
A GRASP algorithm for constrained
two-dimensional non-guillotine cutting

problems

R. Alvarez-Valdes † , F. Parreño ‡ , J.M. Tamarit † ,

†University of Valencia, Department of Statistics and Operations
Research, 46100 Burjassot, Valencia, Spain

‡University of Castilla-La Mancha. Departamento de Informatica,
E.Politecnica Superior, 02071 Albacete, Spain

Abstract

This paper presents a greedy randomized adaptive search procedure
(GRASP) for the constrained two-dimensional non-guillotine cutting prob-
lem, the problem of cutting the rectangular pieces from a large rectangle so
as to maximize the value of the pieces cut. We investigate several strategies
for the constructive and improvement phases and several choices for crit-
ical search parameters. We perform extensive computational experiments
with well known instances previously reported, first to select the best al-
ternatives and then to compare the efficiency of our algorithm with other
procedures.

Keywords: Non-guillotine cutting; heuristics; GRASP

1 Introduction

The constrained two-dimensional non-guillotine cutting problem consists of
cutting pieces of dimensions (li, wi), i = 1, . . . ,m, from a large stock rectangle of
dimensions (L,W). Each piece has a fixed orientation and must be cut with its
edges parallel to the edges of the stock rectangle. The number of pieces of each
type i that are cut must be between the limits Pi, Qi, with 0 ≤ Pi ≤ Qi. Each
piece has an associated value vi and the objective is to maximize the total values
of the pieces cut.

In accordance to the values of Pi and Qi we can distinguish three types of
problems:

1. Unconstrained: ∀i, Pi = 0, Qi = bL ∗ W/li ∗ wic (trivial bound).

1

2. Constrained: ∀i, Pi = 0; ∃i, Qi < bL ∗ W/li ∗ wic

3. Doubly constrained: ∃ i, Pi > 0; ∃ j, Qj < bL ∗ W/lj ∗ wjc

We define the efficiency of a piece i, as ei = vi/(li ∗ wi). According to this
efficiency, we distinguish two types of problems:

1. Unweighted: ei = 1,∀i. The value of each piece is equal to its area.

2. Weighted: ei 6= 1, at least for one i. Some pieces have a value which does
not correspond to their surface, reflecting other aspects such as their shape
or their relative importance for customers.

In Figure 1 we see an example with a stock rectangle of (10, 10) and m = 10
pieces to be cut. The first solution (Figure 1(b)) is optimal for the constrained
problem (Pi = 0,∀i), while the second solution (Figure 1(c)) corresponds to the
doubly constrained problems, with some Pi 6= 0.

Some authors have considered the unconstrained problem: Tsai et al.[22],
Arenales and Morabito[2], Healy et al.[12]. Nevertheless, the constrained problems
are more interesting for applications and more research has been devoted to these.
Some exact methods have been proposed by Beasley[3], Scheithauer and Terno[20],
Hadjiconstantinou and Christofides[11], Fekete and Schepers[9], and Caprara and
Monaci[6].

A simple upper bound for the problem can be obtained by solving the following
bounded knapsack problem, where variable xi represents the number of pieces of
type i to be cut in excess of its lower bound Pi:

Max
m
∑

i=1

vixi +
m
∑

i=1

viPi (1)

s.t. :
m
∑

i=1

(liwi)xi ≤ LW −
m
∑

i=1

Pi(liwi) (2)

xi ≤ Qi − Pi, i = 1, . . . ,m (3)

xi ≥ 0, integer, i = 1, . . . ,m. (4)

Other bounds, apart from those included in the exact methods mentioned
above, have been proposed by Scheithauer and Terno[21], Amaral and Wright[1].

Several heuristic algorithms have been proposed recently. Wu et al.[24] develop
a constructive algorithm for the special case where Pi = Qi ∀i, in which at each
step a piece is cut in a corner of the current cutting pattern, and the piece to be cut
is decided according to a fitness evaluation function which estimates the quality of
the solution that would be obtained if the piece were to be cut. Lai and Chan[14],
[15], and Leung el al.[16], [17] propose simulated annealing and genetic algorithms

2

Stock rectangle : L = 10, W = 10
Piece li wi Pi Qi vi ei

1 3 2 1 2 7 1,166
2 7 2 1 3 20 1,428
3 4 2 1 2 11 1,375
4 6 2 0 3 13 1,083
5 9 1 0 2 21 2,333
6 8 4 0 1 79 2,468
7 4 1 1 2 9 2,25
8 1 10 0 1 14 1,4
9 3 7 0 3 52 2,476
10 4 5 0 2 60 3

1 2

3 4

5

6

7

8

9

10

1 1

10

10

99

7

(b) Constrained. Optimum: 247

2

7

3

1

10 9 9

7

(c) Doubly const. Optimum: 220

Figure 1: Instance 3, Table 6

3

in which each solution is given by an ordered list of pieces, and the list is translated
into a cutting pattern by a placement algorithm, either the bottom-left algorithm
or the difference algorithm [14]. Combinations and changes of solutions are made
on the ordered lists. Finally, Beasley [4] develops a genetic algorithm based on
a non-linear formulation of the problem. He presents a complete computational
study on a set of standard test problems and on a number of large, randomly
generated problems.

In this paper, we present a new GRASP algorithm for the two-dimensional non-
guillotine cutting problem. We provide computational results obtained on three
sets of test problems: the 21 problems from the literature collected by Beasley [4];
the 630 large random problems also generated by Beasley [4]; and 11 problems
used by Leung et al. [17].

