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Abstract

This paper explores a case of flexible facility layout, in which the layout process can

be carried out in a dynamic manner responding to changing demands. We consider a

facility such as an office building that needs to partition its interior space into units of

different sizes and allocate them to different users. Facing different demands, each of

which requires a different space size, the management of the facility needs to constantly

exercise managerial real options, such as partitioning a big unit to small units and merging

small units to a big one. Modeling the demand uncertainties as stochastic processes,

we use the Monte Carlo simulation and solve rolling two-stage stochastic programs over

time to value the flexible interior layout. Through numerical tests, we demonstrate that

effectively and timely exercising the managerial options can significantly increase profit

and service quality. Focusing on the dynamic behavior of the facility interior layout,

the proposed options-based approach aims to improve facility management by proactive

decision strategies. The approach may also be extended to facility expansion, maintenance

and rehabilitation to increase service life and maintain service quality.
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INTRODUCTION

In a fast-changing world, a facility may find itself in a situation that its existing

functions have become out of date and/or requires changes, which may impair its services.

Facility layout, in terms of the arrangement of space and entities, reflects the designed

functions of a facility. Intuitively, it may be desirable that the facility layout can be

flexible in the sense that the layout can be adapted to changing circumstances. However,

most layout changes may involve complicated design modifications, which may result in

significant costs or require a long processing time, such that a flexible setting may not be

feasible. This paper explores a case of facility interior layout, in which the layout process

indeed can be carried out in a dynamic manner responding to changing demands.

The interior layout concerned in this paper refers to partitioning interior space into

units of different sizes and allocating them to different entities (users). An office building

is a good example. Companies of various sizes may want to lease an office space of a

different size. In reality, space partitioning within an office building is usually handled

by laying non-load-bearing walls or other partitions, which can be erected, moved or

removed with little effort compared with the works involved in constructing the facility.

In this situation, the interior layout can be changed easily within a short time. In this

paper, we take a real-options approach to value such flexible facility interior layout. The

layout process involves recurring decision making during the operational phase of the

facility. With the evolution of underlying uncertainties, such as user demands, modeled

by stochastic processes, three different space assignment strategies will be evaluated.

The concept of real options, stemming from financial options, refers to flexibility em-

bedded in real operational processes, activities, or investment opportunities that are not

financial instruments, in the sense that the decision maker (DM) has the right, but not

the obligation to take a certain action (e.g., Trigeorgis 1996). Similar to the financial

options case, where the DM exercises the options contingent upon stock price movements,

we consider a case that the DM makes timely changes of the interior layout as the user

demands evolve. That is, we treat the layout decision as an American-style real option

(or flexibility). In this paper, these two terms, real option(s) and flexibility, are viewed

equivalent and will be used interchangeably.
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Traditional facility layout problems, referring to activities that optimally arrange facil-

ities or entities within a facility with regard to chosen criteria, are well researched (Heragu

1997). They are somewhat different from the interior layout problem considered in this

paper. In the traditional facility layout problems, the criteria are usually to minimize the

total weighted distance between entities, in which weights represent adjacency priorities

or cost related to material flow volume (Francis et al. 1992). Researchers have developed

different models for the facility layout problem, for example, the quadratic assignment

problem (QAP) (Koopmans and Beckmann 1957), the linear mixed-integer programming

model (Love and Wong 1976), and the quadratic set covering model (Bazaraa and Goode

1975). These models, such as QAP, are NP-complete, which receive most research at-

tentions in developing and improving heuristics. Recently, researchers start to address

dynamic nature of facility layout problem. For example, Lacksonen (1994) provides a

general dynamic layout algorithm combining the QAP and mixed-integer programming.

However, most researchers make the assumption that the change of requirement is known

at the time the first design decision is made, which may not be realistic (Heragu and

Kochhar 1994).

In this paper, we take a different treatment on the layout problem. Instead of focusing

on the layout problem in the design phase as most traditional approaches do, we focus

on the operational phase. Therefore, we consider the problem over the entire operational

period of the facility. From the real options perspective, the managerial decisions con-

sidered in the paper are real options, including rejecting a user, partition a big unit to

small ones, merging small units to a big one, and relocating existing users. We do not

formulate this problem by a multi-stage stochastic program because it is computationally

intractable. Instead we use the Monte Carlo (MC) simulation and solve rolling two-stage

problems over time. Our main interest is to value these managerial real options, i.e., to

see how much each managerial option contribute to the overall profits, which helps devise

good operational strategies.

Through numerical tests, we demonstrate that effectively and timely exercising the

managerial options can significantly increase profit and service quality. Focusing on the

dynamic behavior of the facility interior layout, the proposed options-based approach aims

to improve facility management by proactive decision strategies. The approach may also
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be extended to facility expansion, maintenance and rehabilitation to increase service life

and maintain service quality.

The major contribution of this paper is to demonstrate the value of managerial flex-

ibility in facility layout and to propose an approximation method in solving a complex

multi-stage stochastic problem with a large number of integer decision variables involved.

