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In project scheduling, the free float (slack) of an activity represents the leeway for scheduling the activity without
affecting any subsequent activity. In the context of activity-on-arrow (AOA) network representation, textbooks on
project management, based on our survey, have for decades been using a popular formula to calculate free floats that
may lead to erroneous results in the presence of dummy arcs. In this note, we present a correct version of the formula.
Extensions of the proposed formula to other floats such as safety float and interference float are also discussed.
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Introduction

In project scheduling, the free float (slack) of an activity

represents the leeway for scheduling the activity without

affecting any subsequent activity. In an activity-on-node

(AON) network, for each activity K, its free float FFK is the

difference between the earliest among the earliest start times

(ES) of its immediate successors and its earliest completion

time (EC), namely,

FFK ¼ minfESJ � ECK jJ 2 GðKÞg ð1Þ

where G(K) is the set of immediate (non-dummy) successors

of activity K. In this note, activities are denoted by capital

letters.

In an activity-on-arc (AOA) network, an activity is

represented by two event nodes connecting the arc and each

node is denoted by a lowercase letter. Given an activity (i, j)

which is denoted by two event nodes i and j connecting the

arc, its free float FFij is the difference between the ES of its

immediate successor, say ðj; kÞ; and the EC of the activity:

FFij ¼ ESjk � ECij; k 2 AðjÞ ð2aÞ

where AðjÞ is the set of nodes that connect from j (occur after

j). Let dij denote the duration of activity ði; jÞ. One can also

define the earliest possible time of realization for each event

node, say tEj for node j, using the following recursive relation:

tEj 	 maxftEi þ dijji 2 BðjÞg; ð2bÞ

where BðjÞ is the set of nodes that connect to j (occur before

j). For start node s̆ of the project, tE�ss ¼ 0. An equivalent

formula for (2a) is as follows:

FFij ¼ tEj � tEi � dij : ð2cÞ

Equations (2a)–(2c) have been used to calculate free floats

in textbooks on project management for decades, from

classics such as Antill and Woodhead (p 70)1 to recent texts

such as Murty (p 414),2 Shtub et al (p 337)3, Halpin and

Woodhead (p 110),4 and Oberlender (p 145).5 While most of

the time these formulas do yield the exact value of free floats

for activities, they may not work for some activity if its

immediate successors are all dummy arcs. This problem

occurs only in the AOA project networks, but not in the

AON networks, because the AON representation requires

no dummy activities (except, perhaps, for a dummy ‘start’

activity and a dummy ‘end’ activity). Thus far, this issue has

only been discussed in Elmaghraby and Kamburowski,6 in

which the authors proposed a modified critical path method

(CPM). Without altering formula (2c) for calculating

free floats, the authors modified the notion of event times,

which results in modification of the traditional CPM steps.

In this note, we take a different approach: instead of

changing the method to accommodate old formula, we

simply improve the formula. Our approach does not modify

the traditional CPM steps and it retains the usefulness of the

traditional interpretation of event times for scheduling

purposes.

A counterexample and corresponding countermeasures

Consider an example project with its AOA network

representation shown in Figure 1. The project network

contains four dummy arcs and none of them in the diagram

is redundant. Its corresponding AON network representa-
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tion is shown in Figure 2. Using (2a)–(2c), the free floats for

some activities are summarized in Table 1. Using (2a)–(2c),

the free floats for activities (0, 2), (0, 4), and (1, 2) do not

coincide with the actual values, obtained from its equivalent

AON representation by (1). Intuitively, this is because all of

the immediate successors of a node (nodes 2 and 4 in this

example) are dummy arcs. To remedy this, (2a) should be

extended to the following:

FFi;j ¼minfESmn � ECijjðm; nÞ is a successor of ði; jÞ and is

not a dummy arc; ðm; nÞ iseither an immediate

successor of ði; jÞ or is connected from node j only

by dummy arcsg
ð3Þ

Not surprisingly, (3) directly corresponds to (1), the formula

for calculating free floats in an AON network. As an

example, activity (0, 2) in Figure 1 has two immediate

successors (2, 4) and (2, 7). Since both of them are dummy

arcs, one can first trace along (2, 7) to its immediate

successor (7, 8), which is not a dummy arc, and then trace

along (2, 4) to find (4, 5) and (4, 6). Since (4, 5) and (4, 6) are

still dummy arcs, the tracing continues until (5, 8) and (6, 8)

are located. Given ði; jÞ, this process is equivalent to

searching a tree of dummy arcs rooted at node j, which

may be cumbersome to implement directly. Since a project

network is directed and has no cycle, every arc of such a tree

is directed away from the root node. More precisely, such a

tree of dummy arcs is called an outtree of dummy arcs.