2 A constructive algorithm

We follow an iterative process in which we combine two elements: a list P of
pieces still to be cut, initially the complete list of pieces, and a list L of empty
rectangles in which a piece can be cut, initially containing only the stock rectangle
R = (L,W). At each step a rectangle is chosen from L, and from the pieces in
P fitting in it a piece is chosen to be cut. That usually produces new rectangles
going into L and the process goes on until L = ∅ or none of the remaining pieces
fit into one of the remaining rectangles. We present first a scheme of the algorithm
and then a detailed description of its components.

Step 0. Initialization:

L = {R}, the set of empty rectangles.
P = {p1, p2, . . . , pm}, the set of pieces still to be cut.
C = ∅, the set of pieces cut.

Step 1. Choosing the rectangle:

Take R∗, the smallest rectangle of L in which a piece of P can fit.
If such R∗ does not exist, stop.
Otherwise, go to Step 2.

Step 2. Choosing the piece to cut:

Choose a piece pi and a quantity ni ≤ Qi,
forming the block b∗, to be cut in R∗.
Choose a position in R∗ to cut b∗.
Update P , C and Qi which indicates the number of pieces still to be cut.
Move block b∗ towards the nearest corner of the stock rectangle.

4

Step 3. Updating the list L:

Add to L the possible rectangles produced when cutting b∗ from R∗.
Take into account the possible changes in L when moving block b∗.
Merge rectangles to favor cutting new pieces of P .
Go back to Step 1.

Now we give a more detailed description of the algorithm steps:

1. Step 0: Initialization

The list P of pieces to be cut is initially ordered according to 3 criteria:

(a) Order by Pi ∗ li ∗ wi, giving priority to pieces which must be cut.

(b) If there is a tie in (a) (for instance, if Pi = 0,∀i), order by ei

(c) If there is a tie in (b) (for instance, if ei = 1,∀i), order by li ∗ wi.

2. Step 1: Choosing the rectangle in L

We take the smallest rectangle of L, breaking the ties by the nearest distance
to a corner of the stock rectangle. The reason behind this decision is to try
to satisfy the demand for small pieces with small rectangles, leaving large
rectangles for large pieces. If we take a large rectangle at the beginning and
use it to cut a small piece, the empty rectangles resulting from the cutting
may be useless for the large pieces still to be cut.

3. Step 2: Choosing the pieces to cut

(a) Choose a piece pi and a quantity ni ≤ Qi, forming the block b∗

Once a rectangle R∗ has been chosen, we consider the pieces i of P
fitting in R∗ in order to choose which one to cut.

If Qi > 1, we consider the possibility of cutting a block, several copies
of the piece arranged in rows and columns, such that the number of
pieces in the block does not exceed Qi. Figure 2 shows examples of this
situation.

Two criteria have been considered to select the piece:

i. The first piece in the ordered list P .
This is the most reasonable way to choose the piece, according to
the order described above.

ii. The piece producing the largest increase in the objective function.
This is a more greedy selection in which the rectangle is filled with
the block producing the largest benefit, irrespective of its efficiency.

5

(a) Piece 5x5, Q=2 (b) Piece 5x5, Q=2 (c) Piece 3x3, Q=9

Figure 2: Several alternatives for cutting pieces. Rectangle 10 × 10

(b) Choose a position in R∗ to cut b∗

Usually the block b∗ to be cut does not completely fill rectangle R∗ (see
Figure 2). The block is cut in the corner of R∗ which is nearest to a
corner of the stock rectangle.

(c) Update P, C and Qi

Update C with the type i and the number ni of pieces cut.

Make Qi = Qi − ni

If Qi = 0, remove piece i from the list P

(d) Move block b∗ towards the nearest corner of the stock rectangle

The block b∗ is moved to the nearest corner of the stock rectangle.
If that is the case, it goes outside the rectangle R∗ in which it was
cut and comes totally or partially into another empty rectangle if it is
located nearer to the corner of the stock rectangle. In that way, the
empty regions of the current cutting pattern are concentrated towards
the center and can be more easily merged at Step 3.

4. Step 3: Updating the list L

(a) Add to L the new rectangles

Unless block b∗ fits exactly in rectangle R∗ and it does not move, cutting
and moving b∗ produce new empty rectangles which are added to the
list L.

(b) Merge rectangles to favor cutting new pieces of P

Though we keep a list of empty rectangles L, we really have an irreg-
ular, polygonal empty space in which the pieces still to be cut can be
considered for fitting. One way of adapting our list L to the flexibility
of non-guillotine cutting is to merge some of the rectangles from the

6

list, producing some new rectangles in which the pieces to be cut could
fit better.

When we merge 2 rectangles, at most 3 new rectangles may appear,
usually one large rectangle and 2 small ones (see Figure 3). Among the
several alternatives for merging we try to select the best, that is, the
one in which it is possible to cut the pieces best situated in the ordered
list P . With this objective in mind, we impose some conditions:

i. If the order of the best piece which fits into the large rectangle is
strictly lower than the order of the pieces in the original rectangles,
we merge them.

ii. If the order of the best piece which fits into the large rectangle is
equal to the order of the pieces in the original rectangles, we merge
them if the area of the large rectangle is bigger than the area of
each one of the original rectangles.

iii. If the order of the best piece which fits in the large rectangle is
strictly greater than the order of the pieces in the original rectan-
gles, we do not merge them.

