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Abstract- This paper proposes a new memetic evolutionary algorithm to achieve explicit learning 

in rule-based nurse rostering, which involves applying a set of heuristic rules for each nurse’s 

assignment. The main framework of the algorithm is an estimation of distribution algorithm, in 

which an ant-miner methodology improves the individual solutions produced in each generation. 

Unlike our previous work (where learning is implicit), the learning in the memetic estimation of 

distribution algorithm is explicit, i.e. we are able to identify building blocks directly. The overall 

approach learns by building a probabilistic model, i.e. an estimation of the probability distribution 

of individual nurse-rule pairs that are used to construct schedules. The local search processor (i.e. 

the ant-miner) reinforces nurse-rule pairs that receive higher rewards. A challenging real world 

nurse rostering problem is used as the test problem. Computational results show that the proposed 

approach outperforms most existing approaches. It is suggested that the learning methodologies 

suggested in this paper may be applied to other scheduling problems where schedules are built 

systematically according to specific rules. 

 

Keywords: Nurse Rostering, Estimation of Distribution Algorithm, Local Search, Ant Colony 

Optimization 

 

1  Introduction 
 

Nurse rostering problems have been extensively studied over the past three decades (Burke et al, 

2004; Cheang, 2003). Most of these problems are extremely difficult and have been regarded as 

being more complex than the travelling salesman problem (Tien and Kamiyama, 1982). Early 

research (e.g. Warner and Prawda, 1972) concentrated on the development of mathematical 

programming models. To reduce computational complexity, these early researchers had to restrict 

the problem dimensions and consider a relatively low number of constraints in their models, 

resulting in methodologies that are too simple to be applied in most modern real world hospital 

situations. However, modern mathematical programming approaches have been shown to be 

effective for large problems when combined with heuristic methodologies (e.g. Bard and 

Purnomo, 2007; Dowsland and Thompson, 2000). 

 

Over the years, there have been many other attempts to solve nurse rostering problems within 

reasonable time. Artificial intelligence approaches such as constraint programming (e.g. Meyer 

auf’m Hofe, 2001) and knowledge based systems (e.g. Beddoe and Petrovic, 2006) have been 

investigated with some success. Since the 1990’s, meta-heuristics have attracted the most 

attention in tackling this problem. Genetic Algorithms (GAs) (e.g. see Sastry et al, 2005) form an 

important class of meta-heuristics, and have been extensively applied in nurse rostering (e.g. 

Aickelin and Dowsland, 2000; Aickelin and Dowsland, 2004; Burke et al, 2001; Easton and 
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Mansour, 1999; Kawanaka et al, 2001). A number of attempts have also been made by using 

other meta-heuristics, such as simulated annealing (e.g. Brusco and Jacobs, 1995) and tabu search 

(e.g. Burke et al, 1999; Ikegami and Niwa, 2003). 

 

Most existing GA-based approaches for various nurse rostering problems are direct approaches, 

in which the individuals in the population represent direct encodings of solutions. However, these 

problems can also be solved indirectly (Aickelin and Dowsland, 2004). A similar in direct 

approach has been employed on another personnel rostering problem – driver scheduling (Li and 

Kwan, 2003; Li and Kwan, 2005). The idea is that we first transform the original problem into 

another rule-based problem in which we define a set of heuristic rules for the nurses’ assignment, 

and then solve it by using building heuristics to construct schedules step by step based on these 

predefined rules (Aickelin, 2002). 

 

In previous indirect approaches, learning was implicit and restricted to the efficient adjustment of 

weights for the set of rules that is used to build the schedules (Aickelin and Dowsland, 2004; Li 

and Kwan, 2003). The major limitation for this type of learning is that once the best weight 

combination is found, the rules used in the build process are fixed at each iteration. One of the 

motivations for this paper is based upon the observation that when finishing a chess game, a long 

sequence of interactive moves with a particular goal in mind is required. An intelligent schedule-

building process needs to build its solution in a similar way. Using fixed rules for each move is 

not consistent with the human learning process. A human scheduler normally builds a schedule 

systematically by following a set of rules. After much practice, the scheduler gradually masters 

the knowledge of which solution parts go well with others. He/she can identify good parts and is 

aware of the level of solution quality even if the scheduling process is not yet completed. The 

skilled scheduler has the ability to finish a schedule by using flexible, rather than fixed, rules. To 

establish an explicit learning mechanism from past solutions, two more human-like scheduling 

algorithms, namely a cutting-edge Bayesian optimization algorithm and an adapted learning 

classifier system, have been proposed and preliminarily outlined in (Li and Aickelin, 2004). This 

paper extends the work in (Li and Aickelin, 2004) and presents a new memetic estimation of 

distribution algorithm, in which an ant-miner algorithm is embedded as the local search processor 

to improve the resulting solutions in each generation. Memetic approaches can be thought of as 

hybridisations between evolutionary techniques and local search methods (e.g. see Krasnogor and 

Smith, 2005; Krasnogor et al, 2004). 