From the computational perspective, real options valuation is integrated with integer

programming, which has not yet be attempted before in literature.

VALUING FLEXIBILITY IN INTERIOR LAYOUT

In this section, a facility is viewed as a dynamic system, in which managerial flexibility

is available for the DM to make contingent decisions. In order to maximize the (expected)

profit, uncertainties, such as demands of different users and user’s occupancy duration,

must be considered. With the managerial flexibility, the uncertainties may be turned to

profitable opportunities. To demonstrate the value of flexible interior layout, we consider

a facility that is an office building. Assume that the facility can accommodate two types

of demand of office space, big units (type A) and small units (type B).

Suppose that there are two main types of facility users, type A and type B. Type

A users rent (type A) big units, and each big unit consists of (or is equivalent to) mB

conjoint (type B) small units. Type B users rent the small units. For simplicity, the big

unit and the small unit will be called type A and type B unit, respectively. Assume all

users arrive only at the beginning of a time period. All users must sign and fulfill a rental

lease that requires a minimum duration of residence. To add some variation, with some

probability each user may terminate the lease earlier by paying some fine. For simplicity,

it is assumed that the facility only takes demands once (in the beginning of) a year. If

a user would like to stay more than the term, she is considered as a new demand as the

lease expires. For simplicity, it is also assumed that the facility has been designed to have

mA identical type A units and each type A unit consists of mB (standard) type B units.

Figure 1 illustrates an example of such a facility with mA = 3 and mB = 4.
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Managerial flexibility

The managerial flexibility considered here includes the following options:

1. (Partition) The DM may partition a type A unit to several small and adjacent type

B units as defined above.

2. (Merge) The DM may merge mB small and adjacent type B units to a type A unit

(an exactly reverse process of the partition option).

3. (Reject) The DM may reject a user for strategic reasons. For example, the DM may

reject type B users in anticipation of accommodating type A users, or vice versa.

4. (Relocate) In order to merge small units, the DM may relocate a continuing (type

B) user to another equivalent unit with a compensation to the user.

5. (Promote with a discount) The DM can promote the units that would other-

wise be vacant with a discounted rate. The promotion is normally subject to more

restricted terms than in the regular lease.

To model the promotion option, in addition to the regular users (types A and B), we

assume there is another type of users, called type C, who are willing to sign a lease for

a type B unit with more restricted terms under a discounted rental rate. This may be

viewed as another form of demand elasticity.

Problem formulation

The facility layout decisions are made at discrete time points. The timing of event

occurrence is as follows: at time t, some users leave and new users arrive. Upon receiving

the information on the demands and current occupancy status of the facility, the DM

maximizes the (expected) net profit by taking or rejecting new users, relocating continuing

users and assigning units to new users. The step for assigning units may implicitly involve

partitioning and/or merging units, which are assumed to be handled instantaneously with

a negligible cost. This process repeats at time t + 1, and continues till time T .

Three optimization models that support the DM’s unit assignment decision-making

are considered. Model 1 is the most straightforward one. Upon receiving all requests,

the DM assigns units based on available vacancy without using the relocation option. In
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Model 2, the DM may exercise the relocation option to better assign units and achieve a

higher profit. Both Models 1 and 2 are deterministic. Model 3 is a two-stage stochastic

one. The DM looks ahead one more time period and performs the optimization with all

available options. The following standard notation will be used herein.

mA : total number of type A units in the facility.

i : index of type A units in the facility, i = 1, · · · ,mA.

mB : total number of type B units within each type A unit.

j : index of type B unit within each type A unit, j = 1, · · · ,mB .

t : time index, t = 1, · · · , T, where T is the length of the time horizon considered.

xt
i : 0/1 decision variable indicating whether the ith type A unit will be assigned to a

type A user in time period t.

xt,old
i : 0/1 decision variable indicating whether the ith type A unit will be assigned to an

existing type A user in time period t.

xt,new
i : 0/1 decision variable indicating whether the ith type A unit will be assigned to

an incoming type A user in time period t.

yt
ij : 0/1 decision variable indicating whether the jth type B unit within the ith type A

will be assigned to a type B user in time period t.

yt,old
ij : 0/1 decision variable indicating whether the jth type B unit within the ith type

A will be assigned to an existing type B user in time period t.

yt,new
ij : 0/1 decision variable indicating whether the jth type B unit within the ith type

A will be assigned to an incoming type B user in time period t.

zt
ij : 0/1 decision variable indicating whether the jth type B unit within the ith type A

unit will be assigned to a type C user in time period t.

zt,old
ij : 0/1 decision variable indicating whether the jth type B unit within the ith type

A unit will be assigned to an existing type C user in time period t.

zt,new
ij : 0/1 decision variable indicating whether the jth type B unit within the ith type

A unit will be assigned to an incoming type C user in time period t.
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ut
ij : state variable indicating how long the jth type B unit within the ith type A unit

has been occupied by the end of time period t.

vt
i : state variable indicating how long the ith type A unit has been occupied (by a type

A user) by the end of time period t.

