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ENERGY CROP SUPPLY IN FRANCE  
A MIN-MAX REGRET APPROACH 

          

 

Abstract 
 

This paper attempts to estimate energy crop supply using an LP model comprising hundreds of 
representative farms of the arable cropping sector in France. In order to enhance the predictive ability 
of such a model and to provide an analytical tool useful to policy makers, interval linear programming 
(ILP) is used to formalise bounded rationality conditions. In the presence of uncertainty related to 
yields and prices it is assumed that the farmer minimises the distance from optimality once uncertainty 
resolves introducing an alternative criterion to the classic profit maximisation rationale. Model 
validation based on observed activity levels suggests that about 40% of the farms adopt the min-max 
regret criterion. Then energy crop supply curves, generated by the min-max regret model, are proved 
to be upward sloped alike classic LP supply curves.  

 
Keywords : Interval Linear Programming, Min-max Regret, Energy Crops, France 
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Introduction   
 

The main stumbling blocks in the development of biomass energy have been of a non-technical 
nature. Economics have undoubtedly been the principal obstacle, while the gaining of public 
acceptance is often equally important. Biofuel production gained momentum in France during 1993 
when the revised European Common Agricultural Policy (CAP) imposed “set aside” land to cope with 
overproduction, decreased mechanical equipment use rate and damaged arable crop producers’ 
income. To minimise losses the European Commission allowed for non-food crop cultivation on land 
set aside. As a result, the French government decided to exempt biofuels from the Petroleum Products 
Excise to alleviate pressure on the income of numerous arable cropping farmers, while supporting 
agro-industry and refineries to exploit patents on biofuels and use idle capacity. An important part of 
the budget, which reached 150 million € in year 2000, is annually earmarked to finance biofuel excise 
tax exemption, allocated among the Ethyl Tertio Butyl Ether (ETBE) and Rapeseed Methyl Ester 
(RME) industry and the agricultural sector, namely wheat, sugar-beet and rapeseed producers. This 
policy has been criticised on efficiency grounds leading the government to revise the unitary tax 
exemption levels in 2002 at the expense of ethanol chain. Sourie et al. (2002) as well as Sourie and 
Rozakis (2001), have carried out studies of the French agricultural production of energy crops by 
means of mathematical programming. These studies reveal that agricultural raw material expenditure 
constitutes a significant part of the biofuel cost (table 1) so that a precise assessment of it would 
enhance the value of economic analyses on biofuels. This would enable welfare effects to be correctly 
estimated thus assisting in credible evaluation of public policy.  
 

The above mentioned studies elaborated arable sector linear programming models, comprising 
hundreds of representative farms, that maximise farm income subject to the interdependencies of food 
and non-food crops. Different productive units, namely arable cropping farms act independently in a 
context of perfect competition. Such sector models are built upon a common sort of structure which 
arises in multi-plant models, known as a block angular structure (Williams, 1999). One common row 
is always the objective row whereas diagonally placed blocks of coefficients denote sub-models, each 
one corresponding to a representative farm. It is supposed that there are no other common rows (or 
common constraints), that is there is no question of allocation of scarce resources across farms. 
Therefore optimizing this model it simply amounts to optimizing each sub-problem with its 
appropriate portion of the objective that is equivalent to treating each farm as autonomous. This sector 
model can be updated to take into account policy changes and can be used to derive opportunity costs 
and supply curves of energy crops (Sourie, 2002).  

 
 
Linear programming has proved to be one of the most powerful tools in the analysis of resource 

allocation choices at the firm and sector level. However, the introduction of alternative methods in 
order to consider risk at the level of the decision making (DM) unit when selecting among alternative 
activity levels seems necessary in the increasingly uncertain environment of European agriculture. The 
mass of detailed data at the farm level required by standard risk programming models makes it 
extremely difficult to collect for a sector model. Actual data at the regional level can though be used to 
determine variability of gross margins by crop in terms of intervals. For this reason, this paper 
proposes an interval programming approach when the DM (each farmer) has incomplete information 
on the objective function coefficients at the crop mix decision moment. It is assumed that beside the 
risk-neutral expected gross margin maximisation behaviour, risk-averse farmers may adopt the min-
max regret criterion. Observed crop mix data for each representative DM unit reveal whether the 
farmer adopts risk averse or neutral behaviour. Therefore sub-models corresponding to risk-neutral 
farms are always specified as LP whereas those sub-models representing farmers that do not pretend 
perfect information on gross margins are specified as interval linear programming (ILP). In other 
words, the block angular sector model contains farms that maximise their gross margin but also farms 
that minimise the maximum regret. The sector model can be now identified to a hybrid model. 
Eventually rectified supply curves of energy crops are determined using the hybrid model.  
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In the following section uncertainty is introduced with a brief review of the literature devoted to 
interval programming as well as a formal definition of the Interval Linear Programming (ILP) problem 
is presented.  In the third section the background sector LP model in block angular structure. Also the 
estimation of non-food crop opportunity costs per farm as well as methodology for deriving supply 
curves is presented. Results confirm that many firms (farmers) do not follow the profit maximisation 
rationale in cases of limited information on expected margins. Finally, supply curves determined from 
a combination of max profit and min-max regret utility functions, that is generated by the hybrid 
model will be outlined. Conclusions and discussion complete the paper. 
 
