 
Parameters in this section: M = X, T = 10, C» = 15, pj = 1, Ijo = 0, and 
Vj = 1 for all j = 1,..., J and t = 1,..., T. J will vary. The parameters %o 
and Sj are of no importance here and can be chosen arbitrarily. 

For the first example which reveals a property of optimum schedules in the 
single-level case, let / = 3. External demand is given in Table 6. The holding 
cost hj > 0 can be chosen arbitrarily for all j = 1,..., J. 

djt t = 1 2 3 4 5 f ) 7 i 3 9 10 
j = 1 
; = 2 
i = 3 

20 
20 

20 

20 

Table 6: External Demand 

Figure 3-(a) shows a feasible schedule. Note, the lot for item 1 fulfills the 
external demand in period 5 as well as the external demand in period 10. Sup­
pose, that the sequence of lots should not be changed and wonder if t here may 
exist another schedule (with the same sequence of lots and therefore the same 
total setup costs) with a lower objective function value (which means with lower 
total holding costs). The answer is yes, and the schedule with lowest objective 
function value (while respecting the sequence of lots) is depicted in Figure 3-(b). 
It is essential to understand that idle periods do not enforce additional setups. 
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m 

(a) 
2 1 1 3 

m 

(b) 10 

Figure 3: Two Schedules with the Same Sequence of Lots 

The difference between both schedules is that in case (b) all items are shif-
ted right-most without changing the sequence and without violating due dates. 
In general, given a sequence of lots to be produced on a common machine, the 
(unique) schedule with the lowest objective function valueis the one which sched­
ules all items right-most. Adopting the terminology of s cheduling theory [32] 
here, such schedules are called semi-active schedules.3 As we will now s how, 
the property that an optimum schedule must be a semi-active one is valid for 
single-level struktures only unless additional (restrictive) assumptions are made. 

So, let us have a look at another example with J = 2 and a two-level gozinto-
structure (see Figure 2). External demand is given in Table 7. Suppose here 
that hi > hi holds. 

djt t = 1 2 3 4 5 6 7 8 9 10 
j = 1 20 20 
j = 2 

Table 7: External Demand 

Figure 4-(a) provides a feasible schedule. For the given sequence of lots this 
is the unique semi-active schedule. Figure 4-(b), however, shows a schedule 
with lower objective function value respecting the sequence of lo ts. This one is 
not semi-active. 

The reason why the second schedule has a lower objective function value is 
that holding item 2 is more expensive than holding item 1. All lots for item 1 
should therefore be scheduled close to the lot of item 2 which meets the internal 

3 In contrast to our Interpretation o f semi-active schedules as right-most sche dules, in 
scheduling theory left-most schedules are usually meant. The reason for this is a difference in 
the objective function. Minimizing the makespan is, for instance, a widespread objective. 
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m 

2 2 1 1 

(b) 
2 2 1 1 

9 10 

Figure 4: Two Schedules with the Same Sequence of Lots 

jemand. In general, a sufficient condition for an Optimum schedule to be semi-
active is 

hj > ^ ciijht j = l,...,J (22) 

which is a restrictive assumption not made here (see Section 3.1). Nevertheless, 
as a result we have the fact that given a certain sequence of lots, those items j 
which fulfill (22) should be scheduled right-most. 

8 Lot Splitting 

Looking at all examples given up to here again, one might conclude that lot 
sizing (and scheduling) is about grouping demands together (and finding a (sub-
)optimal schedule for these lots). Thus, lot sizes appear to be the sum of order 
sizes. While this is true for single-level, uncapacitated problems [36], lot sizing 
with multi-level gozinto-structures and/or capacity constraints needs to take 
Splitting lots — Splitting order sizes would be more precise4 — into account and 
is therefore much more difficult as we will point out. The problem of lot sizing 
(and scheduling) where only grouping is allowed but no Splitting, is called a 
batching (and sequencing) problem [18, 35, 37]. 5 

4Note, lot Sp litting in our context do es not nece ssarily mean to di vide a lot into s ublots 
and to process each sublot in parallel OD identical facilities [2]. Su blots may also be processed 
consecutively (with other lots in-between). 