Dt
A : new demand of type A units in period t.

Dt
B : new demand of type B units from type B users in period t.

Dt
C : new demand of type B units from type C users in period t.

Rt
A : constant rent rate for a type A unit in period t, which may change over time.

Rt
B : constant rent rate for a type B unit (for a type B user) in period t (Rt

A > mBRt
B).

Rt
C : constant rent rate for a type B unit (for a type C user) in period t (Rt

B > Rt
C).

ct
B : constant compensation for a type B user in period t, if (i) the user is a continuing

user; and (ii) the user is relocated by the management to another unit in time period

t. The amount of compensation may change over time. (Note that the compensation

for relocating a user may also be modeled as a function of distance relocated, which

can be easily included in the proposed model, at, however, the price of increased

complexity.)

It
A : index set identifying all vacant type A units at time t.

It
B : index set identifying all vacant type B units at time t.

J t(i) : index set identifying vacant type B units in the i-th type A unit.

n : model index, and n = 1, 2, 3.

(P t
n) : three proposed model formulations, n = 1, 2, 3.

Xt : collection of all decision variables at time t.

ξt : collection of demand uncertainties at time t.

ft(·) : net revenue function in period t.

l : index variable for user type, l ∈ {A, B, C}.

εl : a standard normal random variable for type l user.

µl : drift of the demand process for type l user.
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σl : volatility of the demand process for type l user.

pl : probability associated with a binomial scenario branch for demand l.

r : discount rate.

S : number of possible scenarios for each time period.

k : ordinal number for a simulation run.

K : total number of the simulation runs.

NPV(k)
n : NPV of the k-th simulation run using Model (P t

n).

F ∗
n : the expected value of the total profit using Model (P t

n).

Define the index sets for available units as follows:

It
A ≡ {i|vt−1

i = 0}, (1a)

It
B ≡ {(i, j)|ut−1

ij = 0}, (1b)

and

J t(i) ≡ {j|ut−1
ij = 0 and vt−1

i = 0}. (1c)

The index sets It
A and It

B identify all vacant type A and type B units at time t, respectively.

The set J t(i) only identifies vacant type B units in the i-th type A unit.

Model 1: Deterministic model without the relocation option

In this model, the DM is assumed to be myopic. That means the DM does not look

ahead and only maximizes the current time period. Furthermore, it is assumed that the

DM does not have the relocation option. At the beginning of period t, based on available

vacancy (It
A, It

B, and J t) the DM assigns new users to vacant units without relocating

continuing users. The management will solve the following integer program, denoted by

(P t
1), to determine unit assignments.

(P t
1)

max
mA∑

i=1

Rt
Axt

i +
mA∑

i=1

mB∑

j=1

(Rt
Byt

ij + Rt
Czt

ij) (2)
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subject to
∑

i∈It
A

xt
i ≤ Dt

A, (3)

∑

(i,j)∈It
B

yt
ij ≤ Dt

B , (4)

∑

(i,j)∈It
B

zt
ij ≤ Dt

C , (5)

xt
i +

∑

j∈Jt(i)

(yt
ij + zt

ij) ≤ 1, ∀i, (6)

xt
i = 1, if i �∈ It

A, (7)

yt
ij = 1, if (i, j) �∈ It

B , (8)

xt
i, yt

ij, zt
ij , ∈ {0, 1} ∀i, ∀j. (9)

Equations (3) - (5) ensure that the demands are served by available units. Constraint (6)

imposes that a unit cannot be assigned to more than one user simultaneously. Equations

(7) and (8) are used in the objective function. After solving (P t
1), the state variables vt

i

and ut
ij are updated by

vt
i = (vt−1

i + 1)xt
i, (10)

and

ut
ij = (ut−1

ij + 1)yt
ij . (11)

Accordingly, the index sets for the availability of the units It
A, It

B and J t can be updated

for the next time period.

Model 2: Deterministic model with the relocation option

In this model, the DM is still myopic but has the relocation option. At the beginning

of period t, the DM assigns new users to vacant units and the continuing users (type B)

may be relocated if doing so can make a type A unit available for a type A user. The DM

may profit by exercising the relocation option because Rt
A > mBRt

B . In the formulation,

because of the relocation each decision variable will be split to two. For example, xt
i is split

to xt,new
i and xt,old

i . The variables marked ‘new’ are used to satisfy the ‘new’ (incoming)

demand; those marked ‘old’ are used to seek a profitable relocation while satisfying the
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‘old’ demand (existing tenants). Before solving the problem, it is assumed that the unit

occupancy statuses (xt−1
i , yt−1

ij , and zt−1
ij ) from the previous time period are known (also

defined later for their update). The integer program formulation, denoted as (P t
2), is

presented below.