 

The work presented in this paper is motivated by the goal of attempting to explore how decision 

support systems can learn to solve new problems. This is, of course, one of the major motivations 

for recent work on hyper-heuristics (see Burke et al, 2003a; Ross, 2005). Hyper-heuristics can be 

thought of as “heuristics to choose heuristics” (Ross, 2005). Recent work in this area has dealt 

with a range of methodologies for selecting which heuristics to employ. Examples include 

simulated annealing (e.g. Dowsland et al, 2006), genetic algorithms (e.g. Ross et al, 2003), choice 

functions (e.g. Rattadilok et al, 2005), case based reasoning (e.g. Burke et al, 2006) and tabu 

search (e.g. Kendal and Mohd Hussin, 2003). Indeed, Burke et al (2003b) presents a tabu search 

hyper-heuristic that is evaluated on a university course timetabling problem and a variant of the 

nurse rostering problem that is addressed in this paper. The authors use a tabu search mechanism 

to select “low level” heuristics to solve the problem. The emphasis in much of the current body of 

work on hyper-heuristics is the goal of developing systems that are more readily suitable for 

different problem solving environments than the current state of the art. No direct comparisons of 

results are possible, as Burke et al (2003) used randomized data and reported results in terms of 

robustness across different problems rather than solution quality, but our general aim in this paper 
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is the same. We have developed a methodology that can learn which nurse-rule pairs are most 

appropriate. 
 

The long-term aim of this research is to model the learning of a human scheduler. Humans can 

provide high quality solutions, but this is tedious and time consuming. Typically, they construct 

schedules based on rules learnt during scheduling. Due to human limitations, these rules are 

typically simple. Hence, our rules will be relatively simple too. Nevertheless, human generated 

schedules are of high quality due to the ability of the scheduler to switch between the rules, based 

on the status of the current partial solution. One of the goals of the research presented in this 

paper is that our proposed algorithm should perform this task. 

 

2  The Nurse Rostering Problem 
 

The problem addressed here is concerned with creating schedules for wards containing up to 30 

nurses. The data is taken from a major UK hospital. The solutions must adhere to constraints 

generated by staff contracts. They must also satisfy the requirement to have a certain number of 

nurses of different grades on each shift. Finally, the solutions have to be seen to be fair to all 

nurses. Although the hospital uses a planning horizon of five weeks, to reduce complexity, our 

model employs just one week. However, this does not affect solution quality because historic 

information, such as weekends worked in previous weeks, is fully incorporated into the penalty 

costs pij. A particular challenge with this problem lies in the definition of grade, which facilitates 

the substitute of nurses of higher grades to nurses of lower grades but not vice versa. 

 

The day is partitioned into three shifts: two day shifts called ‘earlies’ and ‘lates’, and a longer 

night shift. Until the final scheduling stage, ‘earlies’ and ‘lates’ are merged into day shifts. A 

nurse normally works either days or nights in a given week, and a full week’s work usually 

includes more days than nights. For example, a full-time nurse works 5 days or 4 nights, whereas 

a part-time nurse works 4 days or 3 nights, 3 days or 3 nights, or 3 days or 2 nights. However, 

exceptions are possible and some nurses have to work both day- and night-shifts in one week. 

 

As described in (Aickelin and Dowsland, 2000), the problem can be decomposed into three 

independent stages. The first stage uses a knapsack model to check if there are enough nurses to 

meet demand. If not, additional nurses are allocated to the ward, so that the second stage will 

always admit a feasible solution. The second stage is the most difficult and is concerned with the 

actual allocations of days or nights to be worked by each nurse. The third stage then uses a 

network flow model to assign those on days to ‘earlies’ and ‘lates’. The first and the third stages 

are relatively easy to solve (Easton and Mansour, 1999). In this paper, we are only concerned 

with the highly constrained second stage, i.e. allocating nurses to specific days and / or nights. 

 

The numbers of days or nights to be worked by each nurse defines the set of feasible weekly work 

patterns for that nurse. These will be referred to as shift patterns in the following. For example, 

(1111100 0000000) would be a pattern where the nurse works the first 5 days and no nights. Each 

possible weekly shift pattern for a given nurse can be represented as a 0-1 vector with 14 

elements, where the first 7 elements represent the 7 days of the week and the last 7 elements the 

corresponding 7 nights of the week. A ‘0’ or ’1’ in the vector denotes a scheduled day or night 

‘off’ or ’on’ respectively. For each nurse, there are a limited number of shift patterns available. 

For instance, a full-time nurse working either 5 days or 4 nights has a total of 21 (i.e. 5

7
C ) feasible 

day shift patterns and 35 (i.e. 4

7
C ) feasible night shift patterns. 
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Typically, there are between 20 and 30 nurses per ward, 3 grade-bands, 9 part time options 

leading to 411 different shift patterns, which are listed in detail in (Aickelin and Dowsland, 

2000). Thus, the integer programming formulation below has some 12330 binary variables and 72 

constraints. Depending on the nurses’ preferences, the recent history of patterns worked, and the 

overall attractiveness of the pattern, a penalty cost is allocated to each nurse-shift pattern pair. 

These values were set in close consultation with the hospital and range from 0 (perfect) to 100 

(unacceptable), with a bias towards lower values. 

 

The problem has previously been addressed in (Aickelin and Dowsland, 2004; Burke et al, 2003). 

It can be formulated as an integer linear program as follows. 