Table 1. Opportunity costs of biofuels 2002 

biofuel quantity Biofuel costs§ in €/l 
 kt Agriculture Industry & transport Co-products Totals 

ETBE wheat 132 0.08 0.27 -0.063 0.288 
ETBE sugarbeet 920 0.076 0.2415 0 0.318 
Rapeseed ME 880 0.3975 0.222 -0.1905 0.429 

§ for supplied quantities of 317000 t ester, 152000t ETBE sugarbeet, 78000 t ETBE wheat  
   Ethanol to ETBE plant capacity 3000/hl/day  
   Ester plant capacity 120000 t per annum 

Uncertainty and Interval Programming 
 

In mathematical programming models, the coefficient values are often considered known and fixed 
in a deterministic way. However, in practical situations, these values are frequently unknown or 
difficult to establish precisely. Interval Programming (IP) has been proposed as a means of avoiding 
the resulting modelling difficulties, by proceeding only with simple information on the variation range 
of the coefficients. Since decisions based on models that ignore variability in objective function 
coefficients can have devastating consequences, models that can deliver plans that will perform well 
regardless of future outcomes are appealing. More precisely, an ILP model consists of using 
parameters whose values can vary within some interval, instead of parameters with fixed values, as is 
the case in conventional mathematical programming.  

Many techniques have been proposed to solve the resulting problem. Shaocheng (1994) studied the 
case where all the model parameters are represented by intervals and the decision variables are non 
negative. Chinneck and Ramadan (2000) generalized their approach to the case where variables are 
without sign restriction. The case which is of greater interest for our purpose is the one where only the 
objective function coefficients are represented by intervals. This particular problem is the most 
frequently considered in ILP literature (Bitran, 1980, Steuer, 1981, Rommelfanger, 1989, Ishibushi 
and Tanaka, 1990, Inuiguchi and Sakawa, 1995, Mausser and Laguna, 1998, 1999a, 1999b). We now 
introduce some definitions and notations and briefly present the formal problem.  

Interval Linear Programming (ILP) Problem 
Let us consider a Linear Programming (LP) model with n (real and positive) variables and m 
constraints. The objective function is to be maximized. Formally: 

 

{ Sxccx }∈Γ∈= ,:max                                    (ILP) 

where 

 

[ ]{ }niulcc iii
n ..1,,: =∀∈ℜ∈=Γ  
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{ }mnmn bAxbAxxS ℜ∈ℜ∈≥≤ℜ∈= × ,,0,:  

 

Let {{ }}Γ∈∈=∈=Π cSycyxSx ,:maxarg:  be the set of potentially optimal solutions. Let Υ 
be the set of all the extreme objective functions: { }{ }niulcc iii ..1,,:Y =∀∈Γ∈= .To give insight 
into what the problem becomes when intervals are introduced, we recall the following theorem 
(Inuiguchi and Sakawa, 1995, Mausser and Laguna, 1999b): 

Theorem 1  
Let us consider the following multiobjective linear programming problem: 

 υ−max{cx : x ∈ S; c ∈ Υ}  (MOLP) 

 where the υ-max notation stands for the vector maximization. Then, a solution is a potentially 
optimal solution to (ILP) problem if, and only if, it is weakly efficient to the (MOLP) problem. 

Theoretically, this result enables us to mobilize all the tools and concepts of multi-objective linear 
programming literature, especially to choose/propose suitable solution concepts for (ILP) problem. In 
the literature, two distinct attitudes can be observed. The first attitude consists of finding all potentially 
optimal solutions that the model can return in order to examine the possible evolutions of the system 
that the model is representing. The methods proposed by Steuer18 and Bitran11 follow this kind of 
logic. The second attitude consists of adopting a specific criterion (such as the Hurwicz's criterion, the 
maxmin gain of Falk, the minmax regret of Savage, etc.) to select a solution among the potentially 
optimal solutions. Rommelfanger (1989), Ishibuchi and Tanaka (1990), Inuiguchi and Sakawa (1995) 
and Mausser and Laguna (1998, 1999a, 1999b) proposed different methods with this second 
perspective. Following this perspective, the next section introduces the approach that we have 
selected, namely the minimization of the maximum regret approach, and the procedure we adopted for 
its implementation. 

