
Kimms, Alf; Drexl, Andreas

Working Paper — Digitized Version

Some insights into proportional lot sizing and
scheduling

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 406

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Kimms, Alf; Drexl, Andreas (1996) : Some insights into proportional
lot sizing and scheduling, Manuskripte aus den Instituten für Betriebswirtschaftslehre der
Universität Kiel, No. 406, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/149037

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/149037
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 406

Some Insights into
Proportional Lot Sizing and Scheduling

A. Kimms and A. Drexl

September 1996

Alf Kimms, Andreas Drexl
Lehrstuhl für Produktion und Logistik, Institut für Betriebswirtschaftslehre,
Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24118 Kiel, Germany
email: Kimms@bwl.uni-kiel .de

Drexl# bwl. uni-kiel .de
URL: http://www.wiso.uni-kiel.de/bwlinstitute/Prod

ftp://ftp.wiso.uni-kiel.de/pub/operations-research

Abstract
This paper deais with proportional lot sizing and scheduling (PLSP)

and gives some insights into the properties of this problem. Such insig hts
may be useful for dev eloping heuristic aßd/or exact Solut ion procedur es.
The emphasis of this paper is on thejmult i-level, multi-machiiie^ case. We
provide a mixed-integer programming modef," relate it to other models
that can be found in the literature, and discu ss characteristics which make
solving instances of the PLSP-rnodel beco me a hard task.

Keywords: Multi-level lot sizing, scheduling, initial inventory, lot Splitting,
valid constraints, postprocessing

1 Basic Assumptions

Several items are to be produced in order to meet some known (or estimated)
dynamic demand without backlogs and stockouts. Precedence relations among
these items dehne an acyclic gozinto-structure of the general type. In contrast to
many authors who allow demand for end items only, now, demand may occur for
all items including component parts. The finite planning horizon is subdivided
into a number of discrete time periods. Positive lead times are given due to
technological restrictions such as cooling or transportation for instance. Fur-
thermore, items share common resources. Some (maybe all) of them are scarce.
The capacities may vary over time. Producing one item requires an item-specific
amount of the available capacity. All data are assumed to be deterministic.

Items which a re produced in a period to meet some future demand must be
stored in inventory and thus cause item-specific holding costs. Most authors
assume that the holding costs for an item must be greater than or equal to the
sum of the holding costs for all immediatepredecessors. They argue that holding
costs are mainly opportunity costs for capital which occurs no matter a compon­
ent part is assembled or not. Two reasons persuade us to make no particular
assumptions for holding costs. First, as it is usual in the chemical industry for
instance, keeping some component parts in storage may require ongoing addi-
tional effort such as cooling, heating, or shaking. While these parts need no
special treatment when processed, storing component parts might be more ex-
pensive than storing assembled items. Second, Operations such as cutting tin
mats for instance make parts smaller and often easier to handle. The remaining
"waste" can often be sold as raw material for other manufacturing processes.
Hence, opportunity costs may decrease when component parts are assembled.
However, it should be made clear that the assumption of gene ral holding costs
is the most unrestrictive one. All models and methods developed under this
assumption work for more restrictive cases as well.

Each item requires at least one resource for which a setup State has to be
taken into account. Production can only take place if a proper state is set
up. Setting a resource up for producing a particular item incurs item-specific

1

setup costs which are assumed to be sequence independent. Setup times are not
considered. Once a certain setup action is performed, the setup state is kept
up until another setup changes the current state. Hence, same items which are
produced having some idle time in-between do not enforce more than one setup
action. To get things straight, note that some authors use the word changeover
instead of setup in this context.

The most fundamental assumption here is that for each resource at most
one setup may occur within one period. Hence, at most two items sharing a
common resource for which a setup state exists may be produced per period.
Due to this assumption, the problem is known as the proportional lot sizing and
scheduling problem (PLSP) [8, 14, 24]. By choosing the length of each time
period appropriately small, the PLSP is a good approximation to a continuous
time axis. It refines th e well-known discrete lot sizing and scheduling problem
(DLSP) [7, 1 0, 17, 26, 31] as well as the continuous setup lot sizing problem
(CSLP) [3, 20, 19]. Both assume that at most one item may be produced per
period. All three models could be classified as small bücket models since only
a few (one or two) items are produced per period. In contrast to this, the well-
known capacitated lot sizing problem (CLSP) [6,9, 11, 16, 25, 27, 28, 33, 34]
represents a large bücket model since many items can be produced per period.
Remember, the CLSP does not include sequence decisions and is thus a much
"easier" problem. An extension of the single-level CLSP with partial sequence
decisions can be found in [13]. In [15] a large bücket single-level lot sizing and
scheduling model is discussed.

2 A Mixed-Integer Programming Model

An important variant of the PLSP is the one with multiple machines (PLSP-
MM) [24]. Several resources (machines) are available and each item is produced
on an item-specific machine. This is to say that there is an unambiguous map-
ping from items to machines. Of course, some items may share a common
machine. Special cases are the single-machine problem for which models and
methods are given in [22, 23], a nd the problem with dedicated machines where
items do not share a common machine. For the latter optimal solutions can be
easily computed with a lot-for-lot policy [21].

Let us first introduce some notation. In Table 1 the decision variables are
defined. Likewise, the parameters are explained in Table 2. Using this notation,
we are now able to present a MlP-model formulation.

J T
(1)

j=it=i
subject to

2

Symbol Definition
Ijt Inventory for item j at the end of period t.
qjt Production quantity for item j in period t.
Xjt Binary variable which indicates whether a setup for

item j o ccurs in period t (xjt = 1) or not (xjt = 0).
yjt Binary variable which indicates whether machine rrij

is set up for item j at the end of period t (yjt = 1)
or not (yjt = 0).

Table 1: Decision Variables for the PLSP-MM ,

Ijt - Ij(t-1) + qjt - djt - ̂ 2 aj*9it t = \ T
i£Sj ' " ''

;„>E E
iSSj r=t+l

E
jZJrr,

_ j = l, • •J
xjt > Vjt Uj(t-1) t = 1 T

7 = 1 J
Pj9jt ^ Cmjt(yj(t-l) + Vjt) ^ = 1 T

E^^m, (7)
j€Jm

,E{o,i} ()

(9)

The objective (1) i s to minimize the sum of setup and holding costs. Equa-
tions (2) are the inventory balances. At the end of a period t we have in inventory
what was in there at the end of period t — 1 plus what is produced minus ex­
terna! and internal demand. To fulfill internal demand we must respect positive
lead times. Restrictions (3) guarantee so. Constraints (4) make sure that the
setup state of each machine is uniquely defined at the end of each p eriod. Those
periods in which a setup happens are spotted by (5). Note that idle periods
may occur in order to save setup costs. Due to (6) production can only take
place if there is a proper setup state either at the beginning or at the end of
a particular period. Hence, at most two items can be manufactured on each

3

Symbol Definition
(Xji "Gozinto"-factor. Its value is zero if item i is not an (Xji

immediate successor of item j. Otherwise, it is the
quantity of item j that is directly needed to
produce one item i.