Figure 3: Merging 2 empty rectangles

We finish the description of the constructive algorithm by applying it to the
constrained instance Ap3 of Figure 1 with Pi = 0 ∀i. We denote each rectangle
by a quadruple (x1, y1, x2, y2), where (x1, y1) are the coordinates of its lower left
corner and (x2, y2) the upper right corner. The process can be followed in Figure
4.

Initially, L = {R} = {(0, 0, 10, 10)} and P = {10, 9, 6, 5, 7, 2, 8, 3, 1, 4}, in
order of efficiency. We consider the first piece of the list, piece 10, with Q10 = 2

7

and try to cut it twice from the first rectangle of L. We then cut the block
composed of 2 copies of piece 10 in the lower left corner of the rectangle. We update
P = {9, 6, 5, 7, 2, 8, 3, 1, 4} and L = {(4, 0, 10, 10)}. We try to cut piece 9 with
Q9 = 3, but only 2 copies of it fit into the rectangle. We cut the block at the lower
right corner. We update P = {9, 6, 5, 7, 2, 8, 3, 1, 4}, Q9 = 1, L = {(4, 7, 10, 10)}.
Pieces 9, 6, 5 are considered in turn but they do not fit into the rectangle and piece
7 with Q7 = 2 is taken. A block with 2 copies is cut at the bottom right corner.
We update P = {9, 6, 5, 2, 8, 3, 1, 4}, L = {(4, 7, 6, 10), (6, 7, 10, 8)}. None of the
pieces fit into these rectangles. Before finishing the process, we try to merge the
rectangles in an attempt to produce some other shapes which could accommodate
the pieces. In this case, the only alternative would be to produce the pair of
rectangles (4,7,10,8) and (5,7,6,10) but it would not allow us to cut any new piece
and the process ends.

10

10

10

10

9 9

10

10

9 9

7

7

Figure 4: Instance 3, Table 6. Selecting most efficient piece

3 A GRASP algorithm

The GRASP algorithm was developed by Feo and Resende [10] to solve hard
combinatorial problems. For an updated introduction, refer to Resende and

8

Ribeiro[19]. GRASP is an iterative procedure combining a constructive phase
and an improvement phase. In the constructive phase a solution is built step by
step, adding elements to a partial solution. In order to choose the element to be
added, a greedy function, which is dynamically adapted as the partial solution is
built, is computed. However, the selection of the element is not deterministic but
subjected to a randomization process. In that way when we repeat the process
we can obtain different solutions. After each constructive phase, the improve-
ment phase, usually consisting of a simple local search, tries to substitute some
elements of the solution which are there as the result of the randomization, by
others, thereby producing a better overall solution.

3.1 The constructive phase

In our algorithm the constructive phase corresponds to the constructive algorithm
described in Section 2, introducing randomization procedures when selecting the
piece to cut. Let si be the score of piece i on the selection criterion we are using
and smax = max{si|i ∈ P}, and let δ be a parameter to be determined (0 < δ < 1).
We have considered three alternatives:

1. Select piece i at random in set S = {j|sj ≥ δsmax}

(S is commonly called a Restricted Set of Candidates).

2. Select piece i at random from among the best 100 (1 − δ)% of the pieces,
irrespective of their score.

3. Select piece i from among the whole set P but with probability proportional
to its score si (pi = si/Σsj)

3.2 Determining the parameter δ

A preliminary computational experience showed that no value of δ always pro-
duced the best results. We therefore considered several strategies which basically
consisted of changing the value of δ randomly or systematically along the itera-
tions. These strategies were:

1. At each iteration, choose δ at random from the interval [0.4, 0.9]

2. At each iteration, choose δ at random from the interval [0.25, 0.75]

3. At each iteration δ takes in turn one of these 5 values: 0.4,0.5,0.6,0.7,0.8,0.9.

4. δ = 0.75

9

5. Reactive GRASP

In Reactive GRASP, proposed by Prais and Ribeiro [18], δ is initially taken
at random from a set of discrete values, but after a certain number of iter-
ations the relative quality of the solutions obtained with each value of δ is
taken into account and the probability of values consistently producing bet-
ter solutions is increased. The procedure is described in Figure 5, following
Delorme et al.[8]. The value of α is fixed to 10, as in [18].

3.3 Improvement phase

Each solution built at the constructive phase is the starting point for a local
search procedure in which we try to improve the solution. We have studied three
alternatives:

I) We take a block adjacent to an empty rectangle and consider reducing or
completely eliminating that block. The remaining pieces are then moved to
the corners, the empty rectangles are merged and the resulting list of empty
rectangles is filled by applying the constructive algorithm (Figure 6). If the
resulting solution improves the initial solution, the move is made and the
process goes on studying a new block. Note that we only consider reducing
a block while it does not violate the lower bounds Pi on the number of pieces
to be cut.

II) This second procedure is a simplification of method I in which pieces are not
moved to the corners and the new empty rectangles are only merged with
existing adjacent empty rectangles (Figure 7).

III) The third method consists of eliminating the final k% blocks of the solution
(for instance, the last 10%) and filling the empty space with the deterministic
constructive algorithm, as proposed by Beltran et al.[5]. Once the final pieces
have been removed from the solution, the remaining pieces are moved to the
corners, the empty rectangles are merged and the constructive algorithm is
then applied (see Figure 8, in which the numbers in the pieces reflect the
order in which they were included in the cutting pattern).

