
An Estimation of Distribution Algorithm with Intelligent Local Search for Rule-

based Nurse Rostering

Uwe Aickelin, Edmund K. Burke and Jingpeng Li*

{uxa, ekb, jpl}@cs.nott.ac.uk

School of Computer Science and IT

The University of Nottingham

Nottingham, NG8 1BB

United Kingdom

* Corresponding author. Authors are in alphabetical order.

Journal of the Operational Research Society, in print, doi: 10.1057/palgrave.jors.2602308, pp TBA.

Abstract- This paper proposes a new memetic evolutionary algorithm to achieve explicit learning

in rule-based nurse rostering, which involves applying a set of heuristic rules for each nurse’s

assignment. The main framework of the algorithm is an estimation of distribution algorithm, in

which an ant-miner methodology improves the individual solutions produced in each generation.

Unlike our previous work (where learning is implicit), the learning in the memetic estimation of

distribution algorithm is explicit, i.e. we are able to identify building blocks directly. The overall

approach learns by building a probabilistic model, i.e. an estimation of the probability distribution

of individual nurse-rule pairs that are used to construct schedules. The local search processor (i.e.

the ant-miner) reinforces nurse-rule pairs that receive higher rewards. A challenging real world

nurse rostering problem is used as the test problem. Computational results show that the proposed

approach outperforms most existing approaches. It is suggested that the learning methodologies

suggested in this paper may be applied to other scheduling problems where schedules are built

systematically according to specific rules.

Keywords: Nurse Rostering, Estimation of Distribution Algorithm, Local Search, Ant Colony

Optimization

1 Introduction

Nurse rostering problems have been extensively studied over the past three decades (Burke et al,

2004; Cheang, 2003). Most of these problems are extremely difficult and have been regarded as

being more complex than the travelling salesman problem (Tien and Kamiyama, 1982). Early

research (e.g. Warner and Prawda, 1972) concentrated on the development of mathematical

programming models. To reduce computational complexity, these early researchers had to restrict

the problem dimensions and consider a relatively low number of constraints in their models,

resulting in methodologies that are too simple to be applied in most modern real world hospital

situations. However, modern mathematical programming approaches have been shown to be

effective for large problems when combined with heuristic methodologies (e.g. Bard and

Purnomo, 2007; Dowsland and Thompson, 2000).

Over the years, there have been many other attempts to solve nurse rostering problems within

reasonable time. Artificial intelligence approaches such as constraint programming (e.g. Meyer

auf’m Hofe, 2001) and knowledge based systems (e.g. Beddoe and Petrovic, 2006) have been

investigated with some success. Since the 1990’s, meta-heuristics have attracted the most

attention in tackling this problem. Genetic Algorithms (GAs) (e.g. see Sastry et al, 2005) form an

important class of meta-heuristics, and have been extensively applied in nurse rostering (e.g.

Aickelin and Dowsland, 2000; Aickelin and Dowsland, 2004; Burke et al, 2001; Easton and

 2

Mansour, 1999; Kawanaka et al, 2001). A number of attempts have also been made by using

other meta-heuristics, such as simulated annealing (e.g. Brusco and Jacobs, 1995) and tabu search

(e.g. Burke et al, 1999; Ikegami and Niwa, 2003).

Most existing GA-based approaches for various nurse rostering problems are direct approaches,

in which the individuals in the population represent direct encodings of solutions. However, these

problems can also be solved indirectly (Aickelin and Dowsland, 2004). A similar in direct

approach has been employed on another personnel rostering problem – driver scheduling (Li and

Kwan, 2003; Li and Kwan, 2005). The idea is that we first transform the original problem into

another rule-based problem in which we define a set of heuristic rules for the nurses’ assignment,

and then solve it by using building heuristics to construct schedules step by step based on these

predefined rules (Aickelin, 2002).