Target function: 

                                                          Minimize ∑ ∑
= ∈

n

i

m

iFj

ijij xp
1 )(

.                                                         (1) 

Subject to: 

1. Every nurse works exactly one feasible shift pattern: 

                                                         ∑
∈

∈∀=
m

iFj

ij nix
)(

},...,1{,1 ;                                                         (2) 

2. The demand for nurses is fulfilled for every grade on every day and night: 

                                  ∑ ∑
∈ =

∈∈∀≥
m

iFj

n

i

ksijjkis gskRxaq
)( 1

},...,1{ and }14,...,1{, .                                    (3) 

 

Where 

m = number of shift patterns; 

n = number of nurses; 

g = number of grades; 

xij = 1 if nurse i works shift pattern j, 0 otherwise; 

pij = preference cost of nurse i working shift pattern j; 

F(i) = set of feasible shift patterns for nurse i; 

qis = 1 if nurse i is of grade s or higher, 0 otherwise; 

ajk = 1 if shift pattern j covers day/night k (1–7 are days and 8–14 are nights), 0 otherwise; 

Rks = demand of nurses with grade s on day/night k; 

 

 

2.1  A Graphic Representation of the Solution Space 
The nurse rostering problem can be solved by transforming the original problem into another 

rule-based problem, whose solution space is represented as a hierarchical and acyclic directed 

graph (shown in Figure 1). The node }),...,1{};,...,1{( rjniN
ij

∈∈  in the graph denotes that nurse i 

is assigned by using rule j, where n is the number of nurses to be scheduled and r is the number of 

rules available in the building process. The directed edge (arrow) from node Nij to node Ni+1,j’ 

denotes a causal relationship represented by  “Ni+1,j’ following Nij”, i.e. a rule link from nurse i to 

nurse i+1 indicating nurse i is scheduled by rule j and nurse i+1 by rule j’. In this graph, a 

possible solution is represented as a directed path from nurse 1 to nurse n connecting n nodes. 

 

 

 

Figure 1 about here 
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3  A Construction Heuristic for the Rule-Based Problem 
 

Our method has been motivated by observing human working patterns. A building heuristic is 

designed to form a schedule step by step by using a rule set consisting of six heuristic rules. Note 

that other rules could also be added into the rule set. 

 

3.1  Six Building Rules 
The first rule, called ‘Random’ rule, is used to select a nurse’s shift pattern at random. Its purpose 

is to introduce randomness into the search thus enlarging the search space, and most importantly 

to ensure that the proposed algorithm has the ability to escape from local optima. This rule 

mirrors much of a scheduler’s creativeness to generate different solutions if required. 

 

The second rule is the ‘k-Cheapest’ rule. Disregarding the feasibility of the solution, it randomly 

selects a shift pattern from a k-length list containing patterns with the k-cheapest costs pij, in an 

effort to reduce the schedule cost as much as possible. 

 

The third ‘Highest Undercover’ rule is designed to consider only the feasibility of the schedule. It 

schedules one nurse at a time in a shift pattern that has the highest number of uncovered shifts. 

For instance, assume a nurse is able to work under two shift patterns: one covers Monday to 

Friday nights and the other covers Tuesday to Saturday nights. Furthermore, assume that the 

current requirements for the nights from Monday to Sunday are as follows: (-3, 0, +1, -2, -1, -2, 

0), where a negative number represents undercover and a positive number signifies over cover. 

The Monday to Friday shift pattern hence has a cover value of 3 as the most negative value it 

covers is -3, and the Tuesday to Saturday pattern has a value of 2. The ‘Highest Undercover’ rule 

would assign the first pattern to this nurse due to its larger undercover value. Note that, in order to 

ensure that high-grade nurses are not ‘wasted’ covering unnecessarily for nurses of lower grades, 

for nurses of grade s, only the shifts requiring grade s nurses are counted as long as there is a 

single uncovered shift for this grade. If all these are covered, shifts of the next lower grade are 

considered and once these are filled those of the next lower grade. 

 

The fourth rule, ‘Overall Cover’, is very similar to the third rule ‘Highest Cover’. The difference 

is that the ‘Overall Cover’ rule tries to find shift patterns with the largest amount of overall 

undercover, which is the sum of individual undercover of each shift. Using the above example, 

the Monday to Friday shift pattern has an overall cover value of 6 as the sum of undercover is -6, 

while the Tuesday to Saturday pattern would have an overall cover value of 5. The Monday to 

Friday pattern is therefore assigned. 

 

The fifth ‘Contribution-A’ rule is biased towards solution quality but includes some aspects of 

feasibility by computing an overall score for each feasible pattern for the nurse currently being 

scheduled. It is designed to take into account the nurses’ preferences. It also takes into account 

some covering constraints in which it gives preference to patterns that cover shifts that have not 

yet been allocated sufficient nurses to meet their total requirements. In summary, this rule is to go 

through the entire set of feasible shift patterns for a nurse and assign each one a score. The one 

with the highest (i.e. best) score is chosen. The score of a shift pattern Sij can be denoted as 

                                           )100()(
4

3

1

14

1
ij

s k
ksjkissij

pwdaqwS −+=∑ ∑
= =

,                                              (4) 
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where }3,2,1{, ∈sw
s

, is the weight of covering an uncovered shift of grade s, w4 is the weight of 

the nurse’s pij value for the shift pattern, ajk is 1 if shift pattern j covers day k and 0 otherwise, and 

dks is 1 if there are still nurses needed on day k of grade s and 0 otherwise. Note that (100−pij) 

must be used in the score, as higher pij values are worse and the maximum for pij is 100. 

 

The sixth rule, ‘Contribution-B’, also uses formula (4) to assign each feasible shift pattern a 

score, but it uses a different definition of dks. Here dks equals the actual number of nurses required 

if there are still nurses needed on day k of grade s, 0 otherwise. 