3.4 Adjusting the bounds of the pieces

Throughout the iterative process we have the best known solution of value vbest.
We can use this value to adjust Pi of some pieces that must appear if we want to
improve the solution, and Qj of some pieces whose inclusion would not allow us
to improve the solution.

10

Initialization:

D = {0.1, 0.2, . . . , 0.9}, set of possible values for δ

Sbest = 0; Sworst = ∞

nδ∗ = 0, number of iterations with δ∗, ∀ δ∗ ∈ D.

Sumδ∗ = 0, sum of values of solutions obtained with δ∗.

P (δ = δ∗) = p δ∗ = 1/|D| ,∀ δ∗ ∈ D

numIter = 0

While (numIter < maxIter)

{

Choose δ∗ from D with probability p δ.

nδ∗ = nδ∗ + 1

numIter = numIter + 1

Apply Constructive Phase with δ∗obtaining solution S

Apply Improvement Phase obtaining solution S ′

If S
′

> Sbest then Sbest = S
′

.

If S
′

< Sworst then Sworst = S
′

Sumδ∗ = Sumδ∗ + S
′

If mod(numIter, 100) == 0 (every 100 iterations):

evalδ =
(

meanδ − Sworst

Sbest − Sworst

)α

∀δ ∈ D

p δ =
evalδ

(

∑

δ
′
∈D

evalδ′

) ∀δ ∈ D

}

Figure 5: Reactive Grasp

11

(a) Selecting (b) Reducing (c) Moving (d) Filling

Figure 6: Improvement method I. Instance 8, Table 6

(a) Selecting (b) Reducing (c) Filling

Figure 7: Improvement method II. Instance 6, Table 6

1 1

3 3

2
5

4
6

(a) Selecting (b) Removing (c) Filling

Figure 8: Improvement method III. Instance 15, Table 6

12

• Increasing lower bounds Pi

Let us define totalpieces =
m
∑

i
vi ∗Qi, the total value of the available pieces. If

there is a piece i such that Pi < Qi, and totalpieces − (Qi − Pi) ∗ vi <= vbest,
a solution with the minimum Pi copies of this type of piece cannot improve
the best known solution. Any better solution must include more pieces of
this type and Pi can be increased. If we compute t as:

max t : totalpieces − t ∗ vi > vbest ; t ≥ 0, t ≤ Qi − Pi (5)

Then, Pi = Qi − t. This improved lower bound can be useful in the con-
structive phase, in which the pieces with Pi > 0 are cut first, and in the
improvement phase, in which pieces in their lower bounds are not consid-
ered to be removed from the current solution.

• Decreasing upper bounds Qi

Let us denote by R =
∑

Pi>0
Pi ∗ li ∗ wi the area of the pieces which must

appear in any feasible solution, Rv =
∑

Pi>0
Pi ∗ vi, the value of these pieces

and emax = max{ei, i = 1, . . . ,m}, the maximum efficiency of the pieces. If
there is a piece i, with Qi > Pi and ei < emax satisfying:

(Qi ∗ li ∗ wi ∗ (emax − ei) ≥ emax ∗ (L ∗ W − R) + Rv − vbest (6)

any solution with Qi copies of this piece cannot improve the best known
solution. Therefore, at any better solution the number of copies of piece i
should be limited to below Qi. If we compute t as:

max t : t∗li∗wi∗(emax−ei) < (emax∗(L∗W−R)+Rv−vbest t ≥ 0, t ≤ Qi−Pi

(7)
then Qi = Pi + t. This decrease in the upper bound can be useful when
constructing and improving solutions in the subsequent iterations. In some
cases, Qi can be set to 0 and the corresponding piece is no longer considered
for cutting.

4 Computational results

4.1 Test problems

We have used several sets of test problems:

13

1. A set of 21 problems from the literature: 15 from Beasley [3], 2 from Hadji-
constaninou and Christofides[11], 1 from Wang[23], 1 from Christofides and
Whitlock[7], 5 from Fekete and Schepers[9]. For all of them the optimal
solutions are known. They have also been solved by Beasley [4].

2. A set of 630 large problems generated by Beasley[4], following the work
by Fekete and Schepers[9]. All the problems have a stock rectangle of size
(100, 100). For each value of m, the number of piece types (m =40, 50,
100, 150, 250, 500, 1000), 10 problems are randomly generated with Pi = 0,
Qi = Q∗,∀i = 1, . . . ,m where Q∗ = 1; 3; 4. These 630 instances are divided
into 3 types, according to the percentages of the types of pieces of each class:

Class Description Length Width

1 Short and wide [1,50] [75,100]
2 Long and narrow [75,100] [1,50]
3 Large [50,100] [50,100]
4 Small [1,50] [1,50]

Type Percentages of pieces of each class
1 2 3 4

1 20 20 20 40
2 15 15 15 55
3 10 10 10 70

The value assigned to each piece is equal to its area multiplied by an integer
randomly chosen from {1, 2, 3}.

3. The 21 test problems mentioned first were transformed by Beasley[4] into
doubly constrained problems by defining some lower bounds Pi, specifically
for each type of piece from i = 1, . . . ,m satisfying:

m
∑

j=1,j 6=i

(ljwj)Pj + liwi ≤ (LW)/3, the lower bound Pi is set to 1.