5 To convert the lot sizing pro blem into a batching pr oblem we nee d to add additional 
constraints to the PL SP-MM-model fonnulation. If w e assume Ijo = 0 for all j = 1 ,..., J, 
the restrictions 

J,T} 
53 aJ«?ir<B(l-xit) J ,T 

tgSj T=t 
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Let us investigate the uncapacitated, multi-level case first.6 Assume M = 2 
and a gozinto-structure as given in Figure 2. Table 8 gives the parameters that 
are of interest. Note that we have positive initial inventory. Furthermore, assume 
h.2 > h,\. 

II 2 3 mj IjO v.i 
j = l 20 1 1 
j = 2 2 10 1 

Table 8: Parameters of an Example without Capacity Constraints 

The Optimum production plan is depicted in Figure 5. It is remarkable to 
see, that the external demand of item 1 is split into two lots of size 10. Together 
with the results in Subsection 6 we now have that if generality should not be 
lost, multi-level gozinto-structures imply that lot Splitting must be taken into 
account in order to find Optimum Solutions. 

m 

- t 

Figure 5: Lot Splitting in Uncapacitated Cases 

Noteworthy to say that in capacitated cases lot Splitting is not a problem 
introduced with multi-level structures. Suppose a single-level problem instance 
where M = 1, T = 3, and all other relevant parameters are given in Table 9. 
Setup costs are of no relevance. Note that the machine is initially set up for item 
2. Let holding costs be arbitrarily chosen with respect to h\ > h2. There is only 
one feasible Solution without lot Splitting (see Figure 6-(b)). As we can see in 
Figure 6-(a), a feasible Solution with lot Splitting would d ecrease the objective 
function value by 10(hi — h2) > 0. 

where Bisa large number would w ork fine. Sin ce batching is not in our interest, w e omi t 
further comments and leave the discussion of the case of positive initial inventory out. 

6More formally, assume the p roblem under concern be d efined by the PL SP-MM-model 
without the capacity constraints (7). The capacity parameters in (6) must be replaced with a 
large number, and all pj-values can be replaced by one. 
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djt t = 1 2 3 Pi Vjo 4o 
3 = 1 20 1 
3 = 2 30 1 1 
Clt 20 20 20 

Table 9: Parameters of the Example 

m 

(a) 
m 

(b) 

Figure 6: Schedules with and without Lot Splitting 

A stronger Observation is that some instances do have feasible Solutions with 
lot Splitting only. Again, suppose the parameters in Table 9 with slightly modi-
fied data, i.e. d2i = 10 and t/20 = 0. To understand the logic of the example, it 
is important to be aware of the fact that the machine is not set up for any item 
initially. Figure 7 shows the unique feasible Solution. 

It is interesting to see that there are instances for which all f easible Solu­
tions are without lot Splitting and no feasible Solution with lot Splitting exists. 
Once more, suppose the parameters given in Table 9 with slightly modified data, 
i.e. du ~ 25 and y2io = 0. Then, there is only one semi-active feasible Solution 
which is depicted in Figure 8 where no lot Splitting occurs. 

In general, we have th e following results. 

• If there exists a feasible Solution for an instance without lot Splitting, the 
existence of feasible Solutions with lot Splitting is not guaranteed. 

• If there exists a feasible Solution for an instance with lot Splitting, the 
existence of feasible Solutions without lot Splitting is not guaranteed, too. 
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m 

2 2 1 2 

1 2 3 

Figure 7: The Unique Feasible Solution of the Example 

m 

Figure 8: The Optimum Solution of the Example 

• If both feasible Solutions with and without lot Splitting exist, the optimum 
Solution is not necessarily without lot Splitting. 

Instances which have both types of feasible solutions are guaranteed to have 
an optimum Solution without lot Splitting if 

hjPj < kPi = (23) 

holds. In other words, we woul d have to assume that 

hjPj = hipi (24) 

holds, to guarantee that for any instance having a feasible Solution in which no 
lot Splitting occurs an optimum Solution can be found without lot Splitting. As 
already stated above, we do not assume this here. 

9 Some Valid Constraints 

In this section we present some additional constraints which are proven to be 
valid in the sense that optimum solutions fulfilling these do exist. If there are 
any feasible solutions of the original PLSP-MM-model violating the new con­
straints, the valid constraints reduce the Solution space and thus help to find 
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(sub-)optimum Solutions (e.g. when Standard MlP-solvers are employed or heur-
istics are to be developped) or at least help to gain a better understanding. 