In previous indirect approaches, learning was implicit and restricted to the efficient adjustment of

weights for the set of rules that is used to build the schedules (Aickelin and Dowsland, 2004; Li

and Kwan, 2003). The major limitation for this type of learning is that once the best weight

combination is found, the rules used in the build process are fixed at each iteration. One of the

motivations for this paper is based upon the observation that when finishing a chess game, a long

sequence of interactive moves with a particular goal in mind is required. An intelligent schedule-

building process needs to build its solution in a similar way. Using fixed rules for each move is

not consistent with the human learning process. A human scheduler normally builds a schedule

systematically by following a set of rules. After much practice, the scheduler gradually masters

the knowledge of which solution parts go well with others. He/she can identify good parts and is

aware of the level of solution quality even if the scheduling process is not yet completed. The

skilled scheduler has the ability to finish a schedule by using flexible, rather than fixed, rules. To

establish an explicit learning mechanism from past solutions, two more human-like scheduling

algorithms, namely a cutting-edge Bayesian optimization algorithm and an adapted learning

classifier system, have been proposed and preliminarily outlined in (Li and Aickelin, 2004). This

paper extends the work in (Li and Aickelin, 2004) and presents a new memetic estimation of

distribution algorithm, in which an ant-miner algorithm is embedded as the local search processor

to improve the resulting solutions in each generation. Memetic approaches can be thought of as

hybridisations between evolutionary techniques and local search methods (e.g. see Krasnogor and

Smith, 2005; Krasnogor et al, 2004).

The work presented in this paper is motivated by the goal of attempting to explore how decision

support systems can learn to solve new problems. This is, of course, one of the major motivations

for recent work on hyper-heuristics (see Burke et al, 2003a; Ross, 2005). Hyper-heuristics can be

thought of as “heuristics to choose heuristics” (Ross, 2005). Recent work in this area has dealt

with a range of methodologies for selecting which heuristics to employ. Examples include

simulated annealing (e.g. Dowsland et al, 2006), genetic algorithms (e.g. Ross et al, 2003), choice

functions (e.g. Rattadilok et al, 2005), case based reasoning (e.g. Burke et al, 2006) and tabu

search (e.g. Kendal and Mohd Hussin, 2003). Indeed, Burke et al (2003b) presents a tabu search

hyper-heuristic that is evaluated on a university course timetabling problem and a variant of the

nurse rostering problem that is addressed in this paper. The authors use a tabu search mechanism

to select “low level” heuristics to solve the problem. The emphasis in much of the current body of

work on hyper-heuristics is the goal of developing systems that are more readily suitable for

different problem solving environments than the current state of the art. No direct comparisons of

results are possible, as Burke et al (2003) used randomized data and reported results in terms of

robustness across different problems rather than solution quality, but our general aim in this paper

 3

is the same. We have developed a methodology that can learn which nurse-rule pairs are most

appropriate.

The long-term aim of this research is to model the learning of a human scheduler. Humans can

provide high quality solutions, but this is tedious and time consuming. Typically, they construct

schedules based on rules learnt during scheduling. Due to human limitations, these rules are

typically simple. Hence, our rules will be relatively simple too. Nevertheless, human generated

schedules are of high quality due to the ability of the scheduler to switch between the rules, based

on the status of the current partial solution. One of the goals of the research presented in this

paper is that our proposed algorithm should perform this task.

2 The Nurse Rostering Problem

The problem addressed here is concerned with creating schedules for wards containing up to 30

nurses. The data is taken from a major UK hospital. The solutions must adhere to constraints

generated by staff contracts. They must also satisfy the requirement to have a certain number of

nurses of different grades on each shift. Finally, the solutions have to be seen to be fair to all

nurses. Although the hospital uses a planning horizon of five weeks, to reduce complexity, our

model employs just one week. However, this does not affect solution quality because historic

information, such as weekends worked in previous weeks, is fully incorporated into the penalty

costs pij. A particular challenge with this problem lies in the definition of grade, which facilitates

the substitute of nurses of higher grades to nurses of lower grades but not vice versa.