(P t
2)

max
mA∑

i=1

Rt
A(xt,new

i + xt,old
i ) +

mA∑

i=1

mB∑

j=1

Rt
B(yt,new

ij + yt,old
ij )+

Rt
C(zt,new

ij + zt,old
ij )− cB

2

mA∑

i=1

mB∑

j=1

(|yt,old
ij − yt−1

ij |+ |zt,old
ij − zt−1

ij |) (12)

subject to
mA∑

i=1

xt,old
i =

mA∑

i=1

xt−1
i , (13)

mA∑

i=1

mB∑

j=1

(yt,old
ij + zt,old

ij ) =
mA∑

i=1

mB∑

j=1

(yt−1
ij + zt−1

ij ), (14)

mA∑

i=1

xt,new
i ≤ Dt

A, (15)

mA∑

i=1

mB∑

j=1

yt,new
ij ≤ Dt

B , (16)

mA∑

i=1

mB∑

j=1

zt,new
ij ≤ Dt

C , (17)

xt,new
i +

mA∑

i=1

mB∑

j=1

(yt,new
ij + yt,old

ij + zt,new
ij + zt,old

ij ) ≤ 1, ∀i, (18)

xt,old
i + xt,new

i ≤ 1, (19)

yt,old
ij + yt,new

ij ≤ 1, (20)

zt,old
ij + zt,new

ij ≤ 1, (21)

xt,old
i , xt,new

i , yt,old
ij , yt,new

ij , zt,old
ij , zt,new

ij , ∈ {0, 1} ∀i, ∀j. (22)

It can be seen that (13) and (14) ensure that existing tenants are covered regardless of

the relocation process. Constraints (15) - (18) correspond to (3) - (6) in (P t
1). When a

relocation is made, yt−1
ij �= yt,old

it or zt−1
ij �= zt,old

it and a relocation cost is applied in the

objective function. After solving (P t
2), the following variables are updated for the iteration

of the next time period.

xt
i = xt,old

i + xt,new
i (23)
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yt
ij = yt,old

ij + yt,new
ij (24)

zt
ij = zt,old

ij + zt,new
ij (25)

If unit relocation does occur, the state variables ut
ij and vt

i corresponding to units relocated

should also be modified and updated accordingly.

Note that the last two terms (involving absolute values) in the objective function (12),

though nonlinear, can be converted to a linear model. Therefore, (P t
2) remains an integer

linear program.

Model 3: Two-stage stochastic model

In this stochastic model, at each time period the DM looks ahead one more period and

performs the optimization. The DM will forecast the demand for the next period. Based

on the forecast and the current information of the demand, the DM makes decisions to

maximize the expected profit. At the beginning of period t, the DM assigns new users to

vacant units. If necessary, continuing users may be relocated. Let Xt be the collection

of all decision variables in (P t
2), xt,old

i , xt,new
i , yt,old

ij , yt,new
ij , zt,old

ij , and zt,new
ij . Also let ξt be

the collection of demand uncertainties at time t, Dt
A, Dt

B , and Dt
C . Denote the objective

function of (P t
2) as ft(Xt;xt−1

i , yt−1
ij , zt−1

ij , ξt), a function of Xt given the initial state values

of xt−1
i , yt−1

ij and zt−1
ij , and the demand realization ξt at time t. Also denote the collection

of the constraints of (P t
2), (13) - (25), as (Qt), parametric in t. The two-stage formulation,

denoted by (P t
3), is presented as follows:

(P t
3)

max ft(Xt;xt−1
i , yt−1

ij , zt−1
ij , ξt) + e−rEt[ft+1(Xt+1;xt

i, y
t
ij, z

t
ij , ξt+1)] (26)

subject to constraints (Qt) and (Qt+1). In (26), r is the risk-adjusted discount rate for

each time period, which accounts both for the time value of money and for the DM’s

risk preference. The expectation operator in (26) is not measured in the risk-neutral

framework commonly adopted in financial option valuation. This is due to the fact that

there are no traded derivative securities dependent on the values of the underlying demand

uncertainties.

To solve (P t
3), if the demand uncertainty can be modeled by scenarios, the stochastic

formulation can be converted to a deterministic equivalent integer program. (The de-
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mand uncertainty modeling will be presented in the next section.) This conversion will

increase the number of variables and constraints of the original formulation. In this case,

these increased variables and constraints are associated with different scenarios in the

second-stage problem. The conversion can be generally applied to a multi-stage model, in

which the DM looks ahead multiple periods. However, the number of scenarios normally

increases exponentially as the number of stages increases. In this research, in addition to

the demand uncertainty we also consider the fact that a tenant may early-terminate his

lease. Due to the computational feasibility, the two-stage model seems the only stochastic

model that can be handled realistically.

To summarize, all three models presented are either linear integer programs (ILPs) or

can be converted to equivalent ILPs. They can all be solved by commercial ILP solver

such as CPLEX.

Uncertainty modeling

The arrival of each demand type (A, B, or C) is modeled as a stochastic process. First

define a stochastic process {dt
l}Tt=1, whose evolution follows the following relation:

dt+∆t
l − dt

l

dt
l

= µl∆t + σlεl

√
∆t, l ∈ {A, B, C} (27)

where µl and σl represent the drift and the volatility for demand l, respectively, and εl,

l ∈ {A, B, C}, is a standard normal random variable, independent of time and l. The

time step is denoted by ∆t. Since the demand process generated by (27) is not integral,

its values are rounded off to a nearest integer before it can be used.