Cmt Available capacity of machine m in period t.
djt External demand for item j in period t.
h3 Non-negative holding cost for having one unit of

item j o ne period in inventory.
h o Initial inventory for item j.
3m Set of a ll items that share the machine m,

i.e. 3m d= {j e {1, - - J} | rrij = m}.
J Number of items.
M Number of m achines.
m.j Machine on which item j is produced.
Pj Capacity needs for producing one unit of item j.
S3 Non-negative setup cost for item j.
Sj Set of immediate successors of item j,

i.e. Sj d= {% £ {1,..J} | üji > 0}.
T Number of p eriods.
Vj Positive and integral lead time of item j.
Vjo Unique initial setup State.

Table 2: Parameters for the PLSP-MM

machine per period. Capacity constraints are formulated in (7). Since the right
hand side is a constant, overtime is not available. (8) dehne the binary-valued
setup State variables, while (9) are simple non-negativity conditions. The reader
may convince himself that due to (5) in combination with (1) setup variables xjt

are indeed zero-one valued. Hence, non-negativity conditions are sufficient for
these. For letting inventory variables Ijt be non-negative backlogging cannot
occur.

A DLSP-like model can be derived from the PLSP-model by adding

PjQjt = CmjtVjt < = l' V (10)

to the set of constraints. It can easily be verified t hat now at most one item
can be produced per period. Typical for the DLSP is the so-called "all-or-
nothing" production. Having these equations introduced, the resulting model
can be simplified. (6) and (7) are superfluous and can be dropped. Moreover,
variables qjt can be eliminated by Substitution. Since adding constraints does

4

not decrease the optimal objective function value, we have given a proof that
the optimal objective function value of a PLSP-instance is less than or equal
to the optimal objective function value of the corresponding DLSP-instance.
Moreover, if l ots of the same item are produced in different periods, then idle
periods cannot occur in-between without enforcing a new setup which is in
contrast to the PLSP. Furthermore, whereas in the PLSP-model the unequals
sign in (4) can be replaced with an equals sign without changing anything,
the DLSP-model must have an unequals sign. It should be remarked, that
traditional DLSP-model formulations do not consider time varying capacities,
i.e. Cmi — ... — Cmt — . • • = CmT fbr all m — 1,..., Äf.

A CSLP-model formulation can be derived from the PLSP-model be adding

PjQjt < Cm^yjt ^ _ i (11)

to the set of constraints. The fact that at most one item can be produced per
period should again be clear when looking at (4). Similar to what was done
when we d erived the DLSP-model, some steps of s implification can reduce the
size of the resulting model. As in the DLSP-case above, (6) and (7) can be
dropped. Again, we now h ave a formal proof that the optimal objective function
value of a PLSP-instance is always less than or equal to the objective function
value of th e corresponding CSLP-instance. In analogy to the PLSP, the CSLP
also allows idle periods in order to save setup costs.

In summary, the PLSP can be seen as a generalization of the DLSP and the
CSLP. With minor modifications all methods developed for the PLSP should be
applicable to the latter ones eis well. However, t he reverse is not true. Efficient
methods making use of restrictive assumptions need not work well for the PLSP.
It comes out that an optimal Solution for a PLSP instance is less than or equal
to an optimal Solution of the DLSP or the CSLP using the same data set. Since
heuristic methods for the multi-level DLSP or the multi-level CSLP do not exist,
there is no such benchmark for suboptimal procedures available for the PLSP.

To transform the PLSP-model into a CLSP-model we must drop (4). The
constraints

(12)

and
(")

are introduced instead. Note that setup costs are charged now in every period
in which produetion takes place. Again, the resulting model can be drastically
reduced. (5) and (6) are redundant. Moreover, w e can eliminate the variables
Xjt by Substitution. Usually, vj = 0 is assumed for all or some j = 1,..., J si nce
we have large (time) buckets in mind. This makes (3) obsolete for these items.
It should be clear that once we give up (4) the resulting model does not support

5

sequence decisions any more. A g eneral Statement about the relation between
optimal objective function values for PLSP-instances and corresponding CLSP-
instances cannot be made.

3 Complexity Considerations

Only very little theoretical research has been done on complexity issues1 for lot
sizing (and scheduling) (see [29] for a review). Optimizing the single-level CLSP
is known to be NP-hard [4]. So must be optimizing the multi-level CLSP. The
complexity of the single-level, single-machine DLSP is examined in [30, 31].
While the feasibility problem is polynomially solvable, the optimization problem
is claimed to be NP-hard. In [5] it is pointed out that the presented proof of
this claim is false. Nevertheless, a correct proof a lso given in [5] shows t hat the
optimization problem is (strongly) NP-hard. So must be the multi-level DLSP.

Theoretical results for any variant of the CSLP or the PLSP are not pub-
lished yet. But, as we have learned from experience, for most multi-level PLSP
instances it is quite a formidable task to find even a feasible Solution. Using
heuristics to attack the PLSP-MM (and its extensions) thus seems to be an
extremely good piece of ad vice.

4 Derived Parameters

Throughout this text it will be helpful to have some notation for certain Informa­
tion that can be derived from the parameters defined above. Also, evaluating the
Parameters for some values not directly given deepens the understanding which
is a motivation on its own right.

To start with, let us analyze the gozinto-structure a bit more. We already
have defined the set of immediate successors Sj of an item j. The set of imme-
diate predecessors Vj of an item j can be defined as follows:

Vj = {i = 1, | j £ Si} j = l,(14)

On the basis of this, the set of all successors Sj and the set of all predecessors
Vj, respectively, of an item j are given as

Sj = Sj u{k £ Si | i £ Sj} j = 1,..., J (15)

and
Vid- VjUikePi | i&Vj) j = (16)

:An introduction into the theory of com plexity would ne ed mo re Space than this sec tion
and is out of th e scope of this text. We refer to [12].