Minimizing the Maximum Regret 
Minimizing the maximum regret consists of finding a solution which will give the decision maker a 

satisfaction level as close as possible to the optimal situation (which can only be known as a 
posteriori), whatever situation occurs in the future. The farmers are faced with a highly unstable 
economic situation and know that their decisions will result in uncertain gains. It seems reasonable to 
suppose that they will decide on their surface allocations prudently in order to go through this time of 
economic instability with minimum loss, while trying to obtain a satisfying profit level. This is 
precisely the logic underlying the minmax regret criterion; i.e. selection of a robust solution that will 
give a high satisfaction level whatever happens in the future and that will not cause regret (Loomes 
and Sugden, 1982). Therefore, we make the hypothesis that the farmers of the considered region adopt 
the min-max regret criterion to make their surface allocation decisions. The mathematical translation 
of this hypothesis for the arable sector supply model was to implement the minmax regret solution 
procedure proposed in the literature (Inuiguchi and Sakawa, 1995, Mausser and Laguna, 1998, 1999a, 
1999b). The presentation of the formal problem and the algorithm of minmax regret are presented in 
the next paragraphs. 

The MinMax Regret (MMR) Problem 
Suppose that a solution x∈S is selected for a given c∈Γ. The regret is then: 

 

( ) { } cxcyxcR Sy −= ∈max,  

 

The maximum regret is: 
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( ){ }xcRc ,max Γ∈  

The minmax regret solution  is then such that x̂ ( ) ( )xRxR maxmax ˆ ≤ for all x∈S. The corresponding 
problem to be solved is: 

{ }{ }{ }cxcySycSx −∈Γ∈∈ maxmaxmin    (MMR) 

The MinMax Regret Algorithm 
The main difficulty in solving (MMR) lies into the infinity of objective functions to be considered. 

Shimizu and Aiyoshi (1980) proposed a relaxation procedure to handle this problem. Instead of 
considering all possible objective functions, they consider only a limited number among them and 
solve a relaxed problem (hereafter called (MMR’)) to obtain a candidate regret solution. A second 
problem (called hereafter (CMR)) is then solved to test the global optimality of the generated solution. 
If the solution is globally optimal, the algorithm terminates. Otherwise, (CMR) generates a constraint 
which is then integrated into the constraint system of (MMR’) to solve it again for a new candidate 
solution. This process continues in this manner until a globally optimal solution is obtained. The 
relaxed (MMR’) problem is: 

 

{ }{ }{ }cxcySyCcSx −∈∈∈ maxmaxmin     (MMR’) 

 

where { } Γ⊂= pcccC ,...,, 21 . This problem is equivalent to: 

min r         (MMR’) 

 

s.t. ,   k = 1,… , p kc
kk xcxcr ≥+

 

r≥0,  x∈S,  ck∈C 

where  is the optimal solution ofkc
x ( )yck

Sy∈max . A constraint of type is called a 
regret cut. Let us denote 

kc
kk xcxcr ≥+

x  the optimal solution of (MMR’) and r  the corresponding regret. Since all 
possible objective functions are not considered in (MMR’) we cannot be sure that there is no c 
belonging to Γ \ C which can cause a greater regret by its realization in the future. Hence, we use the 
following (CMR) problem to test the global optimality of x : 

 

{ }{ }xccySyc −∈Γ∈ maxmax       (CMR) 

 

Observe that the objective function value of (CMR) represents the maximum regret for x  over Γ, 
denoted by ( )xRmax . If the optimal solution  of (CMR) gives Γ∈∈ +

+
1,1

p
c

cSx p ( ) rxR >max , it 

means that  can cause a greater regret than 1+pc r  by its realization in the future and that it has to be 
considered also in C while solving (MMR’). So, the regret cut  is added to the 
previous constraint set of the (

1
11

+
++ ≥+ pc

pp xcxcr
MMR’) to solve it again and obtain a new candidate. The process is 

 6



 

iterated until the generated candidate regret solution is found to be optimal by (CMR). This solution 
procedure idea is summarized by the following algorithm: 

 

Step 0:  choose an initial candidate  ,0,0 ←←° kr x  

Step 1:  Solve (CMR) to find  and ,1+← kk kc ( )xRmax  : 

 If ( ) °= rxRmax then END.  x  minimize the maximum regret. 