 

3.2  Fitness Function 
Our nurse rostering problem is complicated by the fact that higher qualified nurses can be 

substituted for nurses with lower qualifications but not vice versa. Furthermore, the problem has a 

special day-night structure as most of the nurses are contracted to work either days or nights in 

one week but not both. These two characteristics mean that the finding and maintaining of 

feasible solutions in any heuristic search is extremely difficult. Therefore, a penalty function 

approach is needed while calculating the fitness of completed solutions. Since the chosen 

encoding automatically satisfies constraint (2) of the integer programming formulation, we can 

use the following formula to calculate the fitness of solutions (the fitter the solution, the lower its 

fitness value): 

                    Minimize    ∑∑ ∑∑ ∑∑
= = = = = =



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




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


−+

n

i

m

j k

p

s

n

i

m

j
ijjkisksijij

xaqRwxp
1 1

14

1 1 1 1
5

0,max .                              (5) 

Note that only undercovering is penalized not overcovering. Hence, the max function is used in 

formula (5). The parameter w5 is the penalty weight used to adjust the penalty that a solution has 

added to its fitness, and this penalty is proportional to the number of uncovered shifts. For 

example, consider a solution with an objective function value of 15 that undercovers the Monday 

day shift by one shift and the Tuesday night shift by two shifts. If the penalty weight was set to 

20, the fitness of this solution would be 15 + (1+2)*20 = 75. 

 

 

4  An Estimation of Distribution Algorithm with Intelligent Local Search 
 

An Estimation of Distribution Algorithm (EDA) (Bosman and Thierens, 2000; Larranaga, 2002; 

Larranaga and Lozano, 2002; Pelikan et al, 2002) is a probabilistic model-building genetic 

algorithm. However, unlike a traditional genetic algorithm which applies crossover to pairs of 

selected solutions and then applies mutation to each of the resulting solutions (e.g. see Sastry et 

al, 2005), EDAs build a probabilistic model based on selected solutions and then sample the 

model to generate new candidate solutions. This section introduces a memetic EDA, in which a 

local search procedure conducted by an ant-miner algorithm is integrated in the EDA. Such a 

procedure is applied to the solutions generated by the model-sampling process of the EDA before 

they are returned as new candidate solutions. 

 

4.1  Probabilistic Model-Building and Model-Sampling by Bayesian Networks 

A Bayesian network (Pearl, 1988; Pelikan, 2005) comprises a structure and a set of parameters, 

where the structure is encoded by a directed acyclic graph with the nodes corresponding to the 

variables in the modelled data set. The edges in a Bayesian network correspond to conditional 

dependencies between nodes, and the parameters are represented by a set of conditional 

probability tables. Bayesian networks are often used to model multinomial data with both discrete 

and continuous variables by encoding the conditional dependence relationships between the 

variables contained in the modelled data. 
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Mathematically, an acyclic Bayesian network encodes a full joint probability distribution by the 

product 

                                                 ∏
=

=
n

i

ii XpaXpXp
1

))(|()( ,                                                           (6) 

where X = (X1, …, Xn) is a vector of all variables in the problem, pa(Xi) is the set of parents of Xi 

in the network (the set of nodes from which there exists an individual edge to Xi), and 

))(|( ii XpaXp  is the conditional probability of Xi conditioned on its parents pa(Xi). This 

distribution can be used to generate new instances using the marginal and conditional 

probabilities. 

 

Learning in a Bayesian network refers to the structure (i.e. topology) of the model, or the 

parameters (i.e. the values of the conditional probabilities), or both depending on whether the 

topology of the network is fixed (Mühlenbein and Mahnig, 1999) or not (Pelikan, 2005). The 

directed graph shown in Figure 1 denotes the solution structure of the problem, which represents, 

in essence, a fixed nurse-size vector of rules. In this model, the network structure is fixed, and 

thus learning in the Bayesian network, in our case, refers to parametric learning only. The goal of 

learning in this situation is to find the parameters of each conditional probability distribution that 

maximizes the likelihood of the population consisting of a number of promising solutions. 

 

Compared with structural learning, parametric learning for a given structure is simple, because 

the value of each variable in the population of promising solutions is fully observed. In our 

proposed network, learning amounts to counting and hence we use the symbol ‘#’ meaning ‘the 

number of’ in the following equations. It calculates the conditional probabilities of each possible 

value for each node given all possible values of its parents. For example, for node Ni+1,j’ with a 

parent Nij, its conditional probability is computed as 

            
),(#),(#
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Note that nodes N1j in the first hierarchical layer have no parents. In this circumstance, their 

probabilities are computed as 

                                        
setsTraining

trueN

falseNtrueN
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NP

j

jj

j

j
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)(#
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1

11

1

1

=
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To facilitate the understanding of how these probabilities are computed, let us create a simple 

dummy problem of scheduling three nurses by three rules (shown in Figure 2 below). The 

scheduling process is repeated 50 times. Each time, rules are randomly used to get a solution, 

whether it is feasible or not. The value adjacent to each edge represents the total number of times 

that this edge has been used in the 50 runs. For example, if one of the solutions is obtained by 

using rule 2 to schedule nurse 1, rule 3 to nurse 2 and rule 1 to nurse 3, then there exists a path of 

“N12�N23�N31”, and the count of edge “N12�N23” and edge “N23�N31” are increased by one 

respectively. 