This set of problems would allow us to test the algorithm in the general case
of doubly constrained problems.

4. Finally, we have included the test problems used by Leung et al.[17], con-
sisting of 3 instances from Lai and Chan[14], 5 from Jakobs[13], and 2 from
Leung et al.[17]. There are unweighted problems in which the value of each
piece corresponds to its area, and the objective is to minimize the waste of
the stock rectangle. The problems have been generated in such a way that
the optimal solution is a cutting pattern with zero waste.

14

We have included the Leung et al.[17] set of problems because it has charac-
teristics which can be considered as complementary to the two first sets used by
Beasley, as can be seen in Table 1, in which we show the ratios of total pieces
available to be cut to the upper bound of pieces fitting into the stock rectangles.
We can see that the problems of the second set, Types I, II and III, can be consid-
ered selection problems because there are many available pieces and only a small
fraction of them will form part of the solution. However, Leung’s problems are
jigsaw problems. Almost all the available pieces will form part of the solution
and the difficulty here is to find their correct position in the cutting pattern. An
algorithm working well on both types of problems can be considered as a general
purpose algorithm.

Sets of problems Averages
Total value of pieces/ Total area of pieces/
Upper bound of value Upper bound of area

Literature problems 3,13 3,61
Type I 123,69 185,60
Type II 101,69 152,71
Type III 79,67 119,20
Leung 1,01 1,01

Table 1: Test problems – Characteristics.

4.2 Choosing the best strategies

We have used sets 1, 2, and 4 of the test problems described in the previous sub-
section, which will be denoted as Literature, Large and Leung et al. respectively.

4.2.1 Selection of the piece to cut

In the constructive phase (Step 2), we have considered 2 criteria for choosing the
piece to cut:

• Efficiency: Choose the most efficient piece.

• Value: Choose the piece which will produce the largest increase in the value
of the objective function.

The results appear in Table 2. Apart from the Leung et al. problems in which
the results obviously coincide because the efficiency of all pieces is 1, the results
for the efficiency criterion are better than those for the value criterion.

15

Literature Large Leung et al.
% Mean Number of % Mean Number of % Mean Number of
deviation optimal deviation optimal deviation optimal
from opt. solutions from bound solutions from opt. solutions

Efficiency 8,850 6 2,929 28 8,080 1
Value 10,172 7 3,837 28 8,080 1

Table 2: Selection of the piece

4.2.2 Randomization procedures

In this study we have kept both criteria of selection of the piece to cut because it
is possible that a criterion which is not the best when used in a deterministic way
may work better in a randomized structure.

We have considered 3 alternatives to randomize the selection of the piece:

1. RCL-Value: Select piece i at random in set S = {j|sj ≥ δsmax}

2. RCL-Percentage: Select piece i at random from among the best 100 δ% of
the pieces.

3. Biased: Select piece i from among the whole set P but with probability
proportional to its score si (pi = si/Σsj).

We have also considered the possibility of randomizing the selection of the
rectangle from which to cut the pieces at each step. Instead of taking the smallest
rectangle of the list L, we take it at random. The results of these alternatives
appear in Table 3, where δ=0.5 and NumIter = 1000.

4.2.3 Choosing the parameter δ

We have studied several alternatives to choose parameter δ.

• At each iteration, choose δ at random from the interval [0.4, 0.9]

• At each iteration, choose δ at random from the interval [0.25, 0.75]

• At each iteration δ takes in turn one of these 5 values: 0.4,0.5,0.6,0.7,0.8,0.9.

• δ = 0.75

• Reactive GRASP

The results appear in Table 4 in which it can be seen that Reactive GRASP
obtains slightly better results than the random selection in [0.25, 0.75].

16

Literature Large Leung et al.
% Mean Number of % Mean Number of % Mean Number of

deviation optimal deviation optimal deviation optimal
from opt. solutions from bound solutions from opt. solutions

Taking smallest rectangle
Efficiency RCL-Value 1,594 13 2,649 14 5,809 0

RCL-Percentage 0,782 13 1,987 19 2,880 0
Biased 0,795 11 2,533 37 5,296 3

Value RCL-Value 0,874 12 1,368 142 4,154 1
RCL-Percentage 0,835 15 3,076 26 3,430 2
Biased 0,800 14 1,900 47 4,460 2

Taking rectangle at random
Efficiency RCL-Value 1,212 13 2,492 13 6,282 1

RCL-Percentage 0,823 11 1,882 11 5,748 1
Biased 1,027 15 2,445 15 3,727 1

Value RCL-Value 0,597 14 1,223 157 3,999 2
RCL-Percentage 1,163 15 2,992 16 3,561 2
Biased 0,591 15 1,678 58 3,949 2

Table 3: Randomization procedures

Literature Large Leung et al.
% Mean Number of % Mean Number of % Mean Number

deviation optimal deviation optimal deviation optimal
from opt. solutions from bound solutions from opt. solutions

Random in [0.4,0,9] 0,428 15 1,195 177 3,207 2
Random in [0.25,0.75] 0,334 15 1,166 179 3,618 2
Deterministic from 0.4 to 0.9 0,498 14 1,254 162 3,019 3
Fixed to 0,75 1,647 11 1,658 168 3,214 2
Reactive GRASP 0,216 17 1,194 194 3,061 2

Table 4: Study of parameter δ

17

4.2.4 Improvement phase

We have tried three improvement methods:

• Method I, based on a complex move.