The day is partitioned into three shifts: two day shifts called ‘earlies’ and ‘lates’, and a longer

night shift. Until the final scheduling stage, ‘earlies’ and ‘lates’ are merged into day shifts. A

nurse normally works either days or nights in a given week, and a full week’s work usually

includes more days than nights. For example, a full-time nurse works 5 days or 4 nights, whereas

a part-time nurse works 4 days or 3 nights, 3 days or 3 nights, or 3 days or 2 nights. However,

exceptions are possible and some nurses have to work both day- and night-shifts in one week.

As described in (Aickelin and Dowsland, 2000), the problem can be decomposed into three

independent stages. The first stage uses a knapsack model to check if there are enough nurses to

meet demand. If not, additional nurses are allocated to the ward, so that the second stage will

always admit a feasible solution. The second stage is the most difficult and is concerned with the

actual allocations of days or nights to be worked by each nurse. The third stage then uses a

network flow model to assign those on days to ‘earlies’ and ‘lates’. The first and the third stages

are relatively easy to solve (Easton and Mansour, 1999). In this paper, we are only concerned

with the highly constrained second stage, i.e. allocating nurses to specific days and / or nights.

The numbers of days or nights to be worked by each nurse defines the set of feasible weekly work

patterns for that nurse. These will be referred to as shift patterns in the following. For example,

(1111100 0000000) would be a pattern where the nurse works the first 5 days and no nights. Each

possible weekly shift pattern for a given nurse can be represented as a 0-1 vector with 14

elements, where the first 7 elements represent the 7 days of the week and the last 7 elements the

corresponding 7 nights of the week. A ‘0’ or ’1’ in the vector denotes a scheduled day or night

‘off’ or ’on’ respectively. For each nurse, there are a limited number of shift patterns available.

For instance, a full-time nurse working either 5 days or 4 nights has a total of 21 (i.e. 5

7
C) feasible

day shift patterns and 35 (i.e. 4

7
C) feasible night shift patterns.

 4

Typically, there are between 20 and 30 nurses per ward, 3 grade-bands, 9 part time options

leading to 411 different shift patterns, which are listed in detail in (Aickelin and Dowsland,

2000). Thus, the integer programming formulation below has some 12330 binary variables and 72

constraints. Depending on the nurses’ preferences, the recent history of patterns worked, and the

overall attractiveness of the pattern, a penalty cost is allocated to each nurse-shift pattern pair.

These values were set in close consultation with the hospital and range from 0 (perfect) to 100

(unacceptable), with a bias towards lower values.

The problem has previously been addressed in (Aickelin and Dowsland, 2004; Burke et al, 2003).

It can be formulated as an integer linear program as follows.

Target function:

 Minimize ∑ ∑
= ∈

n

i

m

iFj

ijij xp
1)(

. (1)

Subject to:

1. Every nurse works exactly one feasible shift pattern:

 ∑
∈

∈∀=
m

iFj

ij nix
)(

},...,1{,1 ; (2)

2. The demand for nurses is fulfilled for every grade on every day and night:

 ∑ ∑
∈ =

∈∈∀≥
m

iFj

n

i

ksijjkis gskRxaq
)(1

},...,1{ and }14,...,1{, . (3)

Where

m = number of shift patterns;

n = number of nurses;

g = number of grades;

xij = 1 if nurse i works shift pattern j, 0 otherwise;

pij = preference cost of nurse i working shift pattern j;

F(i) = set of feasible shift patterns for nurse i;

qis = 1 if nurse i is of grade s or higher, 0 otherwise;

ajk = 1 if shift pattern j covers day/night k (1–7 are days and 8–14 are nights), 0 otherwise;

Rks = demand of nurses with grade s on day/night k;

2.1 A Graphic Representation of the Solution Space
The nurse rostering problem can be solved by transforming the original problem into another

rule-based problem, whose solution space is represented as a hierarchical and acyclic directed

graph (shown in Figure 1). The node }),...,1{};,...,1{(rjniN
ij

∈∈ in the graph denotes that nurse i

is assigned by using rule j, where n is the number of nurses to be scheduled and r is the number of

rules available in the building process. The directed edge (arrow) from node Nij to node Ni+1,j’

denotes a causal relationship represented by “Ni+1,j’ following Nij”, i.e. a rule link from nurse i to

nurse i+1 indicating nurse i is scheduled by rule j and nurse i+1 by rule j’. In this graph, a

possible solution is represented as a directed path from nurse 1 to nurse n connecting n nodes.