 

Figure 2 about here 

 

Therefore, we can calculate the (conditional) probabilities of each node according to the above 

count. For the three nodes that have no parents, their probabilities are calculated as: 
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For all other nodes that have parents, their conditional probabilities are calculated as: 
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Once the parameters of the Bayesian network have been learned, new candidate solutions (i.e. 

new paths) are generated according to the distribution encoded by the learned network (see 

formula 6). This can be done by applying the method of probabilistic logic sampling (Pelikan, 

2005), which stochastically instantiates the Bayesian network, beginning with the root nodes and 

using the appropriate conditional distribution to extend the instantiation through the network. For 

our nurse rostering problem, since the first ancestral node in a solution has no parents, it will be 

chosen from nodes N1j in the first layer according to their probabilities. The next node will be 

chosen from nodes Nij according to their probabilities conditioned on the previous nodes. This 

building process is repeated until the last node has been chosen from nodes Nnj, where n is the 

number of the nurses. A link from nurse 1 to nurse n is thus created, representing a new possible 

solution. Since all the probability values are normalized, the roulette-wheel method can be used 

for rule selection. 

 

4.2  A Memetic EDA for Nurse Rostering 
Based on an estimation of conditional probabilities, we present a memetic EDA for the nurse 

rostering problem. It uses techniques from the field of modelling data by Bayesian networks to 

estimate the joint distribution of promising solutions. The nodes, or variables, in the Bayesian 

network correspond to the individual nurse-rule pairs by which a schedule will be built step by 

step. 

 

The general procedure of the proposed memetic EDA is similar to that of a memetic genetic 

algorithm. The initial population of candidate solutions, or paths, is generated at random 

according to a uniform distribution over the space of all potential paths. In each generation, a set 

of better paths is first selected from the current population. Any selection method biased towards 

better fitness can be used, and in this paper, the traditional roulette-wheel selection (i.e. 

proportional selection) is applied to sample the obtained selection probabilities. A probabilistic 

model based on the Bayesian network described in Section 4.1 is then built and the (conditional) 

probabilities of each node in the Bayesian network are computed. This built probabilistic model is 

then sampled to generate new paths by using these conditional probability values. Subsequently, 

an ant-miner algorithm implements local search on each resulting path and thus hopefully 

produces a set of improved paths or solutions. These newly produced solutions are then added 
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into the old population, replacing some of the old solutions. The process is repeated until stopping 

conditions are reached. The memetic EDA procedure is outlined in Figure 3. 

 

Figure 3 about here 

 

4.3  An Ant-Miner Algorithm for Local Refinement 
In nature, ants searching for food are able to find the shortest path between a food source and 

their nest by exchanging information via pheromones. This substance is laid on the ground when 

an ant moves, thus marking its path by a pheromone trail. While an isolated ant moves essentially 

at random, an ant encountering a previously laid trail can detect it and is attracted to it with high 

probability, thus reinforcing the trail with its own pheromone. The more ants follow a trail, the 

more attractive that trail becomes for the following ants. The process is thus characterized by a 

positive feedback loop, in which the probability that an ant will choose a path increases with the 

number of ants that previously chose the same path. 

 

Ant colony algorithms (Dorigo and Stützle, 2004) are inspired by the behaviour of real ants. In 

ant colony algorithms, artificial ants are used to search for good quality solutions to the 

combinatorial optimization problems under considered. Each ant constructs a complete solution 

by starting with a null solution and adding a solution component at each step until a complete 

solution is constructed. The selection of this added component is influenced through problem-

specific heuristic information as well as (artificial) pheromone trails. After an artificial ant has 

constructed a feasible solution, the pheromone trails are updated depending on the objective 

function value of the constructed solution. This update will influence the selection process of the 

next ants. 

 

Using ant colony algorithms in nurse rostering is a rather new approach. The only related work 

we have found in the literature is an in press paper (Gutjahr and Rauner, 2006), which solves a 

dynamic regional nurse-scheduling problem in Austria. Our ant-miner algorithm also takes ideas 

from the ant colony paradigm and has been adapted to a different nurse rostering problem in the 

UK to improve individual solutions further. It is more like a simplified ant colony algorithm by 

allowing just one ant in each ant-cycle to speed up the local search process. Each move that an ant 

takes corresponds to a node (i.e. a nurse-rule pair shown in Figure 1) which has some amount of 

pheromone indicating how good the choice of that node was in former runs. The amount of 

pheromone on each node is constantly assessed and updated, intending to reinforce nodes that are 

used in better solutions. Since the nurse rostering problem that we are addressing in this paper is a 

minimization problem, once a solution is constructed, some amount of pheromone, which is 

inversely proportional to the cost of the resulting solution, will be evenly laid on all nodes in the 

solution. The smaller the solution cost, the greater the amount of pheromone assigned to each 

node in the solution. 

 

We call a cycle of the ant-miner algorithm a generation, after which a path from nurse 1 to nurse 

n connecting n nodes is constructed and a new solution is thus obtained. Let τij(t) be the intensity 

of the pheromone trail for node }),...,1{};,...,1{( rjniN
ij

∈∈ , where n is the number of nurses and 

r is the number of rules used to schedule nurses, at generation t. The trail intensity of node Nij at 

the next generation (t+1) is updated according to the following formula 

                                                               
ijijij

tt ττρτ ∆+×=+ )()1( ,                                              (9) 

where ρ is a coefficient such that (1-ρ) represents the evaporation of each trail between two 

generations, and the value of ρ must be smaller than 1 to avoid unlimited accumulation of 

pheromone trails. ∆τij is the amount of pheromone laid on node Nij, which is defined as 
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





 ×

=∆

 otherwise  0,

solution current   thebuild  toused is N node if  ,
ij

tij
c

DQ

τ                            (10) 

and 

                       




=
 otherwise  1,

far so foundsolution best   theissolution current   theif  ,d
D                            (11) 

where Q is a constant, ct is the solution cost obtained at the t-th generation and d is also a constant 

representing the additional reinforcement times if the resulting solution is also the best solution 

found so far. 