6

Producing one unit of item j triggers the production of preceding items. The
internal demand idji for an item i caused by producing one item j is computed
as

C 1 , i f j = i
idjiü \ 0 , , 'Vitts (17)

12 akjidki (= J2kes Qikldjk) , oth erwise
l k€Vj

for j, i = 1,..., J where it should be emphasized that the case j = i does not
indicate cyclic struktures, but eases the notation.

The expression

, des f 0 , if Vj = 0
aepj — < max {vt-+ dept} , otherwise 3 — 1,(18)

L t€^>j
defines the depth of an item. The low level code llcj of an item j, informally
given in Chapter 2, can be restated more formally:

„ def (0 , if = 0
\ l + max{/icj} , otherwise j — 1, (19)
l

The net requirement nrj of an item j c an be computed in an item-by-item
stepwise manner. To describe the calculation we assume a technological ordering
without loss of general ity, i.e.

j <i => j gVi j}i —

must hold. By the way, no te

j < i => llcj < IIa j, i = 1, - • •, J

would be fine as well, but gives less freedom for l abeling items. Remember that
only acyclic gozinto-structures are taken into account. The adjacency matrix
representation of a gozinto-structure can thus always be written in triangulär
form

/ 0 ••• 0 N

021

031 a32

\ QJI aJ2 • • • a-j(j-i) 0 /
Furthermore, we make use of an auxiliary function

The procedure to determine nrj can now be given as in Table 3. Without
loss of generality, we subsequently assume that every item has a positive net
requirement.

7

nrj := J2t=i djt for all.?' = 1,...,
for j = 1 to j = J

nrj '•= X I \ nrj+ T, üjinri - h j o
ieSj

Table 3: A Method to Compute the Net Requirement

5 Another Point of View: Gozinto-Trees

For illustrating graphically which item causes what internal demand one can
convert matrices of gozinto-factors into acyclic but general graphs. While these
pictures are compact and easy to read, they misleadingly reflect the preced-
ence relations for scheduling items.2 A representation that directly reveals the
precedence relations in a feasible schedule is gained by Converting a general
gozinto-graph into an assembly structure by copying n odes with more than one
successor. Figure 1 gives an example (see also [1] where this point of view helps
to solve problems with complex product struktures). Note, both representations
contain exactly the same information and thus are equivalent. We will use the
term gozinto-tree to refer to the gozinto-structure when converted into an as­
sembly strukture. It should be clear that the gozinto-tree actually is a forest, if
the gozinto-structure contains more than one end item.

Since gozinto trees will play a key role in the methods to be presented, we

Compare the gra phical rep resentation of a gozinto-structure with an activ ity-on—node
network as used in proj ect scheduling. In the latte r one , prece dence relations in the graph
correspond to precedence relations that must be respected in every feasible schedule.

8

give here a formal definition of a gozinto-tree. Assume a matrix of gozinto-
factors to be given. Then, a set denoted as Tj represents the gozinto-tree with
item j being its root node. This set is recursiveiy defined by

T3 °- {(J, IJ r,-)} j = (21)
*€7>j

The pair in the set Tj represents the root node in the corresponding gozinto-
(sub-)tree. At the first position, we have the number of th e item. At position
number two, all immediately preceding nodes are shown. E.g., consider the
gozinto-tree given in Figure 1:

r, = {(1, {(2, {(4,0)}), (3, {(4,0)}), (4,0)})}

6 Initial Inventory

In the single-level case one can assume without loss of generality that the initial
inventory Ijo is zero for all items j = 1 The reason for this is that
positive stock levels can be mapped to externa! demands before the planning
process begins. The rule to do so is very simple. Initial inventory of an item j
is used to fulfill external demand in a period t only if all externa! demands in
periods r where 1 < r < t are also met by the initial inventory. More formally,
Ij0 > ST=I 4'r must hold if external demand in period t should be met by initial
inventory. In the case that Tjo > djt holds, item j need not be produced
at all. It is trivial to see that the preprocessed instance is feasible if and only
if the original instance is feasible. And, the optimum objective function value
of the preprocessed instance equals the optimum objective function value of the
original instance.

In the multi-level case there are some strings attached which do not keep
things that easy. A small example certainly bringe this out best. Suppose J — 2
items are manufactured on a single machine. The gozinto-structure is given in
Figure 2. Let the planning horizon be T = 4. All relevant data are given in
Table 4. Points worth to be highlighted are that the machine is in.itia.lly set up
for item 1 (yio = 1) and that there is a positive initial inventory for item 2
(/2 o = 10).

Now a ssume that we p roceed as we would d o in the single-level case. That
is, before we start with the planning process we e liminate the initial inventory
during a preprocessing phase. Since the initial inventory meets the external
demand for item 2 in period 2, the result is an instance without initial inventory
where external demand for item 1 is left only. The optimum Solution for the
remaining instance is defined by a lot-for-lot policy (q23 = Qi4 = = 10).
The optimum objective function value is si + s2 + h2ho + &202i9i4 = 1,900.

The optimum Solution fo r the unmodified instance is given in Table 5. Its
objective function value is 52 + ^2(^20 — ®2i?n) + hi(T- l)?n +hi(T — 2)gn =

9

Figure 2: A G ozinto-Structure with Two Items

djt t = 1 2 3 4 hj s.i Pi Vj Vj o IjO
3 = 1 10 20 900 1 1 1
j = 2 10 10 800 1 1 10
Cu 15 15 15 15

Table 4: Parameters of the Example

1,350 < 1,900.

Qjt < = 1 2 3 4
3 = 1 5 5
3 = 2 10

j with yjt = 1 1 2 2 2

Table 5: An Optimum Solution of the Example

Apparently, something goes wrong when eliminating initial inventory to get
an instance with zero init ial inventory. As pointed out for the single-Ievel case,
initial inventory of an item j can be mapped to demand in a period t without
harm only if all other demand for item j in earlier periods can also be met by the
initial inventory. In the multi—level case we have exter nal as well as internal de­
mand. But only the external demand is known by time. The time when internal
demand occurs is not known unless a production plan is constructed. Hence, in
general there cannot be a preprocessing procedure that eliminates initial invent­
ory. As a consequence, multi-level lot sizing and scheduling procedures must
take initial inventory into account.

Eventually, a rather unexpected phenomenon should be mentioned which

10

may occur if positive initial inventory comes along with multi-level gozinto-
structures. Surprisingly, initial inventory may be the reason for producing items
with out any demand for it. Consider, for instance, the example above, this time,
assuming djt = 0 for j ~ 1,..., J and t = 1,..., T. In an Optimum Solution no
production takes place. The optimum objective function value, however, is not
zero, but h2l2oT = 400 for keeping 10 units of item 2 four periods in inven tory.
Suppose, hi < h2. Then, the optimum result would be to produce gn = 10
units of item 1 in period 1 which uses the initial inventory of item 2 u p. Since
there exists no demand for item 1, we have I2T = 10, and the optimum objective
function value is hiqnT < h2I2oT.