• Method II, based on a simplified move.

• Method III, removing the last 10% of pieces and filling the empty space.

Note that Method I requires much more time than the other two methods.
Therefore, the iteration limit for them is higher in order to compare the results
over similar times. The results appear in Table 5.

Literature Large Leung et al.
% Mean Number of % Mean Number of % Mean Number
deviation optimal deviation optimal deviation optimal
from opt. solution from bound solutions from opt. solutions

Random in [0.25,0.75]
Method I 0,279 15 1,098 194 2,801 2
Method II 0,205 17 1,055 220 2,235 2
Method III 0,205 17 1,054 224 2,173 2
Reactive GRASP
Method I 0,239 17 1,118 197 2,247 2
Method II 0,230 17 1,077 217 2,077 2
Method III 0,188 18 1,072 210 2,054 2

Table 5: Improvement methods

4.3 Complete computational results

As a consequence of the results obtained in the previous subsection, the complete
GRASP algorithm will use the following strategies:

• Selection of the piece: Largest increase in the objective function.

• Selection of the rectangle: Random.

• Randomization procedure: Restricted Candidate List.

• Selection of δ: Reactive GRASP.

• Improvement phase: Method III.

• NumIter: 10000 iterations.

18

The complete computational results appear in Tables 6, 7 and 8. The first two
Tables include a direct comparison with Beasley’s [4] results in terms of the quality
of the solutions. The computing times, however, cannot be directly compared.
Our algorithm has been coded in C++ and run on a Pentium III at 800 Mhz,
while Beasley coded his algorithm in FORTRAN and used a Silicon Graphics
O2 workstation (R10000 chip, 225MHz, 128 MB). An approximate comparison
(http : //www.spec.org) indicates that his computer is twice as fast as ours. We
can say therefore that our algorithm improves Beasley’s results on every type
of problem with much shorter computing times. Note that in both cases the
algorithms stop when the optimal solution is discovered or after an iteration limit
is reached (10000 iterations in our algorithm, 75000 children in Beasley’s genetic
algorithm).

A direct comparison with Leung et al.[17] is not possible. On the one hand,
they do not give CPU times. On the other hand, they propose two versions of
their algorithm, each of them with several mutation rates, and they give minimum
and mean waste in 15 runs of 30000 iterations. The best that can be said is that
our average distance to optimum is similar to theirs. We can also point out, as
Beasley [4] illustrates, that there are some optimal cutting patterns that cannot
be obtained by the Leung et al.[17] procedure, a situation that does not arise with
our procedure.

Finally, Table 9 shows the results of the GRASP algorithm on the set of doubly
constrained test problems. The upper bound corresponds to the solution of the
constrained problem. The problems for which the algorithms do not find solutions
are not feasible, but they are maintained in the set of test problems and therefore
are included in the Table.

The adjustment of lower bounds does not have significant effects on the per-
formance of the algorithms, but the adjustment of upper bounds has a dramatic
effect, especially in the large random problems of the second test set in which there
are important differences in the efficiencies of the pieces. For instance, for prob-
lems with m = 1000 types of pieces, more than 60% of the pieces are discarded
as soon as good solutions are found.

5 Conclusions

We have developed a new heuristic algorithm based on GRASP techniques for the
non-guillotine two-dimensional cutting stock problem. The constructive phase
explicitly considers the possibility of simultaneously cutting several pieces of the
same type, forming a block, an idea taken from the the Pallet Loading Problem.
In this constructive phase the algorithm maintains a list of empty rectangles L,
a procedure commonly used in guillotine cutting problems and which is adapted

19

Source of problem I Size Constructive Constructive GRASP Beasley’s Optimal CPU time (seconds)
(L,W) m M with efficiency randomized solution solution GRASP Beasley

Beasley [3] 1 (10, 10) 5 10 146 164 164 164 164 0,00 0,02
2 (10, 10) 7 17 213 230 230 230 230 0,00 0,16
3 (10, 10) 10 21 220 247 247 247 247 0,00 0,53
4 (15, 10) 5 7 268 268 268 268 268 0,00 0,01
5 (15, 10) 7 14 358 358 358 358 358 0,00 0,11
6 (15, 10) 10 15 268 289 289 289 289 0,00 0,43
7 (20, 20) 5 8 430 430 430 430 430 0,00 0,01
8 (20, 20) 7 13 753 831 834 834 834 0,77 3,25
9 (20, 20) 10 18 863 924 924 924 924 0,00 2,18
10 (30, 30) 5 13 1452 1452 1452 1452 1452 0,00 0,03
11 (30, 30) 7 15 1524 1688 1688 1688 1688 0,05 0,6
12 (30, 30) 10 22 1389 1865 1865 1801 1865 0,05 3,48

Hadjiconstantinou 1 (30, 30) 7 7 1178 1178 1178 1178 1178 0,00 0,03
and Christofides [11] 2 (30, 30) 15 15 1270 1270 1270 1270 1270 0,00 0,04
Wang[23] 1 (70, 40) 19 42 2277 2726 2726 2721 2726 0,77 6,86
Christofides [7] 1 (40, 70) 20 62 1560 1860 1860 1720 1860 0,39 8,63
and Whitlock
Fekete and Scheppers [9] 1 (100, 100) 15 50 18384 27589 27589 27486 27718 2,31 19,71