 

As a local search processor, the ant-miner algorithm starts the search from individual solutions 

already produced by the main EDA. In each solution’s refinement process, high pheromone levels 

must be deposited on the initial trail in order for later miners to follow the trail with high 

probability. Thus, we initialize the trail intensities of node Nij for each ant-miner algorithm started 

from each generation of the EDA as 

                   




=
 otherwise  ,

antan for solution  initial in the used is N node if  ,
)0(

2

ij1

B

B
ij

τ                                (12) 

where B1 and B2 are constants, satisfying B1 > B2. 

 

In determining which nodes should be used in building a schedule, nodes with higher trail 

intensity are more desirable. Thus, we can define the probability of choosing node Nij at 

generation t as 

                                                        },...,2,1{,

)(

)(
)(

1

ni

t

t
tp

r

j

ij

ij

ij ∈∀=

∑
=

τ

τ
.                                           (13) 

 

Given the definitions above, we design an ant-miner algorithm to implement local refinement 

starting from individual resulting solutions in each generation of the memetic EDA (described in 

Section 4.2). The general structure of the proposed algorithm is outlined in Figure 4. 

Figure 4 about here 

 

To explain how the pheromone trails are laid and reinforced, we will give a simple example of 

scheduling three nurses by four rules. In the trail intensity updating formulae (10), (11) and (12), 

we set constant Q = 4, d = 2, coefficient ρ = 0.5, B1 = 5 and B2 = 1. The initial solution S0, with an 

associated cost of 5, is generated by using “rule 1 for nurse 1, rule 4 for nurse 2 and rule 3 for 

nurse 3” denoted as the node sequence “
332411

NNN →→ ”. The next solution, with a cost of 4, is 

generated by using “rule 4 for nurse 1, rule 2 for nurse 2 and rule 3 for nurse 3” denoted as 

“
332214

NNN →→ ”. Thus, the trail intensity matrix (13) at each generation is updated as follows: 
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5  Computational Results 
 

In this section, we present the results of extensive experiments on a nurse rostering problem with 

52 real data instances collected from a major UK hospital and we compare them to results of the 

same data instances found previously by other algorithms. 

 

5.1  Details of Algorithms 
Table 1 lists detailed computational results of various approaches over 52 instances. The results 

listed in Table 1 are based on multiple runs with different random seeds and the last row contains 

the mean values of all columns (N/A indicates no feasible solution was found): 

• IP: optimal solutions found with a commercial IP software package (called XPRESS MP) 

(Dowsland and Thompson, 2000); 

• GA: best result out of 20 runs from a parallel GA with multiple sub-populations and 

intelligent parameter adaptation (Aickelin and White, 2004); 

• Rd-1: best result of 20,000 iterations of a random search, i.e. only the first random rule is in 

use; 

• Rd-2: best results of 20,000 iterations of a search with random rule-selection, i.e. using six 

rules but every rule has an equal opportunity to be chosen all the time for all nurses; 

• Cost: best result out of 20 runs; 

• Inf: number of runs terminating with the best solution being infeasible; 

• #: number of runs terminating with the best solution being optimal or equal to the best 

known; 

• <3: number of runs terminating with the best solution being within three cost units of the 

optimum. The value of three units was chosen as it corresponds to the penalty cost of 

violating the least important level of requests in the original formulation. Thus, these 

solutions are still acceptable to the hospital. 

 

For all data instances, we used the following set of fixed parameters to implement our 

experiments. These parameters are based on our experience and intuition and thus are not 

necessarily the best for each instance. We have kept them the same for consistency at this stage. 

 

• Number of generations: 200 for the EDA and 5 for each ant-miner algorithm; 

• For the ‘k-Cheapest’ rule, k = 5; 

• Weight set in formula (4): w1 =1, w2 =1, w3 =8 and w4 =2; 

• Penalty weight in fitness function (5): w5 =200; 

• The number of solutions kept in each generation = 140 (EDA only), in which 100 solutions 

are selected by the roulette wheel method and remaining ones are the best 40 solutions in the 

previous generation; 

• The trail intensities updating in formulae (9), (10) and (11): ρ = 0.97, Q = 100 and d = 2; 

• The initial trail densities in formula (12): B1 = 10 and B2 = 1; 

• Number of runs = 20. 
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Our proposed algorithm was coded in Java 2, and all instances were run on the same Pentium 4 

2.0GHz PC with 512MB RAM under the Windows XP operating system. The execution time per 

run per data instance is approximately half a minute for the EDA without local refinement and 2-

3 minutes for the EDA with local refinement. With regard to the IP and the parallel GA, they 

were run on a different Pentium III PC. This took in excess of 24 hours (ILP) and approximately 

half a minute (single parallel GA run using C) respectively. However, an accurate comparison in 

terms of CPU time among the three algorithms is difficult due to the different environments that 

were in use. We still conclude that our algorithm is much faster than the ILP and probably a bit 

slower than the GA, particularly when we implement local refinement in the EDA. However, if 

we compare the EDA with the GA based on the ‘number of evaluations’ (e.g. population size 

times number of generations), then they are approximately the same. 