7 Schedules

Discovering certain properties that optimum Solutions must have allows to reduce
the set of feasible Solutions among which an optimum Solution is to be and among
•which we should try to find a good feasible Solution. We will now show tha t due
to the combination of m ulti-level gozinto-structures and general holding costs
a "nice" property of o ptimum schedules is no longer valid, though it is in the
single-level case.

To avoid unnecessary repetitions let us assume once and for all the following
Parameters in this section: M = X, T = 10, C» = 15, pj = 1, Ijo = 0, and
Vj = 1 for all j = 1,..., J and t = 1,..., T. J will vary. The parameters %o
and Sj are of no importance here and can be chosen arbitrarily.

For the first example which reveals a property of optimum schedules in the
single-level case, let / = 3. External demand is given in Table 6. The holding
cost hj > 0 can be chosen arbitrarily for all j = 1,..., J.

djt t = 1 2 3 4 5 f) 7 i 3 9 10
j = 1
; = 2
i = 3

20
20

20

20

Table 6: External Demand

Figure 3-(a) shows a feasible schedule. Note, the lot for item 1 fulfills the
external demand in period 5 as well as the external demand in period 10. Sup­
pose, that the sequence of lots should not be changed and wonder if t here may
exist another schedule (with the same sequence of lots and therefore the same
total setup costs) with a lower objective function value (which means with lower
total holding costs). The answer is yes, and the schedule with lowest objective
function value (while respecting the sequence of lots) is depicted in Figure 3-(b).
It is essential to understand that idle periods do not enforce additional setups.

11

m

(a)
2 1 1 3

m

(b) 10

Figure 3: Two Schedules with the Same Sequence of Lots

The difference between both schedules is that in case (b) all items are shif-
ted right-most without changing the sequence and without violating due dates.
In general, given a sequence of lots to be produced on a common machine, the
(unique) schedule with the lowest objective function valueis the one which sched­
ules all items right-most. Adopting the terminology of s cheduling theory [32]
here, such schedules are called semi-active schedules.3 As we will now s how,
the property that an optimum schedule must be a semi-active one is valid for
single-level struktures only unless additional (restrictive) assumptions are made.

So, let us have a look at another example with J = 2 and a two-level gozinto-
structure (see Figure 2). External demand is given in Table 7. Suppose here
that hi > hi holds.

djt t = 1 2 3 4 5 6 7 8 9 10
j = 1 20 20
j = 2

Table 7: External Demand

Figure 4-(a) provides a feasible schedule. For the given sequence of lots this
is the unique semi-active schedule. Figure 4-(b), however, shows a schedule
with lower objective function value respecting the sequence of lo ts. This one is
not semi-active.

The reason why the second schedule has a lower objective function value is
that holding item 2 is more expensive than holding item 1. All lots for item 1
should therefore be scheduled close to the lot of item 2 which meets the internal

3 In contrast to our Interpretation o f semi-active schedules as right-most sche dules, in
scheduling theory left-most schedules are usually meant. The reason for this is a difference in
the objective function. Minimizing the makespan is, for instance, a widespread objective.

12

m

2 2 1 1

(b)
2 2 1 1

9 10

Figure 4: Two Schedules with the Same Sequence of Lots

jemand. In general, a sufficient condition for an Optimum schedule to be semi-
active is

hj > ^ ciijht j = l,...,J (22)

which is a restrictive assumption not made here (see Section 3.1). Nevertheless,
as a result we have the fact that given a certain sequence of lots, those items j
which fulfill (22) should be scheduled right-most.

8 Lot Splitting

Looking at all examples given up to here again, one might conclude that lot
sizing (and scheduling) is about grouping demands together (and finding a (sub-
)optimal schedule for these lots). Thus, lot sizes appear to be the sum of order
sizes. While this is true for single-level, uncapacitated problems [36], lot sizing
with multi-level gozinto-structures and/or capacity constraints needs to take
Splitting lots — Splitting order sizes would be more precise4 — into account and
is therefore much more difficult as we will point out. The problem of lot sizing
(and scheduling) where only grouping is allowed but no Splitting, is called a
batching (and sequencing) problem [18, 35, 37]. 5

4Note, lot Sp litting in our context do es not nece ssarily mean to di vide a lot into s ublots
and to process each sublot in parallel OD identical facilities [2]. Su blots may also be processed
consecutively (with other lots in-between).

5 To convert the lot sizing pro blem into a batching pr oblem we nee d to add additional
constraints to the PL SP-MM-model fonnulation. If w e assume Ijo = 0 for all j = 1 ,..., J,
the restrictions

J,T}
53 aJ«?ir<B(l-xit) J ,T

tgSj T=t

13

Let us investigate the uncapacitated, multi-level case first.6 Assume M = 2
and a gozinto-structure as given in Figure 2. Table 8 gives the parameters that
are of interest. Note that we have positive initial inventory. Furthermore, assume
h.2 > h,\.

II 2 3 mj IjO v.i
j = l 20 1 1
j = 2 2 10 1

Table 8: Parameters of an Example without Capacity Constraints

The Optimum production plan is depicted in Figure 5. It is remarkable to
see, that the external demand of item 1 is split into two lots of size 10. Together
with the results in Subsection 6 we now have that if generality should not be
lost, multi-level gozinto-structures imply that lot Splitting must be taken into
account in order to find Optimum Solutions.

m

- t

Figure 5: Lot Splitting in Uncapacitated Cases

Noteworthy to say that in capacitated cases lot Splitting is not a problem
introduced with multi-level structures. Suppose a single-level problem instance
where M = 1, T = 3, and all other relevant parameters are given in Table 9.
Setup costs are of no relevance. Note that the machine is initially set up for item
2. Let holding costs be arbitrarily chosen with respect to h\ > h2. There is only
one feasible Solution without lot Splitting (see Figure 6-(b)). As we can see in
Figure 6-(a), a feasible Solution with lot Splitting would d ecrease the objective
function value by 10(hi — h2) > 0.

where Bisa large number would w ork fine. Sin ce batching is not in our interest, w e omi t
further comments and leave the discussion of the case of positive initial inventory out.

6More formally, assume the p roblem under concern be d efined by the PL SP-MM-model
without the capacity constraints (7). The capacity parameters in (6) must be replaced with a
large number, and all pj-values can be replaced by one.