Dt
l ← 	dt

l + 0.5
, t ∈ {0, 1, 2, · · · , T}, l ∈ {A, B, C}, (28)

The demand model dt
l , l ∈ {A, B, C}, in (27) is the discrete-time model of the so-called

geometric Brownian motion (GBM), which is commonly used in finance to model stock

price movements. It’s evolution can be approximated by a binomial branch (e.g., Hull

1999, Luenberger 1998): given current demand dt
l , in the next time period t + ∆t two

states are possible: the up state dt+1
l,up = up factor · dt

l with probability pl and the down

state dt+1
l,dn = down factor · dt

l with probability 1− pl, where

up factor = exp(σl

√
∆t) =

1
down factor

(29)
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and

pl =
exp(µl∆t)− down factor
up factor − down factor

, l ∈ {A, B, C}. (30)

An example of a binomial branching is given in Fig. 2. Equation (28) is applied to each

node of the branch to round off dt
l to Dt

l .

Given a realization of the three demand uncertainties dt
l , l = A, B, C at time t,

there are three independent binomial branches (assuming εl, l = A, B, C, are mutually

independent). Equivalently, there are 23 = 8 possible scenarios for (Dt+1
A ,Dt+1

B ,Dt+1
C ) in

the next time period t + 1. If early termination of the lease is considered, the number

of possible scenarios, denoted by S, for the next time period is bounded from above by

2mAmB+3, i.e.,

S ≤ 2mAmB+3. (31)

In this situation, each scenario not only describes a set of demand (Dt+1
A ,Dt+1

B ,Dt+1
C ) in

the next time period t + 1, but also additional spaces that become available. Based on

the scenarios, the two-stage stochastic program (P t
3) in Model 3 can be converted to an

equivalent deterministic ILP and be solved by CPLEX.

Simulation algorithm

For Models 1 to 3, the simulation algorithm is proposed below, where k is the index

for simulation iteration and K is a predetermined maximal number of iterations.

Algorithm

Data: Model number n ∈ {1, 2, 3} is given; K : the total number of simulation iterations

is given; T : duration of facility life-cycle is given.

Step 0: k ← 1

Step 1: If k > K, go to Step 7. Otherwise NPV(k)
n ← 0.

Step 2: Set t← 0, and set all variables (i.e., xt
i, y

t
ij, z

t
ij , u

t
ij , v

t
i ← 0) to be zero.

Step 3: Generate the demand realization (Dt
A, Dt

B , and Dt
C) based on the uncertainty

model (27) - (28). (If n = 3, also generate scenarios for Dt+1
A , Dt+1

B , and Dt+1
C

for the two-stage optimization.) Solve (P t
n) using CPLEX. Realize the optimal

unit assignment decisions. Denote the optimal objective value by ht.
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Step 4: Update the state variables (ut
ij and vt

i), and index sets (It
A, It

B , and J t).

Step 5: If t ≥ T , go to Step 6. Otherwise, t← t + 1, and go to Step 3.

Step 6: NPV(k)
n ← NPV(k)

n + e−rht; k ← k + 1, go to Step 1.

Step 7: F ∗
n ← 1

K

K∑
k=1

NPV(k)
n

In Step 7, F ∗
n (n = 1, 2, 3) is the expected NPV of the total profit of the facility

operation using Model n for dynamic layout.

Overall, the algorithm simulates the facility operations forward in time during the

operational phase. At each time period, the DM makes the layout decisions based on one

of the three models proposed. The decisions made at time t becomes the initial condition

of the model at t + 1. Then the simulation proceeds till the end of planning horizon.

As mentioned previously, Models 1 to 3 represent different strategies for decision-

making at each time point. By comparing Models 1 and 2,

F ∗
2 − F ∗

1 = the value of the relocation option; (32)

comparing Models 2 and 3,

F ∗
3 − F ∗

2 = the value of performing stochastic optimization; (33)

and comparing Models 1 and 3,

F ∗
3 − F ∗

1 = (a lower bound of) the value of dynamic facility layout. (34)

Note that because Model 3 employs two-stage, instead of multistage, optimization, the

option value obtained in (34) is only a lower bound.

Model complexity

A comparison of the complexity, in terms of the numbers of variables and constraints,

of the models is summarized in Table 1. Since the objective function of Model (P t
2) is

not exactly linear, which, however, can be converted to linear, its complexity in Table 1

includes the additional variables and constraints required for the conversion. It can be

seen that Model (P t
3) has the highest complexity, followed by Models (P t

2), and then by

(P t
1), in terms of the number of variables and the number of constraints. If the number of
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scenarios for each time period in Model (P t
3) is fixed (say, S = 23 without considering early

termination of the lease), the complexity is a polynomial of mA and mB , the numbers of

the units. But if early termination of the lease is considered, the number of (worst-case)

scenarios S increases exponentially (31), so do the numbers of variables and constraints.