 

5.2  Analysis of Results 
First, let us discuss the results in Table 1. Comparing the computational results on various test 

instances, one can see that using the random rule alone does not yield a single feasible solution, as 

the ‘Rd.1’ column shows. This underlines the problem difficulty. In addition, without learning, 

the results of randomly selecting one of the six rules at each move are much weaker, as the ‘Rd.2’ 

column shows. Thus, it is not simply enough to use the six rules to build schedules. With regard 

to the results of EDAs with and without local search, in general, the results found by the EDA 

without local search rival those found by a complex multi-population GA (with features of 

competing sub-populations and self-learning for good parameters), and the results by the EDA 

with local refinement are much better. Particularly impressive is the fact that, for both algorithms, 

a feasible solution is found in 100% of cases. Note that independently of the algorithm used, 

some data instances (i.e. 29, 31, 32, 50, 51 and 52) are harder to solve than others due to a 

shortage of nurses in some weeks. 
 

Table 1 about here 

 

Figures 5 and 6 show the results of the memetic EDA and the multi-population GA graphically. 

The bars above the x-axis represent solution quality: the black bars show the number of optimal 

solutions found (i.e. the value of ‘#’ in Table 1), the grey acceptable solutions (i.e. the value of 

‘<3’ in Table 1). The margin of ‘3’ is chosen because under the current hospital rules this 

represents the lowest level of a penalty for a single unfulfilled request and is still regarded as 

‘high quality’. The bars below the x-axis represent the number of times the algorithm failed to 

find a feasible solution (i.e. the value of ‘Inf’ in Table 1). Hence, the shorter the bar is below the 

x-axis and the longer above, the better the algorithm’s performance. Note that ‘missing’ bars 

mean that feasible, but not optimal solutions were found. 

 

Figure 5 shows that for the memetic EDA, 41 out of 52 data instances are solved to or near to 

optimality (within three cost units), and feasible solutions are always found for all data sets. For 

the genetic algorithm's performance shown in Figure 6, the results are similar: 42 data sets are 

solved well. However, many solutions are infeasible and, for two instances, not a single feasible 

solution had been identified. All algorithms except the IP one have difficulties in solving the data 

instances with nurse shortages, but the memetic EDA performs much better. 

 

                                                                         Figure 5 about here 

 

                                                                         Figure 6 about here 
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The behaviour of an individual run of the memetic EDA is as expected. By using a sample data 

instance 04, Figure 7 depicts its searching process. In this figure, the x-axis represents the number 

of generations and the y-axis represents the best solution cost found in each generation consisting 

of a number of candidate solutions. As shown in Figure 7, the optimal solution, with a cost of 17, 

is achieved at the generation of 57. Although the actual values may differ among various 

instances, the characteristic shapes of the curves are similar for all seeds and data instances. 

 

                                                                         Figure 7 about here 

 

Figure 8 gives the optimal or best-known solutions found by an IP software package, and 

compares the performance of different GAs (Aickelin and Dowsland, 2000; Aickelin and 

Dowsland, 2004) with two versions of our EDAs (i.e. with and without local search). These 

different versions of GAs are briefly explained as follows: The ‘Basic GA’ is a GA with standard 

genetic operators; the ‘Adapt GA’ is the same as the basic GA, but it also tries to self-learn good 

parameters during the runtime; the ‘Multipop GA’ is the same as the ‘Adapt GA’, but it also 

features competing sub-populations; the ‘Hillclimb’ GA is the same as the ‘Multipop GA’, but it 

also includes a local search in the form of a hill-climber around the current best solution. The 

comparison results are encouraging: within similar computational time, most complex GAs are 

outperformed in terms of feasibility, average and best results. Only the ‘Hillclimb GA’ performs 

slightly better in terms of best performance. 

 

                                                                     Figure 8 about here 

 

6  Conclusions and Future Work 
 

This paper presents a memetic EDA for nurse rostering, in which a local search procedure 

conducted by an ant-miner algorithm is embedded, to improve the resulting solutions in each 

generation of the EDA. Unlike most existing approaches, the new approach has the ability to 

build schedules using flexible, rather than fixed rules. Experimental results from real-world nurse 

rostering problems demonstrate that the proposed approach performs better than most existing 

approaches. Moreover, our approach is not “hard coded” to certain instances. It has been designed 

with the goal of being able to learn about new problem solving situations in mind. This emphasis 

is complementary to recent work on hyper-heuristics (Burke et al, 2003a; Ross, 2005). 

 

Although this work is presented in terms of nurse rostering, it is suggested that the method for 

explicit learning in our approach could be applied to many other scheduling problems where the 

schedules will be built systematically according to specific rules. It is also hoped that this 

research would shed light on the significant issue of how to include human-like learning into 

scheduling algorithms. It may, therefore, be of interest to practitioners and researchers in the areas 

of scheduling and evolutionary computation. 

 

Our future work will investigate the identification and extraction of good features in the solutions. 

Such features can be used more explicitly to solve the problem and hence reduce the search space. 

Furthermore, they will help the human scheduler to understand the problem better and actually 

learn from the search process for future rescheduling. Another direction for future research is to 

study how the order in which the nurses appear in the directed graph might affect solution quality. 