Step 2:  Add the regret cut  to the constraint set of (MMR') kc
kk xcxcr ≥+

Step 3:  Solve (MMR') to obtain a new candidate x   and r .  rr ←° . Go to Step 1. 

The difficulty in this resolution process lies in the quadratic nature of the (CMR) problem. Inuiguchi 
and Sakawa (1995) investigated the properties of the minmax regret solution to find a more suitable 
way to solve (CRM). Mausser and Laguna (1998) used their results to formulate a mixed integer linear 
program equivalent to (CMR) to obtain the regret-maximizing costs which is less costly to solve. As 
Mausser and Laguna (1999a) noticed that the complexity of that mixed integer program severely limits 
the size of problems to be addressed, therefore they suggested to use heuristics. In this case though, 
uncertain objective function coefficients are in no farm decision making unit more than 10. Thus, in 
our experiments we used this equivalent problem mixed-integer formulation. 

 
Mathematical modelling and opportunity costs of non-food arable crops 
 

The raw material costs, defined at the farm level, form a significant part of the bio-fuel cost.  In the 
French context, this share varies between 20 and 25 % for wheat or sugar-beet and 60 to 65 % for 
rapeseed (Sourie & Rozakis, 2001).  Due to an important spatial dispersion of bio-fuel raw material in 
many productive units (farms) and competition between agricultural activities for the use of 
production factors (land in particular), strongly dependent on the CAP, the cost estimates of these raw 
materials raise specific problems. Thanks to supply models, based on linear programming, it is 
possible to correctly estimate these costs, their diversity and finally to aggregate them in order to 
obtain raw material supply for industry. Although it is important that this cost be estimated correctly, 
three principal difficulties are faced:  
 

Firstly, the scattering of the resource.  Currently, France has more than 50 000 energy crop (wheat, 
beet, and rapeseed) producers according to the professional association of oil-seed growers (ONIOL, 
2002). Since different farms have neither the same productivity nor the same economic efficiency, the 
production costs will be variable in space. In this context, average cost is not a suitable concept. 

 
Secondly, the competition existing between agricultural activities and non-food crops at the farm 

level. In order to satisfy agronomic constraints when introducing non-food crops, food rotation may be 
altered. This competition imposes a minimum level of profitability for non-food crops. We cannot 
consider the food activities and the non-food activities as independent so this implies that the full cost 
valuation method results, which do not take into account endogenous dependences between crops, 
may be a misleading indicator to predict farmers’ decisions regarding energy crop cultivation. 

 
Finally, the dependence of raw material costs on agricultural policy measures. The changes in 

agricultural policy, for example, a modification of the obligatory set-aside land rate or of the levels of 
direct subsidies to crops, affect the opportunity costs. Thus, the set-aside land obligation that has been 
included in the revised CAP measures implemented since 1993, and the authorization to cultivate only 
non-food crops on land obligatorily set aside, contributed to a decrease in the biofuel raw material 
cost. If the set-aside obligation disappears, an increase in the costs of crops grown on land set-aside, 
specifically non-food crops, will immediately follow. 
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The microeconomic concepts of supply curve and opportunity cost make possible a solution to these 
difficulties. These concepts could be elaborated in a satisfactory way by using mathematical 
programming models, called supply models, based on a representation of farming systems. This 
approach also leads to an estimate of the agricultural producers’ surplus, which is an item of the cost-
benefit balance of bio fuels.   

 
It is postulated that the farmers choose among food crops Xc and non-food crops Xd so as to 

maximize the agricultural income of their farm.  Thus, each producer f maximizes an objective 
function represented by expression (1). Variables Xu take their values in a limited feasible area defined 
by a system of institutional, technical and agronomic constraints (relationships 2-11).  
 
Arable agriculture supply model specification is defined below : 
 
Indices 
u∈ U crop index,  (c=1 for wheat, 2: wheat monoculture, 3: wheat after peas, 4: wheat in set 

aside, 5: barley, 6: winter barley, 7: corn, 8: fresh peas, 9: rape-seed, 10: sunflower, 
11: peas, 12: potatoes, 13: sugar beets, 14: green beans, 15: sugar beet-ethanol, 16: 
wheat-ethanol, 17: rapeseed-ester, 18: land set aside) 

c∈ C⊂ U index for the subset of food crops, C={1, …, 14} 
d∈ D⊂ U index for the subset of energy crops, D={15, 16, 17} ( mD = ) 
i∈ I ⊂ U index for the subset of food crops upon which set aside is calculated, I={1, …, 11} 
h∈ H ⊂ U index for crops demand quota, H= {8, 12, 13, 14} 
t∈ T ⊂ U index for crops preceding wheat, T ={7, 8, 9, 10, 12, 13, 14, 15, 17, 18}  
g1∈ G1   index for crops that belong to group 1, G1= ({1-6}, {9, 10}, {13, 15}, {9}, {10} ) 
g2∈ G2⊂ U index for crops that belong to group 2, G2= ({8}, {11}, {5}) 
f∈ F  index for farms  
k∈ K  index for agronomic constraints 