This is reasonable because an early termination of the lease creates an additonal avaiable

space, which may affect the optimal interior layout decision.

If the DM is to look ahead two further periods and perform the optimization (i.e., a

three-stage model), the complexity would be even higher. For example, assume mA = 3

and mB = 4, then S = 215. The number of variables and the number of constraints

in (P t
3) are around 23,000 times (≈ (S2 + S + 1)/(S + 1)) as many as those in (P t

2).

This becomes too intractable to solve within an acceptable time with existing computing

resources. Detailed information regarding computational time will be presented in the

next section of numerical tests. Therefore, in our numerical tests we focus on two-stage

models for (P t
3).

Comparison with existing models

In this section we compare the proposed model with existing methods in literature

(e.g., to name a few, Lacksonen 1994 and Kochhar and Heragu 1999) for solving the facil-

ity layout problems in terms of computational complexity. It should be noted that these

existing methods, though have been commonly applied in dynamic environments, are de-

terministic approaches. Typically, in the first stage these methods estimate rearrangement

costs and determine stationary departments, based on which the second stage problem

does the layout optimization. Therefore, we shall compare our proposed Model 2, a deter-

ministic model with the reallocation option, with the second stage problem of the existing

methods. It is fair to say that in this paper we consider a special case of the general

facility layout problems. Due to our problem setup, basic facility units have been fixed

(including both size and locations) and our problem is to group adjacent small units to a

bigger unit. So we formulate the problem as a binary integer linear program. Whereas,

the general facility layout problems can freely determine the size of each rectangular de-

partment on the R2 space. Therefore, the general layout formulation requires much more
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variables and constraints than our formulation. For example, for a single unit, we use one

single binary variable to indicate its occupancy status. But the general layout formation

will require at least six variables and four linear constraints to describe a rectangular

department, whose area roughly matches a given value (see P. 62 of Lacksonen 1994). If

the required precision of the area matching is high, more variables and constraints will

be needed. Furthermore, in the general layout formulation the so-called non-overlapping

constraints that prevent two departments in the same time overlap must be imposed to

each pair of the departments, incurring either nonlinear constraints or as many as five

linear constraints plus four binary variables, as in Montreuil (1990), for each pair of de-

partments. The non-overlapping constraints are deemed the most challenging part of the

layout formulation. This is avoided in our setup formulation. Therefore, it can be seen

that the computational burden for our approach is much lighter than the general facility

layout problems. That is why we can incorporate the deterministic layout optimization

into the stochastic framework using Monte Carlo simulations and obtain results within

reasonable CPU times.

NUMERICAL TESTS

In our numerical tests, a facility with mA big units is considered. Assume that the

regular lease terms are 2 years for types A and B users, and 1 year for type C users. Also

assume that some type B users may terminate the lease earlier after one-year stay with

probability 0.2. That is, such type B users would have probability 0.8 to fulfill the lease

of two-year term. The exact number of such type B users is predetermined. However,

the exact users who may terminate the lease early are generated randomly. Assume the

maintenance cost for the space equivalent to a type B unit is $2,000 per year. All other

parameters are summarized in Table 2.

Computational time

First we test the computational time. A numerical example with mA = 3 and mB =

4. Assume that in each time period there are two type B users who may terminate

the lease early. So S = 23+2 = 32. The average number of variables and the average
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number of constraints involved in 100 consecutive simulation runs with T = 25 (years)

are summarized in Table 3, along with the CPU times. Note the CPU times in Table 3 are

the total times for the MC simulation including 100 runs, with each run simulating the

operation of the facility over the 25-year lifecycle. Therefore, each simulation run involves

solving T (= 25) ILPs using CPLEX. Since early termination for type B users may not

necessarily be applicable for each time period (e.g., all occupants are type A), the numbers

of variables and constraints are not necessarily the same from time to time. Table 3 reports

the average numbers of variables and constraints for (P t
n), n = 1, 2, 3, in all time periods. It

can be seen that Models (P t
1) and (P t

2) require little computational times. For Model (P t
3),

each MC simulation run takes about 36 seconds, and the overall simulation terminates

within around 1 hour, using a Pentium 500MHz personal computer. This computational

time may be further reduced with a faster computer and/or more refined implementation.

It can be used for facility planning and be used for approving/arranging lease applications,

which normally do not require real-time response.

In the following numerical tests, we focus on the value of flexibiity and service quality.

Six test cases corresponding to six different initial conditions, such as number of units

and initial demand, are considered. In combination with the possibility of employing the

promotion with a discount, there are totally twelve different test cases. The simulation

algorithm proposed in the previous section is applied to the test problems. The three mod-

els (P t
n), n = 1, 2, 3, are tested in the twelve test cases. The test results are summarized

in Tables 3 and 5.

Value of flexibility

It can be seen from Tables 4 and 5, the profits obtained by Model 3 are always greater

than those by Model 2, which are greater than those of Model 1 in all six test cases.