This paper applies a fixed order throughout the search and, potentially, a variable order would 

make it possible to improve the solution quality even further. 
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Figure 1: A graphic representation for rule-based nurse rostering 

 

 
Figure 2: A dummy problem with a size of 3-nurse and 3-rule 

 

______________________________________________________________________________ 
The memetic EDA for nurse rostering ( ) 

{ 

t’=0; 

Generate an initial population P(0); 

While (stopping condition not reached) { 

Select a set of promising paths S(t’) from P(t’); 

Build probabilistic model M(t’) for S(t’); 

Sample M(t’) to generate a set of new paths P1(t’); 

Improve each member in P1(t’) by an ant-miner algorithm and 

thus obtain a set of new paths P2(t’); 

Add P2(t’) into P(t’); 

t=t+1; 

} 

Return the best path; 

} 

                   Figure 3: The pseudocode of the memetic EDA 
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______________________________________________________________________________ 
The ant-miner algorithm for local refinement ( ) 

{ 

t=0; 

cbest= c0; 

for (i=0; i<Number of nurses; i++) 

for (j=0; j<Number of rules; j++) { 

If (node Nij is used in the initial solution) τij(0)=B1; 

Else τij(0)=B2; 

} 

While (t< Max. number of generations) { 
t = t+1; 

/* Build a solution according to the intensity of trails */ 

for (i=0; i<Number of nurses; i++) 

Use formula (13) to select one rule for nurse i; 

Compute ct; /* ct is the cost of the resulting solution */ 

If (ct ≤ cbest) cbest=ct; 

Use formula (12) to update τij(t) on all nodes 

} 

Return the best solution cost cbest; 

} 

 

                 Figure 4: The pseudo code of the ant-miner algorithm 
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                   Figure 5: Results of the memetic EDA over 52 instances 
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               Figure 6: Results of the multi-population GA over 52 instances 
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                    Figure 7: Sample run of the memetic EDA (for instance 04) 
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               Figure 8: Summary results of various optimization algorithms 
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Set IP GA Rd-1 Rd-2 EDA without ant-miner EDA with ant-miner 

     Cost Inf # <3 Cost Inf # <3 

01 8 8 N/A 27 8 0 19 20 8 0 19 19 

02 49 50 N/A 85 56 0 0 0 55 0 0 0 

03 50 50 N/A 97 50 0 2 5 50 0 5 8 

04 17 17 N/A 23 17 0 20 20 17 0 20 20 

05 11 11 N/A 51 11 0 8 16 11 0 10 19 

06 2 2 N/A 51 2 0 17 17 2 0 17 20 

07 11 11 N/A 80 14 0 0 3 14 0 0 6 

08 14 15 N/A 62 15 0 0 11 14 0 3 14 

09 3 3 N/A 44 14 0 0 0 3 0 2 5 

10 2 4 N/A 12 2 0 2 10 2 0 4 14 

11 2 2 N/A 12 2 0 2 20 2 0 5 19 

12 2 2 N/A 47 3 0 0 2 3 0 0 6 

13 2 2 N/A 17 3 0 0 20 3 0 0 19 

14 3 3 N/A 102 4 0 0 7 4 0 0 11 

15 3 3 N/A 9 4 0 0 20 4 0 0 19 

16 37 38 N/A 55 38 0 0 20 38 0 0 20 

17 9 9 N/A 146 9 0 4 11 9 0 8 15 

18 18 19 N/A 73 19 0 0 20 19 0 0 18 

19 1 1 N/A 135 10 0 0 0 9 0 0 0 

20 7 8 N/A 53 7 0 5 19 7 0 8 20 

21 0 0 N/A 19 1 0 0 20 1 0 0 20 

22 25 26 N/A 56 26 0 0 15 26 0 0 19 

23 0 0 N/A 119 1 0 0 20 0 0 5 20 

24 1 1 N/A 4 1 0 20 20 1 0 20 20 

25 0 0 N/A 3 0 0 18 20 0 0 20 20 

26 48 48 N/A 222 52 0 0 1 51 0 0 4 

27 2 2 N/A 158 28 0 0 0 18 0 0 0 

28 63 63 N/A 88 65 0 0 3 65 0 0 7 

29 15 141 N/A 31 109 0 0 0 23 0 0 0 

30 35 42 N/A 180 38 0 0 3 38 0 0 7 

31 62 166 N/A 253 159 0 0 0 111 0 0 0 

32 40 99 N/A 102 43 0 0 4 41 0 0 5 

33 10 10 N/A 30 11 0 0 8 11 0 0 12 

34 38 48 N/A 95 41 0 0 2 41 0 0 3 

35 35 35 N/A 118 46 0 0 0 43 0 0 0 

36 32 41 N/A 130 45 0 0 0 44 0 0 0 

37 5 5 N/A 28 7 0 0 7 7 0 0 12 

38 13 14 N/A 130 25 0 0 0 23 0 0 0 

39 5 5 N/A 44 8 0 0 3 8 0 0 8 

40 7 8 N/A 51 8 0 0 10 8 0 0 7 

41 54 54 N/A 87 55 0 0 15 55 0 0 19 

42 38 38 N/A 188 41 0 0 1 41 0 0 4 

43 22 39 N/A 86 23 0 0 13 23 0 0 17 

44 19 19 N/A 70 24 0 0 0 22 0 0 2 

45 3 3 N/A 34 6 0 0 2 6 0 0 6 

46 3 3 N/A 196 7 0 0 0 7 0 0 0 

47 3 4 N/A 11 3 0 13 20 3 0 16 18 

48 4 6 N/A 35 5 0 0 10 5 0 0 17 

49 27 30 N/A 69 30 0 0 2 30 0 0 2 

50 107 211 N/A 162 109 0 0 1 109 0 0 4 
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51 74 N/A N/A 197 171 0 0 0 107 0 0 0 

52 58 N/A N/A 135 67 0 0 0 66 0 0 0 

Av 21.1 37.1 N/A 82.9 29.7 0 2.5 8.5 25.2 0 3.1 10.1 

 

       Table 1: Comparison of results by various approaches over 52 instances 

 

 
 


