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This paper demonstrates that the use of sparse experimental design in the development of the structure for genetic
algorithms, and hence other computer programs, is a particularly effective and efficient strategy. Despite widespread
knowledge of the existence of these systematic experimental plans, they have seen limited application in the investigation
of advanced computer programs. This paper attempts to address this missed opportunity and encourage others to take
advantage of the power of these plans. Using data generated from a full factorial experimental design, involving 27
experimental runs that was used to assess the optimum operating settings of the parameters of a special genetic
algorithm (GA), we show that similar results could have been obtained using as few as nine runs. The GA was used to
find minimum cost schedules for a complex component assembly operation with many sub-processes.
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Introduction

Design of experiments (DOE) techniques provide a systema-

tic, effective and efficient approach to the investigation of a

phenomenon.1 The approach is often sequential in nature,

potentially increasing in complexity as the knowledge and

understanding of the application and domain evolves.2 The

main advantages of the strategy are the savings in time and

resources expended compared to other approaches and the

resulting mathematical models that help users to better

understand the phenomena under investigation more fully.

This investigation demonstrates the application of a number

of efficient experimental designs to re-address a previous

application of DOE techniques within the optimization of

the structure of a GA. The particular experimental designs

considered within this investigation include: a two-level ‘full-

factorial’ design with one centre point in nine experimental

trials; a Box–Behnken design with 13 trials, and, a central

composite with 15 trials. The focus is on demonstrating that

these designs, in particular, the nine trial designs may be

used with a fitness check of the model to assess whether there

is any requirement to undertake further trials. In computer

simulation work of this nature, there is no penalty from

adding later trials, unlike the situation in industry where

‘blocking’ or ‘nuisance effects’ are often observed. By this,

we refer to changes over time in the response that is being

measured. In an industrial setting, for example, we may see

different results at night, the next day, or because a shift has

changed. Material inputs may become different, environ-

mental conditions may change, and thus adding the results

of trials run at a later time may result in wrongful

conclusions unless these potential effects are considered. In

simulation work this is not an issue, running a program with

the same parameters and the same initialization will always

produce the same results. The paper suggests that a

minimum number of treatments can be investigated which

need only be added to later, if the initial analysis suggests

that this is required, resulting in a considerable saving in

time when investigating large and complex problems like this

one. The paper goes on to show how, in this case, a reduced

number of experimental runs would have produced a similar

result to those found in the actual investigation. A brief

description of the scheduling problem is given first, then we

show how experimental design techniques were used to

determine the ‘best’ structure of the GA and then the

adoption of a sequential strategy is discussed. The use of this

particular study as an example should, we hope, serve as a

springboard for others to use these methods in other

computer program optimization work. It has been over-

looked by some writers that computer programs have good

and bad ways of being written, and optimum programs can

often achieve better results.

Scheduling problem description

Scheduling has been defined as ‘the allocation of resources

over time to perform a collection of tasks’.3 These types of

problems are often difficult to solve because they involve

complex combinatorial optimisation and can only be solved
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by non-deterministic polynomial algorithms. These pro-

blems are well suited to solving by Heuristic means. In

particular, the use of GAs has been shown to speed

discovery of good solutions.

The work analysed here involved using the Genetic

Algorithm (GA) to produce improved solutions for a large,

computationally intensive scheduling problem,4,5 in which

several other popular optimization techniques had been

shown to produce very much inferior schedules. The GA

used was based on a modification of the Goldberg

algorithm6 that includes a repair function to avoid infeasible

solutions. The capital product being assembled had six levels

of product structure, 46 components, 497 machining

operations and 39 assembly operations, which were

performed using 24 machine tools and one assembly area.

The fitness function minimized the various cost penalties

that were associated with either being early or late with the

various components in the assembly.

Experimental design

Pongcharoen et al5 investigated the application of genetic

algorithms for scheduling the production of capital goods

using existing data. Experiments were designed which varied

the population size, number of generations, and, mutation

and crossover probabilities. It was discovered in that work

that algorithms with large population sizes and that ran for

many generations tended to produce the largest improve-

ment with the best solutions having approximately 80%

lower penalty costs than the original company schedules.