A correct formula for calculating free floats

To propose a correct formula for calculating activity free

floats, we first ask when a dummy arc has a non-zero free

float, what does it mean? To answer the question, let us

revisit the example in Figure 1. In Figure 1, activity B,

represented by arc (0, 2), is an arc terminating at the root

node of an outtree of dummy arcs. The earliest realization

time of node 2 is greater than the EC of arc (0, 2) because of

tE2 ¼ 6. Activity B has activity N, represented by arc (7, 8), as

one of its immediate (non-dummy) successors. However, the

earliest realization time of node 7 is constrained by the path

((0, 1), (1, 7)), or tE7 ¼ 7. Now activity B can be delayed by as

much as 7 � 5 ¼ 2 time units without impacting the ES of

activity N, or arc (7, 8). If we had neglected this fact, we

would have obtained the free float of activity B as equal to

6 � 5 ¼ 1, which is the value given by (2a)–(2c). Observe

that the one additional time unit is exactly the free float of

the dummy activity (2, 7), representing the difference

between tE2 and tE7 . And this is true in general: activity B

has immediate successive activities L, M, and N, represented

by arcs (5, 8), (6, 8), and (7, 8), respectively. The path of

dummy activities ((2, 4), (4, 5)) has a free float equal to 1,

and the path of dummy activities ((2,4), (4,6)) has a free float

equal to 1. Therefore, the minimal leeway passing from

dummy arcs is 1 time unit, which should be added to the

value of 1 obtained by (2a)–(2c) to yield the correct free float

for activity B as shown in Table 1.

To summarize the finding from the example, note that a

node in the AOA representation signifies the completion of

the activities terminating at it. Its earliest realization time

may be constrained by more than one activity. For an

activity whose terminal node is the root node of an outtree

of dummy arcs (such as activity B in Figure 1), the ES of

each of its immediate successive non-dummy arcs may be

governed by other activities, whose effect to the free float of

the activity is not shown in (2a)–(2c), because of the

intervening dummy arcs. Note that the free float of a

dummy arc represents the difference between the earliest
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Figure 1 The AOA network representation of the example
project (the number next to an arc is the duration of the
corresponding activity).
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Figure 2 The AON network representation of the example
project.

Table 1 Summary of free floats for some activities of the
example project

Activity (i, j) dij tj
E tj

E FFij

using (2c)
Actual
FFij

B (0, 2) 5 0 6 1 2
D (0, 4) 7 0 7 0 2
F (1, 2) 3 3 6 0 1
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realization times of the two nodes connecting the dummy

arc. Therefore, when a dummy arc has a non-zero free float,

it means that there is a gap of the earliest realization times

between the two nodes connecting it. To determine

accurately the free float of the immediate predecessor of a

dummy arc while accounting for the corresponding realiza-

tion time gap implied by the dummy arc, one can simply add

(or award) the free float of the dummy arc to its immediate

predecessor’s free float. In other words, one can perceive that

the scheduling leeway implied by the non-zero free float of a

dummy arc belongs to its immediate predecessor(s).

Certainly, when an activity has more than one dummy arc

as its immediate successors, the minimum of the free floats

passed from the dummy arcs would be contributed to the

activity. This results in the following recursive formula for

calculating the free float of an activity in an AOA network:

FFij ¼ tEj � tEi � dij þ min
k2AðjÞ

fjk ð4aÞ

where

fjk ¼
FFjk if djk ¼ 0
0 if djk 6¼ 0

�
ð4bÞ

In (4b), when the immediate successor (j, k) is dummy arc,

its free float is passed on to the activity (i, j). Comparing

(4a)–(4b) and (2b)–(2c), it is evident that the free float

contributed from successive dummy arcs is overlooked in

(2a)–(2c). Equations (2a)–(2c) are valid only when ði; jÞ has

at least one immediate successor that is not a dummy arc, or

ði; jÞ is not an arc terminating at the root node of an outtree

of dummy arcs. Equations (4a) and (4b) also suggest a

recursive process to obtain free floats of activities similar to

the backward pass of the CPM.