Parameters 
gmc,f gross margin for food crop c grown on farm f (€/ha) 
pd price at the farm gate for energy crop d (€/t) 
yd,f yield of energy crop d grown on farm f (t/ha)  
sd subsidy paid to farmers for energy crop d (€/ha) 
cd,f production cost for energy crop d on farm f (€/ha) 
γ subsidy to land set aside (€/ha) 
wf multiplier used to scale up arable land of farm f  to the national level 
σf total arable land available on farm f (ha) 
σ1,f land available on farm f for sugar-beet for sugar production (ha) 
θ fraction of arable land that must be set aside (for 1998: 10 % of total land with cereal, oil and 

protein seeds) 

fhx ,  maximum 
πk maximum fraction of land permitted for crops included in agronomic constraint k 

Decision Variables 
xc,f   area allocated to food crop c on farm f (ha)  
xd,f   area allocated to energy crop d on farm f (ha) 
 
 
     ( ) f

Ff Dd
fdfddfdd

Ff Cc
fcfc xxypxgm cs ,18,,,,,max ∑ ∑∑ ∑

∈ ∈∈ ∈

+−++ γ           (1) 

 
subject to:  
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Land resource constraints      ∀ f∈ F  (2) σ ff

Uu
fu wx ≤∑

∈
,

Set aside constraints:  ( )fifff
Dd

fd xxx w ,min,18, −≥+∑
∈

σθ   ∀ f∈ F  (3) 

    ∀ f∈ F  (4) σθ fff
Dd

fd wxx max,18, ≤+∑
∈

Quotas on demand       ∀ h∈ H, ∀ f∈ F (5) 
fhfh xx ,, ≤

 
wheat set-aside        ∀ f∈ F  (6) xx ff ,≤ 15,4 
Rotation wheat        ∀ f∈ F  (7) ∑

∈

≤
Tt

ftf xx ,,1

Rotation wheat-peas       ∀ f∈ F  (8) xx ff ,11,3
≤

 
Agronomic limits 1   σπ ffgGu fu wx 1

1
,

≤∑
∈

  ∀ g1∈G1, f∈ F  (9) 

 
Agronomic limits 2  σπ ffgfg wx 22 , ≤   ∀ g2∈G2, f∈ F  (10) 

 
Non-negativity constraints:     ∀ u∈ U, f∈ F  (11) 0

,
≥x fu

 
 
 

The fallow land obligation is explicitly formalized because of the very significant role it plays on the 
cost of non-food resources. Let I ⊂  U be the food crops that do not involve set aside obligation (for 
example, sugar-beet) then the fallow constraint at the rate of 10% is shown in (3) and (4). In other 
words, the area of the non-food crops and land set-aside must at least be equal to 10% of the extent of 
the farm, minus the coverage of the crops not subject to the set-aside obligation. This constraint, which 
is the main determinant factor of the opportunity cost, implies competition between the non-food crops 
and fallow land, and at the same time saves energy crops against more competitive food crops.   

 
Within the framework of a price negotiation regarding the raw materials, it is traditional to calculate 

the cost value even if, in agriculture, this concept presents well known problems. This is firstly, 
because of the existence of non commercial factors such as agricultural family labour, agronomic 
value of heads of rotations, and secondly due to estimates of certain factors without relationship to 
their economic value; for example, the land factor. To carry out a public assessment of bio-fuel policy, 
which is the main purpose of this exercise, it will be more appropriate to refer to the opportunity cost 
(marginal) instead of the (average) cost value because of its rigorous determination and precise 
economic meaning. More precisely, the opportunity cost will give the minimal price which allows the 
introduction to the arable cropping system of a given quantity of non-food crop into a rotation, without 
reducing the farm agricultural income. 