This work was extended using designed experiments to select

the most efficient GA parameters to achieve minimum total

costs and spread within a specified execution time.4 The

number of generated chromosomes was fixed at 1200 in all

cases. The population/generation combination and crossover

and mutation probabilities were varied according to Table 1

with these values chosen on the basis of previous investiga-

tions—Pongcharoen et al5 and Todd.7 Each trial run of the

algorithm took 2.5 h to complete on a PC.

A full factorial experiment was used to investigate cost

schedules over these three specific levels or settings of the

parameters and was replicated five times using different

random number seeds to facilitate the determination of real

predictors—Figure 1a. A full factorial refers to the fact that

every possible combination of the specific settings is used in

the set of trials. Thus, for three-factors (here the GA

parameters) at three levels, we get 27 trials in total. In

factorial designs, it is possible to estimate N�1 terms for a
plan involving N trials. A three-level factorial over three

factors like this will provide us with a mathematical model or

polynomial that has up to 26 terms, plus a constant that

represents the effects on the response (here the cost) of the

parameter settings in combination. This will include, where

deemed necessary, quadratic terms as well as first-order

ones, plus interaction terms that consider the changing

effects on the response of one parameter as another is varied.

Table 2 shows the full range of terms available from this

three-level full factorial including the constant. The ‘P’-

values shown here indicate that factors P and M are

considered important if all the terms are considered together

in an analysis. In the table, a ‘2’ in the first column of terms

indicates a quadratic term or quadratic component of a

term.

These models can be quite comprehensive and provide a

good approximation to reality over the whole range of the

chosen settings, including combinations not chosen in the

trials run, even in situations displaying considerable non-

linearity. The results were analysed with a multiple regres-

sion-based method known as ‘best subsets’. A fuller general

Table 1 Experimental parameter settings

Parameters with denoted coding Parameter settings and coded values

(�1) (0) (þ 1)

Population� generation combination size—P 20:60 40:30 60:20
Chance of crossover—C (%) 30 60 90
Chance of mutation—M (%) 2 10 18

Figure 1 Experimental designs considered within this investi-
gation.
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description of the method is given in Draper and Smith,8

Montgomery9 but the essence is to look at all possible

combinations of the potential terms within the mathematical

model. Important terms are deemed to be significant if by

adding them to the model there is significant improvement in

the predictive capability of the mathematical model as

discussed in a later section. Other methods are possible, such

as ANOVA—the analysis of variance—or graphical meth-

ods that are covered in later sections. In ANOVA, the terms

are given the well-known ‘p’-values that display the

probability of the term not being important. Traditionally,

a term with a p-value of 0.05 or less is taken as important

and thus retained in the model. This point is further

discussed in later sections.

Parameters and associated effects found to be significant

using ‘best subsets’ and sequential ANOVA were P, M and

the interaction between P andM (PM). The results indicated

that the crossover probability C is not significant within this

application, across the region considered, which concords

with results in Pongcharoen et al.4,5 None of the other

potential model terms were found to make a significant

difference to the results. This paper assesses trying small

subsets of the whole factorial to determine that a smaller

design with fewer runs would have been sufficient to discover

the same important parameters.

Fractional experimental design

A number of different smaller experimental designs were

considered within this investigation including: a two-level

fractional-factorial with one centre point (denoted L8þ 1) in

nine runs as described in Grove and Davis;10 a Box–

Behnken design with 13 trials (see Box and Draper1), and, a

central composite first described in Box and Wilson11 with

15 trials—Figure 1. All are based on the relevant subset of

the data from the full factorial using all five replicates.

‘Fractional’ indicates that the design is a fraction of a full

factorial.

The L8þ 1 experiment uses the extreme points on the

vertices of the design plus a centre point, an extra trial run

with all parameters set in the middle of their range, over the

five replicates giving a total of 45 trials—Figure 1b. The

results from this combination were then used to produce

standardized coefficients (these are weighted in relation to

the standard deviation associated with their estimation) as in

Grove and Davis,10 as well as T-values which are displayed

within Figure 2. These results are interesting since they again

suggest that the dominant predictor is P, however, the only

other significant predictor, according to ANOVA isM, with

the PM interaction and all other predictors being insignif-

icant. In a screening experiment (a term used to denote that

we are at the first stage of a set of trials and may add to them

later) it should be borne in mind, however, that effects that

appear at first sight to be too small by traditional standards

(where terms with a p-value over 0.05 were excluded) may in

fact be important, see for example Box and Liu.2 In Sexton

et al,12 it is pointed out that effects with a P-value of 0.2 or

less should not be excluded in these initial stages. The reason

for this is that in small screening designs the statistical power

of the analysis, literally our ability to detect real effects, is

reduced because of the smaller number of runs conducted.