14

djt t = 1 2 3 Pi Vjo 4o
3 = 1 20 1
3 = 2 30 1 1
Clt 20 20 20

Table 9: Parameters of the Example

m

(a)
m

(b)

Figure 6: Schedules with and without Lot Splitting

A stronger Observation is that some instances do have feasible Solutions with
lot Splitting only. Again, suppose the parameters in Table 9 with slightly modi-
fied data, i.e. d2i = 10 and t/20 = 0. To understand the logic of the example, it
is important to be aware of the fact that the machine is not set up for any item
initially. Figure 7 shows the unique feasible Solution.

It is interesting to see that there are instances for which all f easible Solu­
tions are without lot Splitting and no feasible Solution with lot Splitting exists.
Once more, suppose the parameters given in Table 9 with slightly modified data,
i.e. du ~ 25 and y2io = 0. Then, there is only one semi-active feasible Solution
which is depicted in Figure 8 where no lot Splitting occurs.

In general, we have th e following results.

• If there exists a feasible Solution for an instance without lot Splitting, the
existence of feasible Solutions with lot Splitting is not guaranteed.

• If there exists a feasible Solution for an instance with lot Splitting, the
existence of feasible Solutions without lot Splitting is not guaranteed, too.

15

m

2 2 1 2

1 2 3

Figure 7: The Unique Feasible Solution of the Example

m

Figure 8: The Optimum Solution of the Example

• If both feasible Solutions with and without lot Splitting exist, the optimum
Solution is not necessarily without lot Splitting.

Instances which have both types of feasible solutions are guaranteed to have
an optimum Solution without lot Splitting if

hjPj < kPi = (23)

holds. In other words, we woul d have to assume that

hjPj = hipi (24)

holds, to guarantee that for any instance having a feasible Solution in which no
lot Splitting occurs an optimum Solution can be found without lot Splitting. As
already stated above, we do not assume this here.

9 Some Valid Constraints

In this section we present some additional constraints which are proven to be
valid in the sense that optimum solutions fulfilling these do exist. If there are
any feasible solutions of the original PLSP-MM-model violating the new con­
straints, the valid constraints reduce the Solution space and thus help to find

16

(sub-)optimum Solutions (e.g. when Standard MlP-solvers are employed or heur-
istics are to be developped) or at least help to gain a better understanding.

Valid constraint 1: The following equations determine the inventory at the
end of each period. They can be used t o eliminate the inventory variables.

jt - 4 o + J2 Vjr ijT
T= 1 'T (25)

Proof: Trivial. It is a recursive evaluation of (2). •
Valid constraint 2: If there is no initial inventory, items must be p roduced

only if there is a positive requirement.7 This may fix the value of some decision
variables to zero.

qjt < nrj

xjt < nrj

Vjt < nrj

3 =
t —
3 =
t =
3 =
t- , - - -, T

(26)

(27)

(28)

Proof: Trivial.8 •
Valid constraint 3: For each item j = 1,..., J with nrj > 0 the machine mj

must be set up for this item at least once. This holds for all feasible Solutions.

nr, j = 1,..J (29)
t=o

Proof: Trivial. •
Valid constraint 4- Assume that qjt > 0 should imply qjt > 1 for j = 1,..., J

and t = 1,..., T. A setup for an item j where j = 1,..., J should only take
place if t he internal demand is met so that at least one item can be produced.
This enforces some setup variables to be zero.

;Xjt < /»(t-1) + U
j — 1,..., J
i € Vj
t = 1,.. .,T

(30)

Proof: Let us consider items j and i and period t. If there is an optimum Solution
with Xjt = 0 the resulting inequality is true because of (9). So, assume there is
an optimum Solution with Xjt = 1. Due to (5) we ha ve yj(t-i) = 0 and = 1.

7Remember Subsectionö where it is shown that the following unequalities are not necessarily
true when we face positive initial inventory.

8Note, to let the con straints for setup state variable yjt be v alid (4) m ust not con tain an
equals sign.

17

Using (6) either qjt > 0 or qj(t+i) > 0 (if t < T) or both must hold, otherwise
yjt — 0 and hence xjt = 0 would give a lower objective function value or would
enforce Xj(t+1) = 1 (if i < T1) resulting in another Optimum Solution. Suppose,

9jt>0 (3) (9)
qjt > 0. Then we are done, since aijXjt < dijQjt < h(t~l) < A(t-i) + ht-
Suppose, t < T and qj(t+i) > 0 Analogously, we are done again, because

(3) (s)
O-ijXjt < aij9j(t+1) < ht < A(t-l) + ht- u

Valid constraint 5: Similar to (30) we can formulate new constraints for
production quantities and setup State variables which set these decision variables
to zero in some cases.

j
aijQjt < h(t-i) + ht i€Pj (31)

t = 1,..., T
j = 1,• • •, J

aij(Vjt - Vj(t-1)) < h(t-1) + ht « € P j (32)
t = 1,..., T

Proof: Just follow the lines of (30). •
Valid constraint 6: A machine should switch the setup State in period t =

1,. .., T for producing an item j = 1,..., J only if i tems i € Pj with ho = 0
have a chance to be manufactured in advance. This condition lets some setup
State variables be zero.

<»>
T"° t =

»<i> M
t = l,...,T

Proof: We only prove the second inequality, because the first basically fol-
lows the same ideas. The difference is that in the first case an initial setup
state can be kept up. Let the items under consideration be j and i where
i € {k ePj | ho = 0 and mk = mj}. Suppose that £2r=o Vir = 1- Due to (8)
the resulting inequality is true. So, assume there is an Optimum Solution with
Z^=o Vir = 0. With (6) we get qit = 0 for all / = 1Because ho = 0, we
also have h(t-i) = ht = 0 using (2). (3) implies qjt = q^t+i) = 0. Thus, there
is an optimum Solution with yjt = 0. •

18

Valid constraint 7: Similar to the setup state variables we can formulate
constraints for the setup variables to enforce some of these to be zero.

t j = l,...,J
*jt < Vio + 22 Xi7 ie{k E Vj | /fco = 0} (35)

T=i t = 1,.. .}T

Proof: Note, yi0 + Er=i xir = 0 implies JZr=o Vir = 0 due to (5) f or all i =
1,..., J. From then on the proof is similar to (34). •

Valid constraint 8: If there exists no initial inventory and if there is no future
demand for an item j = 1,..., J there is no need to keep up the setup State or
to produce anything. Again, this restricts the value of some decision variables

T-t i£Sj T = t+Vj ' '

Xjt <E^ + E E «Ii.;. T (3^)
T=t i£Sj ' 5

T T
*,<E4T+E E T (33)

T — t i£Sj T = t + Vj ' '

where the latter two inequalities assume that qjt > 0 implies qjt > 1 for j =
1,..., J and t = 1,... ,T.
Proof: Let j be the item under concern and period t be the focus of attention. If
the right band side is positive, the result is trivial due to (8). So, assume there
is an optimum Solution with Y^=t djr + ZieSj = 0- Due to (2)
in combination with (1) we get qjT = 0 for all T = t,..., T. With (6) there is an
optimum Solution with yjT = 0 for all r = t,..., T which in turn implies xjT = 0
for all r = t,... ,T using (5). D

Valid constraint 9: Quite similar is a constraint which fixes setup state vari­
ables to zero if there is no future demand that is not met and if there is no initial
inventory. Assume that if demand occurs, there is demand for at least one unit
of an item.