 
The opportunity cost is obtained in the following way:   
 
Firstly, transforming the coefficients of the non-food cultures in the objective function (1), by 
removing the sales component, (thus there remain variable expenses + subsidies/ha) :  
 

 ( ) f
Ff Dd

fdfdd
Ff Cc

fcfc xxxg cs ,18,,,,max ∑ ∑∑ ∑
∈ ∈∈ ∈

+−+ γ   (12)  

 
At the optimum of (12) under constraints (2)-(11), surfaces cultivated by energy crops will be zero, the 
fallow land occupying all the surface imposed by constraints (3) and (4). 
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Consider a production of a minimal quantity q of a crop xd by setting down the constraint yd xd >q, 

where yd represents the yield of the energy crop d. The objective function will decrease and the model 
will automatically calculate a result which is interpreted as the cost of the last unit produced to reach 
q. It is the opportunity cost estimate. This result is an output of any optimization model under 
constraints, known as its shadow price equal to the constraint dual value. The opportunity cost will 
vary according to the produced quantities q, within each farm but also across farms when the 
constraint applies to all farms ( dQ  non-negative quantities of non-food resources):  

 

∑
∈

≥
Ff

dfdfd Qxy ,,  ∀ d∈D  (13) 

 
Thus, the energy crop supply takes into account competition with other non-food as well as food 

crops in a large number of farms. These results underline the interdependence between arable crops as 
well as cross-price dependencies. 

 
The national model is a set of individual farm models, suitably weighted to obtain a representative 

image of the farms able to produce non-food cultures. Let F be the set of farms and W the respective 
weights. The objective function of the national model is now relationship (12) and the feasible area is 
defined by the constraints (2) to (11) and (13) that corresponds to d supply constraints, as common 
constraints to the f individual farm models. The dual values of the binding constraints (13) give the 
minimal prices   that the industry must pay the producers in order to obtain the demanded quantity *

dp

dQ . Non-food crop production is distributed in an optimal way among the various farms f, so that 
reduction in the objective function value, i.e. the total cost of production, becomes minimum. By 
increasing the quantity dQ , one obtains the corresponding . The relation  is a 
(inverse) supply curve of the resource d.   

*
dp ( ddd qJp =* )

 
If the optimal distribution of production is not satisfactory when taking into consideration the equity 

criterion or other political criteria, the model could be modified by imposing rules of sharing out non-
food crop production among farms. Consequently, the opportunity cost will be higher, as the solution 
of the modified model shows. Different values of the parameters in the model  (for example, the rate 
of obligatory set-aside or of the quantity of bio-fuel to be produced) gives rise to a new supply curve. 
Thus, for each non-food crop d, there exists a family of supply curves.  
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Figure 1. Rapeseed supply curves, in €/t 
 

For example, when the quantity of ester is parameterised between zero and 500 000 tons, for two set-
aside land rates, two supply curves are obtained as shown in figure 1. A decrease in these rates 
involves an increase in the opportunity cost because additional producers that are less efficient enter 
the market to satisfy the bio-fuel demand. 
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Case study and model validation 
 

The model implemented here comprises in total 681 farms from the two main arable cropping 
regions of France (with 216 and 465 farms located in the cereal and sugar-beet region respectively). 
Farm Accounting Data Network (FADN) data on number of farms per type, surfaces cultivated, and 
land set aside concerning the above farm types have been used in this exercise, along with detailed 
data on inputs of arable crops used by each farm. These farms adequately represent the diversity of 
arable cropping system in Central and Northern France where energy crops are mostly cultivated. 
Relevant weights have been used to project cultivated surfaces in the sample to the national levels 
observed in the base year 2000. Profiles of the crop mix are shown in Table 2 by region. Each 
individual farm model has up to 18 variables corresponding to arable crops historically cultivated in 
the farm.  

Table 2. Crop  mix by region aggregates  
 sugarbeet region cereal region 

 

Observed 
surfaces in 

ha 
Observed 
crop mix 

LP optimal 
crop mix 

Relative  
percentage to 
total surface 

Observed 
surfaces in 

ha 
Observed 
crop mix 

LP optimal 
crop mix 

Relative  
percentage to 
total surface 

Wheat 1915401 47.4% 51.9% 4.48% 2813264 36.1% 40.5% 4.54%
Barley 184431 4.6% 3.1% 1.49% 661293 8.5% 7.1% 1.31%
Spring barley 328213 8.1% 5.9% 2.24% 1052023 13.5% 19.4% 5.96%
Maize 0 0.0% 0.0% 0.00% 436967 5.6% 2.7% 2.91%
Fresh peas 43103 1.1% 1.1% 0.00% 0 0.0% 0.0%  
Rape seed 61167 1.5% 3.8% 2.26% 1875315 24.0% 22.5% 1.50%
Sunflower 0 0.0% 0.0% 0.00% 117546 1.5% 0.9% 0.65%
Peas 452174 11.2% 9.8% 1.38% 0 0.0% 0.0%  
Potatoes 157142 3.9% 3.9% 0.02% 0 0.0% 0.0%  
Sugarbeet 603479 14.9% 14.5% 0.41% 0 0.0% 0.0%  
Beans 13257 0.3% 0.3% 0.00% 0 0.0% 0.0%  
Sgbeet EtOH 0 0.0% 0.0% 0.00% 0 0.0% 0.0%  
Wheat EtOH 15234 0.4% 5.3% 4.97% 0 0.0% 0.0%  
Rapeseed ME 102382 2.5% 0.4% 2.14% 310229 4.0% 1.2% 2.75%
Set aside 162726 4.0% 0.0% 4.02% 536704 6.9% 5.7% 1.21%
 4 038 709 100.0% 100.0% 23.42% 7 803 341 100.0% 100.0% 20.84%