2 (100, 100) 30 30 19790 21976 21976 21976 22502 4,17 13,19
3 (100, 100) 30 30 23282 23743 23743 23743 24019 3,68 11,46
4 (100, 100) 33 61 30197 32893 32893 31269 32893 0,00 32,08
5 (100, 100) 29 97 25650 27923 27923 26332 27923 0,00 83,44

Mean percentage of deviation from optimum 8,85% 0,22% 0,19% 1,21% 0,58 8,87
Number of optimal solutions 6 17 18 13

Table 6: Computational results – Problems from literature

20

Mean percentage of deviation from knapsack upper bound
m Q* M Constructive Constructive GRASP Beasley’s CPU time (seconds)

with efficiency randomized solution GRASP Beasley
40 1 40 10,81 7,27 6,97 7,77 2,33 13,57

3 120 5,47 2,55 2,22 3,54 6,62 47,43
4 160 4,38 1,99 1,81 3,24 4,44 63,30

50 1 50 8,90 4,91 4,80 5,48 4,71 14,60
3 150 3,69 1,69 1,50 2,35 7,05 59,27
4 200 4,04 1,41 1,18 2,63 5,34 80,07

100 1 100 4,44 1,75 1,51 2,26 5,36 27,20
3 300 2,24 0,60 0,47 1,27 9,41 119,47
4 400 1,96 0,34 0,26 1,06 6,99 175,10

150 1 150 3,66 1,13 0,89 1,31 5,53 40,60
3 450 1,61 0,21 0,14 0,60 11,71 190,53
4 600 1,48 0,22 0,11 0,92 6,75 323,83

250 1 250 2,41 0,66 0,51 0,88 5,27 76,70
3 750 1,07 0,12 0,04 0,57 13,89 439,47
4 1000 1,01 0,04 0,03 0,39 6,65 693,67

500 1 500 0,91 0,09 0,05 0,26 3,24 203,10
3 1500 0,62 0,01 0,00 0,18 12,24 1210,80
4 2000 0,60 0,01 0,00 0,18 1,15 1790,83

1000 1 1000 0,85 0,03 0,00 0,09 1,01 667,23
3 3000 0,74 0,00 0,00 0,07 6,53 3318,47
4 4000 0,51 0,00 0,00 0,07 0,29 4840,57

Type 1 3,01 1,15 1,04 1,64 5,13 558,11
Type 2 2,88 1,25 1,14 1,70 5,90 668,41
Type 3 2,90 1,18 1,03 1,66 7,28 830,02
All 2,93 1,19 1,07 1,67 5,91 685,51

Table 7: Computational results– Large random problems.

Source of I Size of problem Constructive Constructive GRASP Optimal CPU time
problem (L,W) m M with efficiency randomized solution GRASP
Lai and Chan[14] 1 (400,200) 9 10 80000 80000 80000 80000 0,00

2 (400,200) 7 15 75000 79000 79000 79000 0,00
3 (400,400) 5 20 143500 149800 154600 160000 4,12

Jakobs[13] 1 (70,80) 14 20 4695 5400 5447 5600 10,16
2 (70,80) 16 25 5055 5295 5455 5600 15,44
3 (120,45) 22 25 4968 5310 5328 5400 12,57
4 (90,45) 16 30 3717 3978 3978 4050 10,28
5 (65,45) 18 30 2649 2844 2871 2925 14,94

Leung et al.[17] 1 (150,110) 40 40 15400 15668 15856 16500 90,52
2 (160,120) 50 50 17816 18440 18628 19200 132,26

Mean percentage of deviation from optimum 8,08 3,06 2,05 29,03

Table 8: Computational results – Leung et al. problems

21

Source of problem I Size of problem Constructive Constructive GRASP Beasley’s Upper CPU time (seconds)
(L,W) m M with efficiency randomized solution bound GRASP Beasley

Beasley [3] 1 (10, 10) 5 10 156 164 164 164 164 0,00 0,02
2 (10, 10) 7 17 n/f 225 225 225 230 0,71 5,53
3 (10, 10) 10 21 176 220 220 220 247 1,21 7,85
4 (15, 10) 5 7 268 268 268 268 268 0,00 0,01
5 (15, 10) 7 14 301 301 301 301 358 0,72 5,05
6 (15, 10) 10 15 229 249 252 265 289 1,81 6,81
7 (20, 20) 5 8 430 430 430 430 430 0,00 0,01
8 (20, 20) 7 13 712 819 819 819 834 1,32 6,54
9 (20, 20) 10 18 552 924 924 924 924 0,00 5,64
10 (30, 30) 5 13 n/f n/f n/f n/f n/f 0,22 2,38
11 (30, 30) 7 15 1132 1518 1518 1505 1688 1,59 2,96
12 (30, 30) 10 22 1443 1648 1648 1666 1865 1,65 3,78

Hadjiconstantinou 1 (30, 30) 7 7 1178 1178 1178 1178 1178 0,00 0,25
and Christofides [11] 2 (30, 30) 15 15 1216 1216 1216 1216 1270 2,08 2,6
Wang[23] 1 (70, 40) 19 2180 2587 2700 2499 2726 1,48 6,36
Christofides [7] 1 (40, 70) 20 62 1340 1720 1720 1600 1860 0,88 6,81
and Whitlock
Fekete and Scheppers [9] 1 (100, 100) 15 50 n/f 24869 24869 25373 27718 3,73 11,86

2 (100, 100) 30 30 n/f 18078 19083 17789 22502 3,02 5,8
3 (100, 100) 30 30 n/f n/f n/f n/f n/f 0,66 4,03
4 (100, 100) 33 61 25973 27665 27898 27556 32893 2,80 20,42
5 (100, 100) 29 97 n/f 21899 22011 21997 27923 3,30 18,41

Mean percentage of deviation from optimum 7,93 7,36 8,11
n/f: No feasible solution found

Table 9: Computational results – Doubly constrained problems

22

here at each step, merging the rectangles in the most convenient way to favor
cutting the best pieces. The improvement phase corrects some of the decisions
of the constructive phase, allowing the whole procedure to obtain a high quality
solution in very short computing times.