Valid constraint 1: The following equations determine the inventory at the 
end of each period. They can be used t o eliminate the inventory variables. 

jt - 4 o + J2 Vjr ijT 
T= 1 'T (25) 

Proof: Trivial. It is a recursive evaluation of (2). • 
Valid constraint 2: If there is no initial inventory, items must be p roduced 

only if there is a positive requirement.7 This may fix the value of some decision 
variables to zero. 

qjt < nrj 

xjt < nrj 

Vjt < nrj 

3 = 
t — 
3 = 
t = 
3 = 
t- , - - -, T 

(26) 

(27) 

(28) 

Proof: Trivial.8 • 
Valid constraint 3: For each item j = 1,..., J with nrj > 0 the machine mj 

must be set up for this item at least once. This holds for all feasible Solutions. 

nr, j = 1,..J (29) 
t=o 

Proof: Trivial. • 
Valid constraint 4- Assume that qjt > 0 should imply qjt > 1 for j = 1,..., J 

and t = 1,..., T. A setup for an item j where j = 1,..., J should only take 
place if t he internal demand is met so that at least one item can be produced. 
This enforces some setup variables to be zero. 

;Xjt < /»(t-1) + U 
j — 1,..., J 
i € Vj 
t = 1,.. .,T 

(30) 

Proof: Let us consider items j and i and period t. If there is an optimum Solution 
with Xjt = 0 the resulting inequality is true because of (9). So, assume there is 
an optimum Solution with Xjt = 1. Due to (5) we ha ve yj(t-i) = 0 and = 1. 

7Remember Subsectionö where it is shown that the following unequalities are not necessarily 
true when we face positive initial inventory. 

8Note, to let the con straints for setup state variable yjt be v alid (4) m ust not con tain an 
equals sign. 
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Using (6) either qjt > 0 or qj(t+i) > 0 (if t < T) or both must hold, otherwise 
yjt — 0 and hence xjt = 0 would give a lower objective function value or would 
enforce Xj(t+1) = 1 (if i < T1) resulting in another Optimum Solution. Suppose, 

9jt>0 (3) (9) 
qjt > 0. Then we are done, since aijXjt < dijQjt < h(t~l) < A(t-i) + ht-
Suppose, t < T and qj(t+i) > 0 Analogously, we are done again, because 

(3) (s) 
O-ijXjt < aij9j(t+1) < ht < A(t-l) + ht- u 

Valid constraint 5: Similar to (30) we can formulate new constraints for 
production quantities and setup State variables which set these decision variables 
to zero in some cases. 

j 
aijQjt < h(t-i) + ht i€Pj (31) 

t = 1,..., T 
j = 1,• • •, J 

aij(Vjt - Vj(t-1)) < h(t-1) + ht « € P j (32) 
t = 1,..., T 

Proof: Just follow the lines of (30). • 
Valid constraint 6: A machine should switch the setup State in period t = 

1,. .., T for producing an item j = 1,..., J only if i tems i € Pj with ho = 0 
have a chance to be manufactured in advance. This condition lets some setup 
State variables be zero. 

<»> 
T"° t = 

»<i> M 
t = l,...,T 

Proof: We only prove the second inequality, because the first basically fol-
lows the same ideas. The difference is that in the first case an initial setup 
state can be kept up. Let the items under consideration be j and i where 
i € {k ePj | ho = 0 and mk = mj}. Suppose that £2r=o Vir = 1- Due to (8) 
the resulting inequality is true. So, assume there is an Optimum Solution with 
Z^=o Vir = 0. With (6) we get qit = 0 for all / = 1Because ho = 0, we 
also have h(t-i) = ht = 0 using (2). (3) implies qjt = q^t+i) = 0. Thus, there 
is an optimum Solution with yjt = 0. • 
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Valid constraint 7: Similar to the setup state variables we can formulate 
constraints for the setup variables to enforce some of these to be zero. 

t j = l,...,J 
*jt < Vio + 22 Xi7 ie{k E Vj | /fco = 0} (35) 

T=i t = 1,.. .}T 

Proof: Note, yi0 + Er=i xir = 0 implies JZr=o Vir = 0 due to (5) f or all i = 
1,..., J. From then on the proof is similar to (34). • 