Directly comparing Models 1 and 2 shows the value of the relocation option. The profit

obtained by Model 2 is on average 2.8% higher than that obtained by Model 1 when the

promotion of taking type C users is applied; 3.0% without the promotion. The differences

between Models 2 and 3 show the value of using stochastic programming. The profit

obtained by Model 3 is on average 4.3% higher than that obtained by Model 2 with the
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promotion; 0.9% without the promotion. In addition, directly comparing the results of

the same items in Tables 4 and 5, we can obtain the value of the promotion, which results

in 1.7%, 1.3% and 4.7% profit increases on average for Models 1, 2 and 3, respectively.

The difference between Model 1 in Table 5 and Model 3 in Table 4 shows the overall

value of all real options considered, which on average accounts for 8.8% of the (expected)

profit. Note that these tests only consider the benefit (profit) of the real options that

can be transacted. If one would account for the opportunity profits, such as the loss

of revenue, the difference will be even more significant. Besides the monetary benefits,

the real options also result in improvement of service and occupancy rates of the facility,

discussed in the next section.

Service and occupancy rates of the facility

Define the service rate for each demand type and the occupancy rate for each unit

type as follows:

Service rate for demand (type A, B or C) =

Total demand (type A, B or C) serviced over [0, T ]
Total demand (type A, B or C) over [0, T ]

(35)

and

Occupancy rate for unit (type A or B) =

Number of units (type A or B) occupied over [0, T ]
Number of units (type A or B) available over [0, T ]

(36)

From the complement of the service rate for each demand type (service rate subtracted

by one), one can see the percentage of the demand type that has been turned down

(unserviced), which measures some extent of loss of profitable opportunities. For example,

a type A user may not get serviced if the facility does not have mB conjoint small units,

which may well be resolved by having the relocation option. The occupancy rate measures

the efficiency of space use. The occupancy and service rates for each different type are

summarized in Tables 6 - 14.

From Tables 6, 7, 11, and 12, it can be seen that exercising the real options increases

the service rate for demand type A but decreases the service rate for demand type B. This
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is due to the assumption that Rt
A > mBRt

B , i.e., renting a type A unit is more profitable

than renting mB small units (type B). Certainly, the optimization associated with the

exercise of the real options imposes a higher priority for servicing demand type A than

type B.

From Tables 9, 10, 13, and 14, a similar result as the service rate is obtained that

Model 3 has a higher occupancy rate for type A unit than Model 2, which has a higher

rate than Model 1. A reversed order is obtained for the type B unit.

From Table 8, it can be seen that the service rate for type C demand is very low due

to Rt
A > mBRt

B > mBRt
C . By thoroughly examining Tables 6 - 14, it can be seen that

the introduction of type C users improves the total occupancy rate of the facility, but

it has little influence on occupancy rate for type A units in Models 1 and 2. However,

the introduction of type C users significantly increases the service rate of type A demand

and occupancy rate of type A unit, but reduces the service rate of type B demand and

occupancy rate of type B unit in Model 3. This result may not seem obvious since type C

users occupy type B units. However, because the term difference in the leases, allocating

a vacant type A unit by a type C user (1-year lease) turns out to be more profitable than

by a type B user (2-year lease). Because the former makes the unit available in a year for

a type A user. It turns out that timely exercise of the promotion option makes more type

A users serviced and, therefore, increases the profit. This reflects that Model 3 is more

comprehensive than Models 1 and 2 in facility valuation.

CONCLUSION

In this paper, the layout flexibility in facility management has been explored and its

valuation has been modeled and implemented by a quantitative approach based on the MC

simulation and integer programming. Through the numerical tests, we demonstrate that

effectively and timely exercising the managerial options can significantly increase profit

and service quality. Flexibility has value, which can sometimes be optimized. Therefore,

flexibility should not be left out when one evaluates the performance of a facility or an

infrastructure system. In other words, the definition of performance should incorporate

the value of flexibility.
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From the real options perspective, the problem setup in this paper may be viewed as

a facility with two switchable and convertible functions. While real options for switching

functions have been well studied, functions that are both switchable and convertible have

not been identified. It is hoped that this paper can shed some light on design and devel-

opment of facilities with multiple, switchable, and convertible functions. The proposed

approach may also be extended to facility expansion, maintenance and rehabilitation to

increase service life and maintain service quality.
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Type A unit

Type B unit
     

Figure 1: Floor layout of the office building considered

Figure 2: Binomial branching

Table 1: Complexity of the models

Model Number of Variables Number of Constraints

(P t
1) 2mAmB + mA mAmB + 2mA + 3

(P t
2) 6mAmB + 2mA 2mAmB + mA + 8

Two-stage (P t
3) (6mAmB + 2mA)(S + 1) (2mAmB + mA + 8)(S + 1)

Three-stage (P t
3) (6mAmB + 2mA)(S2 + S + 1) (2mAmB + mA + 8)(S2 + S + 1)
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Table 2: Values of the parameters in facility layout numerical tests