Thus, a larger p-value, traditionally attributed to insignif-

icant effects, has to be viewed in relation to the amount of

information available. A fuller discussion of this, in relation

to the structure of GAs, is given in Poncharoen et al.13 In the

half-normal plot in Figure 2, that is basically a normal

probability plot that is folded in half, the standardized

coefficient10 for the curvature (denoted curve) can also be

seen to be small giving no indication of curvature on main

effects within the design space. Details of the procedure used

to determine the ‘curvature’ are also given in Grove and

Davis.10 This suggests that we do not need to determine the

magnitude of the effect of the quadratic terms, and the

current model is sufficient as a good predictor of the

response. Of course, in our case we know this already from

the full factorial results, but it is instructive that this smaller

design gives similar results to our bigger experiment with all

27 trials. Previous investigations have, however, demon-

strated that the test for curvature within a main effect may

fail if the design space contains or surrounds a saddle

point,14 so some care has to be taken.

Table 2 p-values and terms for full ANOVA analysis of
original full factorial

Term p-value

Constant 0.000
P 0.007
M 0.614
PM 0.038
C 0.638
PC 0.651
P2 0.208
M2 0.704
C2 0.54
CM 0.37
PCM 0.929
PM2 0.826
PC2 0.324
MP2 0.322
MC2 0.776
CP2 0.77
CM2 0.574
M2P2 0.431
M2C2 0.393
P2C2 0.36
P2C2M2 0.379
P2M2C 0.987
P2C2M 0.515
M2C2P 0.661
P2MC 0.33
M2PC 0.848
C2MP 0.331
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The design space was tested for saddle points within the

PM plane, by examination of the PM plot based on the

mathematical model (see Figure 5) and was discovered to be

relatively flat and free from such phenomena. Thus, we can

trust the fact that the ‘curve’ estimate is reliable in this case.

Analysis of ‘best subsets’ (see Montgomery9 or Hines and

Montgomery15 for a fuller explanation by writers from an

engineering background) was also tried in order to find the

best regression equation based upon a number of standard

criteria as shown in Table 3. In this table, column 1 shows

the number of terms in the model on that row, the specific

terms are listed by � s in the last seven columns. The criteria
are:

� the coefficient of multiple determination, Rp
2 which

represents the proportion of the sum of the squares

deviation in the response variable y, about the predicted

values ŷ, that can be attributed to the regression;

� the adjusted determination coefficient �RR2
p, that accounts

for the number of predictors used in the model and the

number of treatments within the experiment;

� the square root of the mean squared error, s;

� and, Mallow’s Cp statistic which is a measure of the total

mean square error for the regression model, compared to

the estimate of background uncertainty, but adjusted

for p.16

As the Rp
2 criterion increases, so does the predictor’s

collective ability to predict the response, hence the largest

value for Rp
2 generally represents the best model. However,

the coefficient of multiple determination rises as the number

of predictors grows. The adjusted coefficient of determina-

tion ( �RR2
p) is independent of the number of predictors in the

model and is consequently a more useful indicator than Rp
2.

Increasing values of �RR2
p represent increasingly better models.

Mallow’s Cp may be used to estimate the relative amount of

bias, with less biased models having lower values for Cp,

which are usually close or equal to the number of predictors

within the model. It can be seen from Table 3 (that gives the

two best models for each number of terms in the model up to

5) for example that the model with only PM and P is not as

good as the model with P and M main effects. The results

Figure 2 Half-normal plot and ANOVA for standardized L8þ 1 coefficients.