Valid constraint 8: If there exists no initial inventory and if there is no future 
demand for an item j = 1,..., J there is no need to keep up the setup State or 
to produce anything. Again, this restricts the value of some decision variables 

T-t i£Sj T = t+Vj ' ' 

Xjt <E^ + E E «Ii.;. T (3^) 
T=t i£Sj ' 5 

T T 
*,<E4T+E E T (33) 

T — t i£Sj T = t + Vj ' ' 

where the latter two inequalities assume that qjt > 0 implies qjt > 1 for j = 
1,..., J and t = 1,... ,T. 
Proof: Let j be the item under concern and period t be the focus of attention. If 
the right band side is positive, the result is trivial due to (8). So, assume there 
is an optimum Solution with Y^=t djr + ZieSj = 0- Due to (2) 
in combination with (1) we get qjT = 0 for all T = t,..., T. With (6) there is an 
optimum Solution with yjT = 0 for all r = t,..., T which in turn implies xjT = 0 
for all r = t,... ,T using (5). D 

Valid constraint 9: Quite similar is a constraint which fixes setup state vari­
ables to zero if there is no future demand that is not met and if there is no initial 
inventory. Assume that if demand occurs, there is demand for at least one unit 
of an item. 

Vjt < Vj(t+i) j = (39) 
t = 1,..., T — 1 

+ Z4T 

T 
+ E E ajii" 

iZSj T-t+Vj 

T 
- Z ?JT T=t + 2 
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Proof: Let us concern about item j an d period t. First, analyze the structure of 
the right hand side: 

(+1 t+Vj+l 

+ X/ djT + S S ajiqiT 
s * ' T = t i€Sj T=t+Vj 

(I) ' V 
(") 

T TT 
+ 12 dir+ Ys Y aiiq" - Y 

r=t+2 i€Sj T=t+Vj+ 2 r=t+2 
• , ' 

(///) 

Part (I) represents the setup state in period <+1. Part (II) evaluates to a positive 
value if there is any dem and in period i or period t + 1. Eventually, part (III) 
represents future demand that is not met. If the right hand side is positive, the 
result is trivial due to (8). So, assume an Optimum Solution where the right hand 
side evaluates to zero. Since Vj(t+i) = 0 no additional setup occurs in period 
t if yjt = 0, too. For having no demand in periods t and i -h 1 to be met with 
production in t and t + 1, respectively, and no future demand in periods 2 4-2 to 
T which is not met an optimum Solution would have qjt = Qj{t+i) = 0 due to (2) 
in combination with (1). Hence, there is an optimum Solution with yjt = 0. • 

10 Postprocessing 

Given a particular instance, our goal is to heuristically find a (feasible) produc­
tion plan with (sub-)optimum objective function value where finding a produc­
tion plan means to determine the lot sizes and a schedule for the lots. Calculating 
the corresponding objective function value of a production plan is an easy task 
then. 

In this section we will learn that once we have found a feasible Solution 
represented by the matrix of production quantities qjt} there are some degrees of 
freedom for the schedule. More precisely, a g^-matrix does not define a unique 
schedule — in our PLSP-MM-model formulation we thus introduced the setup 
state variables yjt which determine a schedule. 

A small (single-level) example should make things more clear. Suppose J = 
2, M = 1, T = 5 and feasible production quantities as given in Table 10. Let the 
machine initially be set up for none of the items. Furthermore, assume s\ >5%. 
Since we do not need to know all the other parameters, they are not given here. 
Figure 9 shows th ree alternative feasible schedules. 

Note, all schedules differ only in the sequence of lots within the periods. 
Assuming the production quantities to be feasible, all three Gantt-charts thus 
define feasible production plans. Also note that holding costs are determined 
with the matrix of production quantities. Hence, all three schedules cause the 
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qjt t = 1 2 3 4 5 o
 II 10 

j = 2 10 10 

Table 10: A Matrix of Feasible Production Quantities 

» 
1 2 1 2 

m 

(b) 
1 I 2 

m 

2 1 1 2 1 

Figure 9: Three Feasible Schedules 

same holding costs. But, if we consider setup costs, we can see that all three 
schedules cause different setup costs, namely, 2si + 2s2 for schedule (a), 2$i +S2 
for schedule (b), and sx + 2s2 for schedule (c). By the way, no other schedule 
that corresponds to the quantities in Table 10 has a lower objective function 
value than schedule (c). 