 

The validity of the arable sector model has been evaluated by comparing optimal activity level 
outcome of the model with the actual ones. To evaluate the proximity of LP model solution  to the 

observed activity level  

opt
kx

obs
kx for the crop k, we used the following distance measure: 
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 Figure 2.  gross margin variability intervals 
 

As shown in Table 2 concerning the cereal oriented region, rape-seed for food and energy as well as 
sunflower cultivated surfaces are underestimated whereas cereals are overestimated. The difference in 
absolute value between the observed production levels and the optimized allocations (in other words, 
the distance between the two solutions using a L1 metric) is approximately 1.8 million ha. The total 
arable land considered being 7.8 million ha, the relative distance (the difference between the two 
solutions in absolute value divided by the total arable land) is about 20%. In the sugar-beet 
specializing region the relative aggregate distance is about 23%. The fit is usually better at the 
aggregate level than at the farm level as compensatory effects counteract making the model results to 
approach the observed crop mix. As a matter of fact at the elementary farm level, distances become 
more important: the relative average distance is about 37% with standard deviation of 22% (in the 
sugar-beet region 45% average with 16% standard deviation).  

Hence, the need for further calibration of the model is clear. In all evidence, such variations can 
occur for two reasons: an inaccurate specification of the feasible region of the model or an inaccurate 
specification of the objective functions. In this exercise, we assume that the feasible region of each 
elementary model adequately represents the allocation possibilities of the farmers. Let us note that the 
observed solutions for each farm have been verified to be feasible in the corresponding model. 
Regarding the objective function specification, it is reasonable to suppose that in a relatively stable 
environment farmers will base their decisions on average prices. The LP supply model is originally 
designed under this very assumption: objective function coefficients (the gross margins per crop) are 
calculated based on the 1993-1997 price and yield averages. However, in the present context, with 
subsequent CAP reforms that downgrade subsidy stability factor in the formation of gross margin, the 
natural uncertainty about yields combined with an increasing uncertainty about prices enlarge the 
gross margin variation range. Figure 2 illustrates variability of gross margins for crops observed in the 
sample due to yield and price variations. Total uncertainty can be represented by the range determined 
by μ±2σ, where μ is the mean value and σ the standard deviation of the gross margin distribution, 
calculated in the year 2002 conditions. Thus, we opted for investigating the problems that may arise 
because of a possibly inaccurate specification of the objective functions. In other words, an implicit 
assumption is that the objective function coefficients, which correspond to unit gross margins per crop, 
are perceived by farmers as imprecise numbers rather than crisp values. Therefore they will be 
represented in the model by intervals transforming the original LP to an interval linear programming 
problem.  

The interval linear programming approach with the minmax regret criterion objective function has 
been implemented to investigate if the model validity can be improved by this approach. The GAMS 
software (Brooke et al., 1998) is used to implement the proposed minmax regret algorithm using the 
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linear and integer programming modules of the CPLEX solver1. Gross margin intervals have been 
used in the model for crops that appear in the graph in Fig.2, so that, the number s of interval-valued 
coefficients can be up to 9. For the initial regret candidates to start the algorithm, we used the LP 
optimal solutions.   
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Figure 3. Comparison of the min-max regret solutions (gross margin variation for all crops equal to 
one and two standard deviations) with the actual (observed) and the Optimal LP Solutions at the farm 
level (surfaces in ha). 