The computational results show that these ideas work well for Beasley’s [4]
constrained and doubly constrained test problems. For Leung et al.[17] problems
the results are also good and the proposed algorithm can be considered to work
consistently well for a wide range of cutting problems.

References

[1] Amaral, A. and Letchford, A (2003) An improved upper bound for
the two-dimensional non-guillotine cutting problem, Working paper available
from the second author at Department of Management Science, Management
School, Lancaster University, Lancaster LA1 4YW, England.

[2] Arenales, M. and Morabito, R. (1995) An AND/OR-graph approach
to the solution of two-dimensional non-guillotine cutting problems, European

Journal of Operational Research 84, 599-617.

[3] Beasley, J.E. (1985) An exact two-dimensional non-guillotine cutting tree
search procedure, Operations Research 33, 49-64.

[4] Beasley, J.E. (2003) A population heuristic for constrained two-
dimensional non-guillotine cutting, European Journal of Operational Re-

search, in press.

[5] Beltrán, J.C., Calderón, J.E., Cabrera, R.J. and Moreno, J.M.

(2002) Procedimientos constructivos adaptativos (GRASP) para el problema
del empaquetado bidimensional, Revista Iberoamericana de Inteligencia Ar-

tificial, 15, 26-33.

[6] Caprara, A. and Monaci, M. (2004) On the two-dimensional Knapsack
problem, Operations Research Letters 32 (1), 5-14.

[7] Christofides, N. and Whitlock, C. (1977) An algorithm for two-
dimensional cutting problems, Operations Research 25, 30-44.

[8] Delorme, X. and Gandibleux, X. and Rodriguez, J. (2003) GRASP
for set packing problems, European Journal of Operational Research 153 (3),
564-580.

23

[9] Fekete, S. P. and Schepers, J. (1997) On more-dimensional packing III:
Exact Algorithms, submitted to: Operations Research

[10] Feo, T. and Resende, M.G.C. (1989) A Probabilistic Heuristic for a Com-
putationally Difficult Set Covering Problem, Operations Research Letters 8,
67-71.

[11] Hadjiconstantinou, E. and Christofides, N. (1995) An exact algo-
rithm for general, orthogonal, two-dimensional knapsack problems, European

Journal of Operational Research 83, 39-56.

[12] Healy, P., Creavin, M. and Kuusik, A. (1999) An optimal algorithm
for placement rectangle, Operations Research Letters 24, 73-80.

[13] Jakobs, S. (1996) On genetic algorithms for the packing of polygons, Euro-

pean Journal of Operational Research 88, 165-181.

[14] Lai, K.K. and Chan, J.W.M. (1997) Developing a simulated annealing al-
gorithm for the cutting stock problem, Computers and Industrial Engineering

32, 115-127.

[15] Lai, K.K. and Chan, J.W.M. (1997) A evolutionary algorithm for the
rectangular cutting stock problem, International Journal of Industrial Engi-

neering 4, 130-139.

[16] Leung, T.W., Yung, C.H. and Troutt, M.D. (2001) Applications of
genetic search and simulated annealing to the two-dimensional non-guillotine
cutting stock problem, Computers and Industrial Engineering 40, 201-214.

[17] Leung, T.W., Chan, C.K and Troutt, M.D. (2003) Application
of a mixed simulated annealing-genetic algorithm heuristic for the two-
dimensional orthogonal packing problem, European Journal of Operational

Research 145, 530-542.

[18] Prais, M. and Ribeiro, C.C. (2000) Reactive GRASP: An application
to a matrix decomposition problem in TDMA traffic assignment, INFORMS

Journal on Computing 12, 164-176.

[19] Resende, M.G.C and Ribeiro, C.C. (2003) Greedy Randomized Adap-
tive Search Procedures, in Handbook of Metaheuristics, F.Glover and
G.Kochenberger, Eds., Kluwer Academic Publishers, pp. 219-249.

[20] Scheithauer, G. and Terno, J. (1993) Modeling of packing problems,
Optimization 28, 63-84.

24

[21] Scheithauer, G. (1999) LP-based bounds for the Container and Multi-
Container Loading Problem, International Transactions in Operations Re-

search 6, 199-213.

[22] Tsai, R. D. and Malstrom, E. M. and Meeks, H. D. (1988) A
two-dimensional palletizing procedure for warehouse loading operations, IIE

Transactions 20, 418-425.

[23] Wang, P.Y. (1983) Two algorithms for constrained two-dimensional cutting
stock problems, Operations Research 31, 573-586.

[24] Wu, Y.-L., Huang, W., Lau, S.-C., Wong, C.K. and Young, G.H.

(2002) An effective quasi-human based heuristic for solving rectangle packing
problem, European Journal of Operational Research 141, 341-358.

25