In general, we like to have a postprocessor which, once that we have fo und 
a feasible Solution, determines a schedule with minimum total setup costs. o 
guarantee that the resulting schedule is feasible, the postprocessor should not 
modify the matrix of production quantities.9 Under this assumption postpro-
cessing the schedules for different machines does not interact. Basicaily, such a 

9A formal Statement of this prob lem emerges from the PL SP—MM-model formulation if 
production quantities qjt are used as parameters and not as decision variables. 
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module could enumerate all sequences of lo ts within a period for all machines, 
thus enumerating ]£m=i 2^m schedules where 

Tm=JJ2*2 (-!+ E 
t=i \ iGJ-m / 

for all m = 1,..., M and X2 is a n auxiliary function defined as 

Subsequently, we present a more efficient pr ocedura. 
We give here a functional specification of a postprocessor E which, when 

applied to each machine, moves from period 1 to period t in a single pass and 
constructs the schedule with minimum total setup costs making use of a feasible 
g^t-matrix. The Output will be represented as a list of item indices. Each entry 
in the list corresponds to a positive entry in the matrix of production quantities. 
Hence, we have 

jtJr» t=l 

entries in the list representing the schedule for machine m. Reading the list 
from leffc to right uniquely defines a sequence of p roduction quantities (and in 
combination with the g^-matrix a schedule, of co urse). For instance, applying 
the postprocessing phase to the example above should give <2:1 : 1 : 2 >i 
representing the schedule for machine 1 in Figure 9-(c).10 

Before we can give a formal definition of the postprocessor, let us introduce 
some notation for the sake of convenience. If machine m and period t are under 
concern, we have to evaluate X2(?jt) using £mt as a short-hand notation 
for it. Note, since we consider the PLSP where at most one setup may take 
place per period, Emt 6 {0,1,2}. If Emt = 1, let j* be the unique item with 
qj*t > 0. If Emt = 2, let j\ < be the items with non-zero production 
quantities. Furthermore, let jmo he the item machine m is initially setup for, or 
jmQ = 0 if the machine m is set up for no item initially. 

To apply the postprocessor E to machine m, just evaluate 

(41) 

The function EJ1 handles the case in which a period t is under concern and 
the setup State at the beginning of this period is fixed. This certainly happens 

10The formal defi nition o f the postprocessor wi ll nee d som e Operations on lists. We use 
<>m to denot e an empty list, and a o-sy mbol to denote concatenation. For e xample, < a : 
... : 2 >m o <>=< az >m and < a w >m c < x : y : z > m=< a: z >m. 
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to be in period 1 where the setup State at the beginning of th at period is jm0. 
Five cases may occur: 
Case 1: t > T 
Case 2: = 0 and t < T 
Case 3: T,mt = 1 and j* = j and t < T 
Case 4- £mt = 1 and j* ^ j and t < T 
Case 5: = 2 and j? = j (i £ {1,2}) and t<T 

Depending on the case that holds, ij* is defined as follows: 

de/ 

<> Case 1 
~?(j,t + 1) Case 2 
<i>o="(j',i+l) Case 3 
< j' > o SHiV + 1) Case 4 
< j • > o Ü*3_i), t + 1) Case 5 

(42) 

First, there is the terminal case when all periods are considered. Second, if 
no production takes place in period t on machine rn, no entry is added to the list 
which defines the schedule. A recursive call to HJ1 passes the Information that 
item j is the last item the machine is setup for. Third, there is the case where 
only one item j is produced on machine m in period t and machine m is already 
setup for this item. We then add the item index j to the list and proceed on w ith 
a call to EJ2. The fourth case is similar to the third, but this time the machine 
is not in the proper setup state. We thus add j* to the list and call Ej1, because 
at the beginning of period t + 1 the machine is now set up for item j*. Finally, if 
there are two items to be produced, one of them must be item j. Otherwise, we 
would have two setups in period t which is not allowed. The sequence in which 
these items are produced must therefore have item j a t its first position. At t he 
end of period t and thus at the beginning of per iod t + 1, the machine is set up 
for the second item then. 

The function EJ1 handles the case in which a period t is under concern and 
the setup state at the beginning of that period is not fixed yet. Again, we have 
five cases to distinguish. 
Case 1: t > T 
Case 2: £mt = 0 and t < T 
Case 3: Lmt = 1 and t < T 
Case 4: Em( = 2 and j* = j (i £ {1,2}) and t < T 
Case 5: The above cases do not hold. 