 

The principal effect of the ILP approach with the MinMax Regret is:  when the difference between 
the gross margins is relatively small, the minmax regret approach gives more "balanced" solutions, 
more so when the interval coefficients get larger. In fact, as the intervals get larger, the gross margins 
for different crops start to overlap or, if they already have an intersection, this increases. It then 
becomes more difficult for the farmer to anticipate which crop will be more profitable. Hence, the 
min-max regret approach tends to return more and more balanced solutions as the size of the intervals 
increase. Figure 3 illustrates that point, in a cereal farm (with ) where, at the LP optimal 
solution, wheat is selected at the expense of spring barley and energy rapeseed. A detailed discussion 
on this point is presented by Kazakci and Vanderpooten (2002).  The effects of the min-max regret 
approach on the proximities to the observed crop mix obtained at the microscopic level are 
considerable: for about 38% of the farms, the relative distance (

%341 =optM

( )maxmin
1 xM ) of the minmax regret 

solution to the corresponding observed solution is smaller than the relative distance (as defined in 
equation 14) of the LP's optimum solution to the observed one. The opposite is true for 18% of the 
farms while both objective function specifications give identical solutions for the rest of the farms.  
Concerning the improvement in the proximities to the observed solutions, the worst proximities 
( ( )jM1max ) obtained for these 38% of the farms provide an average improvement of 10% with 
respect to the LP's proximities.  

Thus some farmers maximize gross margin while others demonstrate risk averse attitude in the sense 
of minimising the maximum regret. For each individual farm elementary model a simple algorithm 
replaces the objective function with that, between gross margin maximization and min-max regret, 
performing better in terms of proximity of the resulted crop mix to the observed one. This way we end 
up with a hybrid regional model with custom objective function for each representative farm. This 
model has by definition a higher predictive capacity than the initial LP, so it will be used to generate 
energy crops’ supply curves. For this purpose the procedure proposed in section 1 is applied adapted 
to host minmax regret terms in the aggregate objective function. Then a constraint common to all 
farms obliges the model to produce fixed quantities of energy crops.    
                                                 
1 the model is available from the authors upon request 
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Different factors affect the relative position against classic LP generated supply curves. Not only 
because the objective function value in terms of total farm gross margin at the minmax regret optimum 
is lower than the LP optimal value (results in lower opportunity cost), but also that the energy crop 
giving relatively stable gross margin is appreciated in the farm comparing with other crops with high 
variability (higher opportunity cost). Depending on the above factors, as well as the interaction with 
the constraint structure, the minmax supply curves are located to the right of the LP curve up to a 
certain quantity level. Quantities used in the biofuel industry float in this range, thus we consider that 
the min-max criterion adoption results in lower opportunity costs of biomass raw material for the 
biofuel industry. For actual levels of biofuel production, quantities and costs of biomass are shown in 
Table 3. The difference between biofuel estimated cost and its market value indicates the minimal 
subsidy (equivalent to the excise tax exemption) necessary to make biofuels financially viable. Biofuel 
costs calculated using minmax regret objective functions are 5% lower than their LP counterparts.   
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Figure 4. Supply curves resulted by max profit and min-max regret objectives at the regional level 

 
Conclusions and discussion 

 
This analysis underlines different factors that determine the agricultural raw material cost used for 

the production of bio-fuels. Certain factors are endogenous to the farms such as crop yields; other 
factors are exogenous such as agricultural policy decisions, in particular those that relate to the rate of 
land set-aside. Climatic risks are also a source of cost variation.  In addition to cost variation factors 
that are farm specific, spatial variability exists, which is the result of differences in economic 
efficiency among farms.  The concepts of agricultural supply and opportunity cost resulting from the 
microeconomic theory, which find an application within the framework of mathematical programming 
models, allow for modelling of the agricultural complexity with very interesting results. Energy crop 
supply curves are thus generated so that a biofuel system partial equilibrium model assists to 
understand cost levels for different agents, as well as surpluses allocation.  

 
In order to enhance the predictive ability of such a model to provide an analytical tool useful to 

policy makers, interval linear programming (ILP) is used to formalise bounded rationality conditions 
caused by uncertainty related to yields and prices. Recent advances in operational research are 
exploited, permitting to minimise the distance from optimality once uncertainty resolves introducing 
an alternative criterion to the classic profit maximisation rationale. Model validation based on 
observed activity levels suggests that about 38% of the farms adopt the min-max regret criterion. 
Farmers' decisions are not exclusively explained by the expected profit maximization logic underlying 
LP models. Moreover, in the cases where the farmers choose a balanced crop mix, the min-max regret 
solutions tend to improve the representative capacity of the model.  
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Energy crop supply and opportunity costs determined by the hybrid maximum profit and min-max 
regret aggregate model, are proved to be upward sloped and slightly displaced to the right (less costly 
energy crops) compared with classic LP supply curves. Opportunity costs aggregation to supply curves 
of energy crops results in aggregate supply curves consistent to the theory when a sufficiently large 
number of elementary producers are involved. To paraphrase Simon2: “..empirical data do confirm that 
supply curves generally have positive slopes.. but positively sloped supply curves could result from a 
wide range of behaviours satisfying the assumptions of bounded rationality rather than those of utility 
maximisation”. 
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