Table 3 Best subsets regression for L8þ 1

Statistics Predictors

Terms Rp
2 �RR2

p Cp s P M PM C PC CM PCM

2 59.7 57.8 1.0 0.481 � �
2 56.3 54.2 4.4 0.501 � �
3 61.4 58.6 1.3 0.476 � � �
3 60.7 57.8 2.0 0.481 � � �
4 62.5 58.7 2.3 0.475 � � � �
4 61.6 57.8 3.1 0.481 � � � �
5 62.7 57.9 4.1 0.48 � � � � �
5 62.5 57.7 4.2 0.481 � � � � �
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suggest that a model including just P, M and the PM

interaction is the ‘best’ one. No increase in predictive power

or reduction in uncertainty in the statistical model can be

achieved from adding more terms. The best model with four

terms has almost identical Rp
2, �RR2

p and s values and a higher

Cp. We can rely on the model with three terms.

The central composite design is composed of a standard

two-level factorial or fractional factorial design augmented

with one or more centre points run in the middle of the

design space, as in the design just discussed above, plus two

extra runs per main predictor known as star points. The star

points can be run in the centre of each ‘face’ of the cube

portion of the design—Figure 1d. The idea of the star points

is to enable estimates of the quadratic terms if the test for

curvature suggests that this is necessary. Thus the CCD in

this case is just the L8þ 1 design with the addition of star

points and thus not surprisingly gave similar results to the

L8þ 1. In fact, it is clear from the results above that inclusion

of the star points would not provide better models. The

Box–Behnken design is another quadratic design that does

not contain an embedded factorial or fractional factorial

matrix—Figure 1c. In this design, the treatment combina-

tions are at the midpoints of the edges of the design space

plus one at the centre. It is mostly used in situations where

the most extreme conditions of the experimental space are

difficult or impossible to run. The Box–Behnken design gave

similar results, as shown in Table 4. We can see that the

addition of the quadratic form of parameter P does improve

the model slightly. As a rule of thumb, to justify the addition

of another term to a model, a fall in s should be greater than

the equivalent of the inverse of ‘the number of trials run

minus 1minus the number of parameters in the model’ (here

74�4¼ 70). So a fall of over 0.499/70¼ 0.00712 is required
and so the addition of P2 does not really improve the model

in this case.

Sequential experimentation

The idea of a sequential strategy is well suited to computer

experimentation, there being no penalty from adding extra

trial results at a later stage. In the industrial experimental

setting, we must take account of blocking or time effects and

treat the results using split-plot analysis.9 Here there are no

time effects, we can add extra results knowing that they will

be identical to ones run under the same combination of

factor settings at any time. Thus, the optimum strategy

would be to run the minimum number of trials, observe the

results, and if necessary add further trials as required. In this

case, if the centre point results from the L8þ 1 had indicated

the presence of curvature in a main effect, we could run the

star points in order to estimate the quadratic effects that

cause the curvature. Another tool used to assess regression

models is the residual plot. This is simply the plot of the

difference between observed values and model predictions

for those observations, against various criteria. These plots

would usually include; the order of experimentation, the

factor settings and the fitted values of the model. In the case

of computer experiments, the run plot is immaterial but if a

pattern exists in the other types this may indicate the need

for a missing term in the model. By the sequential use of

these plots, and the model assessing criteria shown in Table 2,

we can continue until a good model is selected. Figure 3

shows the fitted values against residuals for the L8þ 1 model

and Figure 4 the mutation settings against the same

residuals. No particular non-random patterns are visible

although one possible outlier is present.

Table 4 Best subsets regression for Box–Behnken

Statistics Predictors

P R2
p

�RR2
p

Cp S P M C PM PC CM P2 C2 M2

2 46.6 44.9 4.6 0.514 � �
2 44.7 42.9 6.8 0.522 � �
3 50.4 47.9 2.1 0.499 � � �
3 48.9 46.4 3.9 0.506 � � �
4 52.6 49.5 1.4 0.492 � � � �
4 51.1 47.9 3.3 0.500 � � � �
5 53.3 49.3 2.6 0.492 � � � � �
5 52.9 48.9 3 0.494 � � � � �

Figure 3 Plot of residuals against fitted values.
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If the residuals had indicated a clear pattern, then we

could have added the star points or the edge midpoints from

the Box–Behnkin design. Clearly, such a strategy will lead to

savings in time and computer resource in many cases. In the

present case, running just the L8þ 1 would have led to a

saving of 66% in the time taken to run the original

experiment. Cases with a greater number of factors can lead

to many times this saving, see for example Poncharoen.13 A

sparse design, if considered prior to the original investiga-

tion, could also have included the separate investigation of

the population count and number of generations, rather

than including these combined as a ratio as they were in this

case. Other research suggests that mutation appears to be

more useful than crossover for small population sizes;17

while crossover may be more useful than mutation for large

population sizes.18

Follow up experimentation

Having discovered the best settings for the parameters, in

this case setting the population generation combination at

the high level (60–20) and setting the chance of mutation

at the high level (18%) we can see that the experimenters

had not yet found the optimum solution. Figure 5 shows

a 3D response surface of the final model7 over the PM

design space. The model was: Predicted total cost

d¼ 3380�553P�180Mþ 149PM.

It can be seen that the optimum would appear to be

somewhere off the plot at higher levels of the probability of

mutation and higher populations. By adding a few more

runs in the ‘direction of steepest descent’ which is easily

determined,9 we could track smaller and smaller penalty

costs until we found a design area that contained a

minimum. The strategy would then be to run another small

factorial experiment around the new minimum, possibly

augmenting with star points if determined necessary, to find

the definitive minimum. In the event, further work13 showed

that a better GA (with differently written mutation and

crossover operators) existed so further work using this

particular one has ceased. It should also be noted that

crossover probabilities became important in the new GA,

whereas here they were not. It should be noted further that

the probability range for crossover is completely different

than that for Mutation. We can only say that probabilities in

the range of 0.3–0.9 make little difference to results, but a

choice of, say, 0.1 may well make a difference, we cannot tell

from these results.

Strategy for DOE-based computer program development

� Establish the parameters or factors over which experi-

ments will be conducted. These can be measured on

categorical, ordinal or continuous scales. They should be

able to be controlled (that is, can be set at particular

levels) during the experiment, independently of the other

factors. If this is not true, derived factors of these that can

be set independently may be used, such as the ratio

between two factors. Categories may be the type of

coding, a program structure or a problem type. Include as

many factors as possible.

� Decide on the response to be optimized. This can also be

measured on categorical, ordinal or continuous scales.

This could also be a derived measure such as a ratio or

sum.

� Decide on the range of parameter settings. These should

ideally be wide enough to cover factor levels that might

show a discernable difference in the response. Typically,

the highest and lowest possible, where a scale is available,

are chosen.

� Decide for each factor if a quadratic term may be likely to

be needed. If so this will require three levels in the design,

meaning at least a centre point.

� Decide on an initial ‘screening’ design. This will mean

choosing as few trials as possible that cover the design

space over all the factors. This should be as sparse as

Figure 4 Plot of absolute value of residual versus coded
probability settings for mutation.

Figure 5 3D plot of penalty cost response surface.
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possible and will typically have no fewer than (2N)þ 1
trials for N factors.

� Run the screening design and analyse the results to

produce an initial mathematical model.

� Discard all unimportant factors and run further trials if

the results are not clear or if the need for more

complicated terms in the model is indicated.

� Now search for the most optimum combination of

factors, possibly moving outside the original range of

factor settings and running more experiments.

� Report the optimum model and use to demonstrate the

best computer program.

� Use the model as a benchmark against which to compare

new programs and developments in future as these occur.

Add new runs as necessary to include new factors as they

surface.

Conclusions

This paper demonstrates how a sequential strategy using

experimental design for investigating a GA would have

resulted with significantly fewer experimental treatments

than that performed within the actual investigations. The

L8þ 1 design demonstrated how similar conclusions would

have been drawn with a more parsimonious initial design.

Identical results to those obtained from the full design were

also obtained using the central composite design. The overall

conclusion is that a sparse experimental design would have

sufficed in this case, however, additional experimental runs

could have been conducted had the analysis indicated the

need to do this or if the designer suspected the need to do so.

Further experiments could be used to add to the experi-

mental area once the direction of the optimum solution has

been established. We have argued that computer experi-

ments are an ideal use of DOE due to the lack of any

experimental error that is usually experienced in real-life

applications because of unplanned differences between

experimental conditions. We have given a brief roadmap

for the use of these designs and highly recommend a

sequential strategy based on these designs in all such

investigative work whatever the nature of the computer

program being written.
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