Vjt < Vj(t+i) j = (39)
t = 1,..., T — 1

+ Z4T

T
+ E E ajii"

iZSj T-t+Vj

T
- Z ?JT T=t + 2

19

Proof: Let us concern about item j an d period t. First, analyze the structure of
the right hand side:

(+1 t+Vj+l

+ X/ djT + S S ajiqiT
s * ' T = t i€Sj T=t+Vj

(I) ' V
(")

T TT
+ 12 dir+ Ys Y aiiq" - Y

r=t+2 i€Sj T=t+Vj+ 2 r=t+2
• , '

(///)

Part (I) represents the setup state in period <+1. Part (II) evaluates to a positive
value if there is any dem and in period i or period t + 1. Eventually, part (III)
represents future demand that is not met. If the right hand side is positive, the
result is trivial due to (8). So, assume an Optimum Solution where the right hand
side evaluates to zero. Since Vj(t+i) = 0 no additional setup occurs in period
t if yjt = 0, too. For having no demand in periods t and i -h 1 to be met with
production in t and t + 1, respectively, and no future demand in periods 2 4-2 to
T which is not met an optimum Solution would have qjt = Qj{t+i) = 0 due to (2)
in combination with (1). Hence, there is an optimum Solution with yjt = 0. •

10 Postprocessing

Given a particular instance, our goal is to heuristically find a (feasible) produc­
tion plan with (sub-)optimum objective function value where finding a produc­
tion plan means to determine the lot sizes and a schedule for the lots. Calculating
the corresponding objective function value of a production plan is an easy task
then.

In this section we will learn that once we have found a feasible Solution
represented by the matrix of production quantities qjt} there are some degrees of
freedom for the schedule. More precisely, a g^-matrix does not define a unique
schedule — in our PLSP-MM-model formulation we thus introduced the setup
state variables yjt which determine a schedule.

A small (single-level) example should make things more clear. Suppose J =
2, M = 1, T = 5 and feasible production quantities as given in Table 10. Let the
machine initially be set up for none of the items. Furthermore, assume s\ >5%.
Since we do not need to know all the other parameters, they are not given here.
Figure 9 shows th ree alternative feasible schedules.

Note, all schedules differ only in the sequence of lots within the periods.
Assuming the production quantities to be feasible, all three Gantt-charts thus
define feasible production plans. Also note that holding costs are determined
with the matrix of production quantities. Hence, all three schedules cause the

20

qjt t = 1 2 3 4 5 o
 II 10

j = 2 10 10

Table 10: A Matrix of Feasible Production Quantities

»
1 2 1 2

m

(b)
1 I 2

m

2 1 1 2 1

Figure 9: Three Feasible Schedules

same holding costs. But, if we consider setup costs, we can see that all three
schedules cause different setup costs, namely, 2si + 2s2 for schedule (a), 2$i +S2
for schedule (b), and sx + 2s2 for schedule (c). By the way, no other schedule
that corresponds to the quantities in Table 10 has a lower objective function
value than schedule (c).

In general, we like to have a postprocessor which, once that we have fo und
a feasible Solution, determines a schedule with minimum total setup costs. o
guarantee that the resulting schedule is feasible, the postprocessor should not
modify the matrix of production quantities.9 Under this assumption postpro-
cessing the schedules for different machines does not interact. Basicaily, such a

9A formal Statement of this prob lem emerges from the PL SP—MM-model formulation if
production quantities qjt are used as parameters and not as decision variables.

21

module could enumerate all sequences of lo ts within a period for all machines,
thus enumerating]£m=i 2^m schedules where

Tm=JJ2*2 (-!+ E
t=i \ iGJ-m /

for all m = 1,..., M and X2 is a n auxiliary function defined as

Subsequently, we present a more efficient pr ocedura.
We give here a functional specification of a postprocessor E which, when

applied to each machine, moves from period 1 to period t in a single pass and
constructs the schedule with minimum total setup costs making use of a feasible
g^t-matrix. The Output will be represented as a list of item indices. Each entry
in the list corresponds to a positive entry in the matrix of production quantities.
Hence, we have

jtJr» t=l

entries in the list representing the schedule for machine m. Reading the list
from leffc to right uniquely defines a sequence of p roduction quantities (and in
combination with the g^-matrix a schedule, of co urse). For instance, applying
the postprocessing phase to the example above should give <2:1 : 1 : 2 >i
representing the schedule for machine 1 in Figure 9-(c).10

Before we can give a formal definition of the postprocessor, let us introduce
some notation for the sake of convenience. If machine m and period t are under
concern, we have to evaluate X2(?jt) using £mt as a short-hand notation
for it. Note, since we consider the PLSP where at most one setup may take
place per period, Emt 6 {0,1,2}. If Emt = 1, let j* be the unique item with
qj*t > 0. If Emt = 2, let j\ < be the items with non-zero production
quantities. Furthermore, let jmo he the item machine m is initially setup for, or
jmQ = 0 if the machine m is set up for no item initially.

To apply the postprocessor E to machine m, just evaluate

(41)

The function EJ1 handles the case in which a period t is under concern and
the setup State at the beginning of this period is fixed. This certainly happens

10The formal defi nition o f the postprocessor wi ll nee d som e Operations on lists. We use
<>m to denot e an empty list, and a o-sy mbol to denote concatenation. For e xample, < a :
... : 2 >m o <>=< az >m and < a w >m c < x : y : z > m=< a: z >m.