To demonstrate, first (4a) and (4b) are applied to the

network project in Figure 1, the calculations needed for

determining the free floats of activities (0, 2), (0, 4), and (1, 2)

are summarized below:

FF45 ¼ tE5 � ðtE4 þ d45Þ ¼ 9 � ð7 þ 0Þ ¼ 2

FF46 ¼ tE6 � ðtE4 þ d46Þ ¼ 10 � ð7 þ 0Þ ¼ 3

FF04 ¼ tE4 � ðtE0 þ d04Þ þ minðFF45;FF46Þ
¼ 7 � ð7 þ 0Þ þ minð2; 3Þ ¼ 2

FF24 ¼ tE4 � ðtE2 þ d24Þ þ minðFF45;FF46Þ
¼ 7 � ð6 þ 0Þ þ minð2; 3Þ ¼ 3

FF27 ¼ tE7 � ðtE2 þ d27Þ ¼ 7 � ð6 þ 0Þ ¼ 1

FF02 ¼ tE2 � ðtE0 þ d02Þ þ minðFF24;FF27Þ
¼ 6 � ð0 þ 5Þ þ minð3; 1Þ ¼ 2

FF12 ¼ tE2 � ðtE1 þ d12Þ þ minðFF24;FF27Þ
¼ 6 � ð3 þ 3Þ þ minð3; 1Þ ¼ 1

The result coincides with the last column of Table 1.

Remark Given a non-dummy arc incident to the root node

of an outtree of dummy arcs, (4a) and (4b) obtain the free

float embedded in the outtree and then award the free float to

this non-dummy arc (activity). The free float of the activity

can be shared by other activities in a serial chain of

predecessors. This illustrates an arbitrary nature of free float

allocation: the activity that has a free float may not be the

one that is in the greatest need of using the free float. How to

allocate existing free floats effectively to other precedent

activities is an important but independent problem, which

may require taking into account attributes such as activities’

contributions to project risk.

Extensions to safety floats and interference floats

There are two other types of floats, safety floats and

interference floats, introduced by Thomas,7 which are not as

popular as free floats. The safety float (SF) of an activity is

the leeway for scheduling all its predecessors without

affecting itself. It is defined as the difference between its

latest starting time (LS) and the latest among the latest

completion time (LC) of its immediate predecessors.

SFij ¼ LSij � LCki; k 2 BðiÞ ð5aÞ

or

SFij ¼ tLj � tLi � dij ð5bÞ

where tLi is the latest possible realization time for node i,

defined by the following recursion

tLi 	 minftLj � dijjj 2 AðiÞg ð5cÞ

with tL�tt ¼ tE�tt ; and �tt is the end node of the project network.

Carefully comparing (2a)–(2c) and (5a)–(5c) reveals a

‘dual’ relation between a free float and a safety float, in the

sense that the safety float of an activity is equivalent to the

free float of the same activity in the network diagram that

reverses all the arrows in the original one and treats the end

node as the start node and vice versa. Therefore, not

surprisingly, counterexamples exist such that (5a)–(5c) may

not obtain correct safety floats in an AOA network

representation. One immediate example is to find the safety

floats of activities (2, 0), (4, 0), and (2, 1) for the project

network in Figure 1 with all arcs reversed and node 8 as the

start node. Similar to (4a) and (4b), the following formula

can obtain a correct safety float of an activity with an intree

of dummy arcs.

SFij ¼ tLj � tLi � dij þ min
k2BðiÞ

gki: ð6aÞ
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where

gki 	
SFki if dki ¼ 0
0 if dki 6¼ 0

�
ð6bÞ

Finally, the interference float (IF) of an activity is de-

fined as:7

IFij ¼ min
k2AðjÞ

ESjk � dij � max
k2BðiÞ

LCki ð7Þ

It can be easily verified that the following relation holds:

TFij þ IFij ¼ FFij þ SFij ð8Þ

where TFij is the total float of activity ði; jÞ. It can be shown

that the total float of an activity is invariant either AOA or

AON network representation is used. Since in this paper, we

have presented formulas to obtain FFij and SFij for any

given activity ði; jÞ, the interference float IFij can simply be

obtained by

IFij ¼ ðFFij þ SFijÞ � TFij ð9Þ

As a final note, our proposed methods for calculating free

floats and safety floats have the same time complexity as the

traditional CPM.

Conclusion

In this paper, we argue that if a dummy arc has a non-zero

free float, the scheduling leeway implied by the free float

should be passed on to its immediate predecessor(s). Based

on this argument, we improve the formula commonly used

in textbooks on project management for calculating activity

free floats, which is not mathematically correct in the

presence of dummy arcs. Similar modifications are proposed

for other floats such as safety floats and interference floats.

The proposed formulas can be implemented efficiently and

integrated with the traditional CPM.
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