Parameter Value

Rt
A $ 60,000 per unit per year

Rt
B $ 10,000 per unit per year

Rt
C $ 8,000 per type B unit per year

mA 3

mB 4

µA 0.05

σA 0.4

µB 0.05

σB 0.2

µC 0.05

σC 0.2

cB $1,000 per unit

r 8%

T 25 years
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Table 3: Complexity for (P t
3) (mA = 3, mB = 4, S = 32)

Model Avg. no. of variables Avg. no. of constraints Total CPU time (sec)

(P t
1) 17 15 25

(P t
2) 42 17 37

Two-stage (P t
3) 1386 561 3674

Three-stage (P t
3) 31710 17969 N/A

Table 4: Total system profit in six different cases with the promotion ($103)

mA D0
A D0

B D0
C Model 1 Model 2 Model 3

3 2 6 3 1501 1509 1602

6 4 12 6 3009 3084 3226

9 6 18 9 4523 4662 4848

12 8 24 12 6007 6215 6460

15 10 30 15 7501 7789 8073

18 12 36 18 9002 9327 9684

Table 5: Total system profit in six different cases without the promotion ($103)

mA D0
A D0

B Model 1 Model 2 Model 3

3 2 6 1470 1487 1502

6 4 12 2956 3041 3069

9 6 18 4462 4601 4640

12 8 24 5927 6174 6232

15 10 30 7426 7679 7750

18 12 36 8896 9216 9298
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Table 6: The service rate for type A demand with the promotion

mA D0
A D0

B D0
C Model 1 Model 2 Model 3

3 2 6 3 0.317 0.326 0.396

6 4 12 6 0.318 0.349 0.401

9 6 18 9 0.318 0.359 0.401

12 8 24 12 0.315 0.360 0.400

15 10 30 15 0.314 0.362 0.399

18 12 36 18 0.312 0.362 0.399

Table 7: The service rate for type B demand with the promotion

mA D0
A D0

B D0
C Model 1 Model 2 Model 3

3 2 6 3 0.239 0.209 0.137

6 4 12 6 0.240 0.208 0.145

9 6 18 9 0.238 0.198 0.146

12 8 24 12 0.245 0.199 0.147

15 10 30 15 0.243 0.196 0.150

18 12 36 18 0.245 0.197 0.152

Table 8: The service rate for type C demand with the promotion

mA D0
A D0

B D0
C Model 1 Model 2 Model 3

3 2 6 3 0.0375 0.0351 0.0870

6 4 12 6 0.0364 0.0349 0.0649

9 6 18 9 0.0345 0.0340 0.0585

12 8 24 12 0.0354 0.0335 0.0546

15 10 30 15 0.0313 0.0284 0.0529

18 12 36 18 0.0325 0.0309 0.0529
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Table 9: The occupancy rate for type A unit with the promotion

mA D0
A D0

B D0
C Model 1 Model 2 Model 3

3 2 6 3 0.550 0.568 0.697

6 4 12 6 0.556 0.615 0.707

9 6 18 9 0.557 0.631 0.709

12 8 24 12 0.551 0.631 0.707

15 10 30 15 0.549 0.636 0.706

18 12 36 18 0.546 0.635 0.704

Table 10: The occupancy rate of type B unit with the promotion

mA D0
A D0

B D0
C Model 1 Model 2 Model 3

3 2 6 3 0.446 0.428 0.299

6 4 12 6 0.443 0.381 0.292

9 6 18 9 0.442 0.367 0.290

12 8 24 12 0.448 0.368 0.292

15 10 30 15 0.450 0.363 0.293

18 12 36 18 0.453 0.361 0.295
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Table 11: The service rate for type A demand without the promotion

mA D0
A D0

B Model 1 Model 2 Model 3

3 2 6 0.307 0.326 0.341

6 4 12 0.313 0.350 0.354

9 6 18 0.318 0.357 0.373

12 8 24 0.315 0.362 0.376

15 10 30 0.318 0.360 0.375

18 12 36 0.317 0.361 0.376

Table 12: The service rate for type B demand without the promotion

mA D0
A D0

B Model 1 Model 2 Model 3

3 2 6 0.250 0.230 0.217

6 4 12 0.245 0.205 0.190

9 6 18 0.241 0.200 0.187

12 8 24 0.244 0.195 0.181

15 10 30 0.240 0.196 0.182

18 12 36 0.241 0.196 0.182
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Table 13: The occupancy rate for type A unit without the promotion

mA D0
A D0

B Model 1 Model 2 Model 3

3 2 6 0.535 0.568 0.644

6 4 12 0.547 0.614 0.653

9 6 18 0.557 0.628 0.652

12 8 24 0.551 0.637 0.653

15 10 30 0.557 0.634 0.652

18 12 36 0.554 0.634 0.651

Table 14: The occupancy rate of type B unit without the promotion

mA D0
A D0

B Model 1 Model 2 Model 3

3 2 6 0.440 0.408 0.327

6 4 12 0.432 0.367 0.329

9 6 18 0.423 0.354 0.330

12 8 24 0.430 0.346 0.331

15 10 30 0.425 0.347 0.330

18 12 36 0.426 0.348 0.331
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