22

to be in period 1 where the setup State at the beginning of th at period is jm0.
Five cases may occur:
Case 1: t > T
Case 2: = 0 and t < T
Case 3: T,mt = 1 and j* = j and t < T
Case 4- £mt = 1 and j* ^ j and t < T
Case 5: = 2 and j? = j (i £ {1,2}) and t<T

Depending on the case that holds, ij* is defined as follows:

de/

<> Case 1
~?(j,t + 1) Case 2
<i>o="(j',i+l) Case 3
< j' > o SHiV + 1) Case 4
< j • > o Ü*3_i), t + 1) Case 5

(42)

First, there is the terminal case when all periods are considered. Second, if
no production takes place in period t on machine rn, no entry is added to the list
which defines the schedule. A recursive call to HJ1 passes the Information that
item j is the last item the machine is setup for. Third, there is the case where
only one item j is produced on machine m in period t and machine m is already
setup for this item. We then add the item index j to the list and proceed on w ith
a call to EJ2. The fourth case is similar to the third, but this time the machine
is not in the proper setup state. We thus add j* to the list and call Ej1, because
at the beginning of period t + 1 the machine is now set up for item j*. Finally, if
there are two items to be produced, one of them must be item j. Otherwise, we
would have two setups in period t which is not allowed. The sequence in which
these items are produced must therefore have item j a t its first position. At t he
end of period t and thus at the beginning of per iod t + 1, the machine is set up
for the second item then.

The function EJ1 handles the case in which a period t is under concern and
the setup state at the beginning of that period is not fixed yet. Again, we have
five cases to distinguish.
Case 1: t > T
Case 2: £mt = 0 and t < T
Case 3: Lmt = 1 and t < T
Case 4: Em(= 2 and j* = j (i £ {1,2}) and t < T
Case 5: The above cases do not hold.

EJ1 is defined as follows:

<>
ST(7*+1)
<j*>oH?ÜV + l)

Case 1
Case 2
Case 3 (43)

syw.Ja.'+i) Case 5

23

The first one is the terminal case. Case number two deals with situations in
which nothing is to produce on machine m in period t. We simply move on with
a recursive call to E™ then. In case three, which is the case when only one item
is to be manufactured, the item j* is added to the list that defines the schedule.
More interesting is case four where two items are to be produced on machine m
in period t and one of them is the last item the machine is set up for. If this
holds, it is clear that item j is to be scheduled first, because otherwise the setup
costs for item j would be charged twice. Last, it may happen that two items are
to be produced, but none of them is the one the machine is already set up for.
A call to E™ finds out the right sequence.

The function Ej" handles the case in which p eriod t is under concern and the
setup state at the beginning of that period is fixed. In contrast to the function
E™, we employ E™ if we are not quite sure which item the machine should be
set up for at the beginning of pe riod t. Two alternatives do exist. In total we
have seven cases to discriminate:
Case 1: t > T
Case 2: Emt

Case 3: £mt

Case 4•'
Case 5: T> mt
Case 6: £mt
Case 7: £mt = 2 and j* = ji A

— 0 and t < T
= 1 and j* = ji (i 6 {1,2}) and t < T
= 1 and ji j* / j2 and t < T
- 2 and # = ji A # i(3-«) (* € {1, 2}) and t < T
= 2 and j\ = ji A j \ — j 2 and s^ > sj2 and t < T

j2 and Sjx < Sj2 and t < T
The function ij1 is defined as follows:

<>

< i(3-x) : jt : ji > o H f(j* ,t + 1)

< : ji '• ji • j(3-i) ^

< 32 : j\ : ii : ji > o Ef(^,t + 1)
< j\ : 32 • J 2 : j\ > 0 + 1)

Case 1
Case 2
Case 3
Case 4

Case 5
Case 6
Case 7

(44)

Many cases may occur. Of course, there is the terminal case. If nothing
is to be produced in period we can still not be sure in which sequence the
items that are kept in memory are to be scheduled. However, we know that the
setup state of machine m at the end of period t is not fixed yet, and thus we call

The third case deals with situations in which one item is to be produced in
period t and in which this single item equals one of t hose that are remembered.
Hence, we build a lot for that item which is the cheapest possible sequence. If
the item that is to be p roduced is not equal to one of those that are pending to
be added to the list, case four holds. The sequence in which the two pending
items are scheduled can be chosen arbitrarily then. Case five is the case where
two items are to be scheduled in period t, but only one of them equals one of the

24

pending items. The sequence in which the items are scheduled is the one which
causes the least setup costs. Gases six and seven describe what to do if the two
pending items are to be produced on machine m in period t again. A lot is then
built for the item with the highest setup cost.

The function Elp ha ndles the case in which period t is under concern and the
setup state at the beginning of that period is not fixed. Also, we face a pending
sequence decision from earlier periods which is in difference to Ef. The function
5™ is defined as follows:

f ... , see Cases 1 to 7 of E™
= < <ji : 32 > (45)

l ° =>T (ii s > * + 1) > otherwise

This definition is almost equal to the definition of 5™, i.e. we have the s ame
seven cases as before. The only difference is a n eighth case which applies when
two items are to be produced in period t and none of them equals any of the
pending items.

To illustrate the formulae, let us run a postprocessing phase for the example
above where production quantities are given in Table 10. Remember, = 0
and si > sg.

2(1) = Si(0.1)
= 5^(0,2)

3}(1,2,3)
Ej(l,2,4)

= < 2 : 1 : 1 :2 >i o H}(2,5)
= <2:l:l:2>ioSj(2,6)
= < 2 : 1 : 1 : 2 >i o <>i
= < 2 : 1 : 1 :2 >i

This result indeed corresponds to the schedule given in Figure

Acknowledgement

This work was done with partial support from the DFG-project Dr 170/4-1

References

[1] AFENTAKIS, P., GAVISH, B.; (1986), Optimal Lot-Sizing Algorithms for
Complex Product Structures, Operations Research, Vol. 34, pp. 23 7-249

[2] AMERICAN PRODUCTION AND INVENTORY CONTROL SOCIETY INC.,
(1995), APICS Dictionary, Falls Church, 8th edition

25

[3] BITRAN, G.R., MATSUO, H., (1986), Approximation Formulationsfor the
Single-Product Capacitated Lot Size Problem, Operations Research, Vol.
34, pp. 63-74

[4] BITRAN, G R., YANASSE, H .H., (1982), Computational Complexityof the
Capacitated Lot Size Problem, Management Science, Vol. 28, pp. 1174-1186

[5] BRÜGGEMANN, W., (1995), Ausgewählte Probleme der Produktion­
splanung — Modellie rung, Komplexität und neuere Lösungsmöglichkeiten,
Physica-Schriften zur Betriebswirtschaft, Vol. 52, Heidelberg, Physica