EJ1 is defined as follows: 

<> 
ST(7\*+1) 
<j*>oH?ÜV + l) 

Case 1 
Case 2 
Case 3 (43) 

syw.Ja.'+i) Case 5 
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The first one is the terminal case. Case number two deals with situations in 
which nothing is to produce on machine m in period t. We simply move on with 
a recursive call to E™ then. In case three, which is the case when only one item 
is to be manufactured, the item j* is added to the list that defines the schedule. 
More interesting is case four where two items are to be produced on machine m 
in period t and one of them is the last item the machine is set up for. If this 
holds, it is clear that item j is to be scheduled first, because otherwise the setup 
costs for item j would be charged twice. Last, it may happen that two items are 
to be produced, but none of them is the one the machine is already set up for. 
A call to E™ finds out the right sequence. 

The function Ej" handles the case in which p eriod t is under concern and the 
setup state at the beginning of that period is fixed. In contrast to the function 
E™, we employ E™ if we are not quite sure which item the machine should be 
set up for at the beginning of pe riod t. Two alternatives do exist. In total we 
have seven cases to discriminate: 
Case 1: t > T 
Case 2: Emt 

Case 3: £mt 

Case 4•' 
Case 5: T> mt 
Case 6: £mt 
Case 7: £mt = 2 and j* = ji A 

— 0 and t < T 
= 1 and j* = ji (i 6 {1,2}) and t < T 
= 1 and ji j* / j2 and t < T 
- 2 and # = ji A # i(3-«) (* € {1, 2}) and t < T 
= 2 and j\ = ji A j \ — j 2 and s^ > sj2 and t < T 

j2 and Sjx < Sj2 and t < T 
The function ij1 is defined as follows: 

<> 

< i(3-x) : jt : ji > o H f(j* ,t + 1) 

< : ji '• ji • j(3-i) ^ 

< 32 : j\ : ii : ji > o Ef(^,t + 1) 
< j\ : 32 • J 2 : j\ > 0 + 1) 

Case 1 
Case 2 
Case 3 
Case 4 

Case 5 
Case 6 
Case 7 

(44) 

Many cases may occur. Of course, there is the terminal case. If nothing 
is to be produced in period we can still not be sure in which sequence the 
items that are kept in memory are to be scheduled. However, we know that the 
setup state of machine m at the end of period t is not fixed yet, and thus we call 

The third case deals with situations in which one item is to be produced in 
period t and in which this single item equals one of t hose that are remembered. 
Hence, we build a lot for that item which is the cheapest possible sequence. If 
the item that is to be p roduced is not equal to one of those that are pending to 
be added to the list, case four holds. The sequence in which the two pending 
items are scheduled can be chosen arbitrarily then. Case five is the case where 
two items are to be scheduled in period t, but only one of them equals one of the 
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pending items. The sequence in which the items are scheduled is the one which 
causes the least setup costs. Gases six and seven describe what to do if the two 
pending items are to be produced on machine m in period t again. A lot is then 
built for the item with the highest setup cost. 

The function Elp ha ndles the case in which period t is under concern and the 
setup state at the beginning of that period is not fixed. Also, we face a pending 
sequence decision from earlier periods which is in difference to Ef. The function 
5™ is defined as follows: 

f ... , see Cases 1 to 7 of E™ 
= < <ji : 32 > (45) 

l ° =>T (ii s > * + 1) > otherwise 

This definition is almost equal to the definition of 5™, i.e. we have the s ame 
seven cases as before. The only difference is a n eighth case which applies when 
two items are to be produced in period t and none of them equals any of the 
pending items. 

To illustrate the formulae, let us run a postprocessing phase for the example 
above where production quantities are given in Table 10. Remember, = 0 
and si > sg. 

2(1) = Si(0.1) 
= 5^(0,2) 

3}(1,2,3) 
Ej(l,2,4) 

= < 2 : 1 : 1 :2 >i o H}(2,5) 
= <2:l:l:2>ioSj(2,6) 
= < 2 : 1 : 1 : 2 >i o <>i 
= < 2 : 1 : 1 :2 >i 

This result indeed corresponds to the schedule given in Figure 
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