[6] DIABY, M., BAHL, H.C., KARWAN, M.H., ZIONTS, S ., (1992), A Lagran-
gean Relaxation Approach for Very-Large-Scale Capacitated Lot-Sizing,
Management Science, Vol. 38, p p. 1329-1340

[7] DINKELBACH, W., (1964), Zum Problem der Produktionsplanung in Ein-
und Mehrprodukt unternehmen, Würzburg, Physica, 2nd edition

[8] DREXL, A., HAASE, K., (1995), Proportional Lotsizing and Scheduling,
International Journal of Pr oduction Economics, Vol. 40, pp. 73-87

[9] EPPEN, G.D., MARTIN, R.K., (1987), Solving Multi-Item Capacitated
Lot-Sizing Problems Using Variable Redefinition, Operations Research,
Vol. 35, pp. 832-848

[10] FLEISCHMANN, B ., (1990), The Discrete Lot-Sizing and Scheduling Prob­
lem, European Journal of Operational Research, Vol. 44, pp. 337-348

[11] GÜNTHER, H.O., (1987), Flanning Lot Sizes an d Capacity Requirements
in a Single-Stage Production System, European Journal of Operational Re­
search, Vol. 31, pp. 223-231

[12] GAREY, M.R., JOHNSON, D.S., (1979), Computers and Intractability: A
Guide to the Theory of NP-completeness, San Francisco, Freeman

[13] HAASE, K ., (1993), Capacitated Lot-Sizing with Linked Production Quant-
ities of Adjacent Periods, Working Paper No. 334, University of Kiel

[14] HAASE, K., (1994), Lotsizing and Scheduling for Production Flanning,
Lecture Notes in Economics and Mathematical Systems, Vol. 408, Berlin,
Springer

[15] HAASE, K., KIMMS, A., (1996), Lot Sizing and Scheduling with Sequence
Dependent Setup Costs and Times and Efficient Rescheduling Opportunit-
ies, Working Paper No. 393, University of Kiel

[16] HINDI, K.S., (1996), Solving the CLSP by a Tabu Search Heuristic, Journal
of the Operational Research Society, Vol. 47, pp. 1 51-161

26

[17] VAN HOESEL, S .t KOLEN, A., (1994), A L inear Description ofthe Discrete
Lot-Sizing and Scheduiing Problem, European Journal of Operationai Re­
search, Vol. 75, p p. 342-353

[18] JORDAN, C., (1995), Batching and Scheduiing — Models and Methods for
Several Problem Classes, Ph.D. dissertation, University of Kiel

[19] KARMARKAR, U.S., KEKRE, S., KEKRE, S., (1987), The Deterministic
Lotsizing Problem with Startup and Reservation Costs, Operations Re­
search, Vol. 35, pp. 389-398

[20] KARMARKAR, U.S., SCHRÄGE, L., (1985), The Deterministic Dynamic
Product Cycling Problem, Operations Research, Vol. 33, pp. 326-345

[21] KIMMS, A., (1994), Optimal Multi-Level Lot Sizing and Scheduiing w ith
Dedicated Machines, Working Paper No. 351, University of Kiel

[22] KIMMS, A., (1996), Multi-Level, Single-Machine Lot Sizing and Scheduiing
(with Initial Inventory), European Journal of Operationai Research, Vol. 89,
pp. 86-99

[23] KIMMS, A., (1996), Competitive Methods for Multi-Level Lot Sizing and
Scheduiing: Tabu Search and Randomized Regrets, International Journal
of Production Research, Vol. 34, pp . 2279-2298

[24] KIMMS, A., (1996), Multi-Level Lot Sizing and Scheduiing — Methods
for Capacitated, Dynamic, and Deterministic Models, Ph.D. dissertation,
University of Kiel

[25] KIRCA, Ö., KOKTEN, M., (1994), A New Heuristic Approach for the
Multi-Item Dynamic Lot Sizing Problem, European Journal of Operationai
Research, Vol. 75, pp. 332-341

[26] LASDON, L.S., TERJUNG, R.C., (1971), An Efficient Algorithmfor Multi-
Item Scheduiing, Operations Research, Vol. 19, pp. 946-969

[27] LOTFI, V., CHEN, W.H., (1991), An Optimal Algorithm for the Multi-
Item Capacitated Production Flanning Problem, European Journal of Op­
erationai Research, Vol. 52, pp. 179-193

[28] MAES, J, VAN WA SSENHOVE, L.N., (1988), Multi-Item Single-Level Ca­
pacitated Dynamic Lot-Sizing Heuristics: A General Review, Journal of
the Operationai Research Society, Vol. 39, p p. 991-1004

[29] POTTS, C.N., VAN WASSENHOVE, L.N., (1992), Integrating Scheduiing
with Batching and Lot-Sizing: A Review of Algorithms and Complexity,
Journal of the Operationai Research Society, Vol. 43, pp . 395-406

27

[30] SALOMON, M., (1991), Deterministic Lotsizing Models for Production
Planning, Lecture Notes in Economics and Mathematical Systems, Vol. 355,
Berlin, Springer

[31] SALOMON, M., KROON, L.G., KUIK, R., VAN WASSENHOVE, L.N.,
(1991), Some Extensions of the Discrete Lotsizing and Scheduling Prob­
lem, Management Science, Vol. 37, pp. 801-812

[32] SPRECHER, A., KOLISCH, R., DREXL, A., (1995), Semi-Active, Active,
and Non-Delay Schedules for the Resource-Constrained Project Scheduling
Problem, European Journal of Operational Research, Vol. 80, pp. 94-102

[33] TEMPELMEIER, H., DERSTROFF, M., (1996), A Lagrangean-Based Heur-
istic for Dynamic Multi-Level Multi-Item Constrained Lotsizing with Setup
Times, Management Science, Vol. 42, pp. 738-757

[34] TEMPELMEIER, H., HELBER, S., (1994), A H euristic for Dynamic Multi-
Item Multi-Level Capacitated Lotsizing for General Product Structures,
European Journal of Operational Research, Vol. 75, pp. 296-311

[35] UNAL, A.T., KIRAN, A.S., (1992), Batch Sequencing, IIE Transactions,
Vol. 24, No. 4, pp. 73-83

[36] WAGNER, H.M., WHITIN, T.M., (1958), Dynamic Version of the Eco­
nomic Lot Size Model, Management Science, Vol. 5, pp. 89-96

[37] WOODRUFF, D.L., SPEARMAN, M.L., (1992), Sequencing and Batching
for Two Classes of Jobs with Deadlines and Setup-Times, Production and
Operations Management, Vol. 1, pp. 87-102

28