Figure 1 about here

 5

3 A Construction Heuristic for the Rule-Based Problem

Our method has been motivated by observing human working patterns. A building heuristic is

designed to form a schedule step by step by using a rule set consisting of six heuristic rules. Note

that other rules could also be added into the rule set.

3.1 Six Building Rules
The first rule, called ‘Random’ rule, is used to select a nurse’s shift pattern at random. Its purpose

is to introduce randomness into the search thus enlarging the search space, and most importantly

to ensure that the proposed algorithm has the ability to escape from local optima. This rule

mirrors much of a scheduler’s creativeness to generate different solutions if required.

The second rule is the ‘k-Cheapest’ rule. Disregarding the feasibility of the solution, it randomly

selects a shift pattern from a k-length list containing patterns with the k-cheapest costs pij, in an

effort to reduce the schedule cost as much as possible.

The third ‘Highest Undercover’ rule is designed to consider only the feasibility of the schedule. It

schedules one nurse at a time in a shift pattern that has the highest number of uncovered shifts.

For instance, assume a nurse is able to work under two shift patterns: one covers Monday to

Friday nights and the other covers Tuesday to Saturday nights. Furthermore, assume that the

current requirements for the nights from Monday to Sunday are as follows: (-3, 0, +1, -2, -1, -2,

0), where a negative number represents undercover and a positive number signifies over cover.

The Monday to Friday shift pattern hence has a cover value of 3 as the most negative value it

covers is -3, and the Tuesday to Saturday pattern has a value of 2. The ‘Highest Undercover’ rule

would assign the first pattern to this nurse due to its larger undercover value. Note that, in order to

ensure that high-grade nurses are not ‘wasted’ covering unnecessarily for nurses of lower grades,

for nurses of grade s, only the shifts requiring grade s nurses are counted as long as there is a

single uncovered shift for this grade. If all these are covered, shifts of the next lower grade are

considered and once these are filled those of the next lower grade.

The fourth rule, ‘Overall Cover’, is very similar to the third rule ‘Highest Cover’. The difference

is that the ‘Overall Cover’ rule tries to find shift patterns with the largest amount of overall

undercover, which is the sum of individual undercover of each shift. Using the above example,

the Monday to Friday shift pattern has an overall cover value of 6 as the sum of undercover is -6,

while the Tuesday to Saturday pattern would have an overall cover value of 5. The Monday to

Friday pattern is therefore assigned.

The fifth ‘Contribution-A’ rule is biased towards solution quality but includes some aspects of

feasibility by computing an overall score for each feasible pattern for the nurse currently being

scheduled. It is designed to take into account the nurses’ preferences. It also takes into account

some covering constraints in which it gives preference to patterns that cover shifts that have not

yet been allocated sufficient nurses to meet their total requirements. In summary, this rule is to go

through the entire set of feasible shift patterns for a nurse and assign each one a score. The one

with the highest (i.e. best) score is chosen. The score of a shift pattern Sij can be denoted as

)100()(
4

3

1

14

1
ij

s k
ksjkissij

pwdaqwS −+=∑ ∑
= =

, (4)

 6

where }3,2,1{, ∈sw
s

, is the weight of covering an uncovered shift of grade s, w4 is the weight of

the nurse’s pij value for the shift pattern, ajk is 1 if shift pattern j covers day k and 0 otherwise, and

dks is 1 if there are still nurses needed on day k of grade s and 0 otherwise. Note that (100−pij)

must be used in the score, as higher pij values are worse and the maximum for pij is 100.

The sixth rule, ‘Contribution-B’, also uses formula (4) to assign each feasible shift pattern a

score, but it uses a different definition of dks. Here dks equals the actual number of nurses required

if there are still nurses needed on day k of grade s, 0 otherwise.

3.2 Fitness Function
Our nurse rostering problem is complicated by the fact that higher qualified nurses can be

substituted for nurses with lower qualifications but not vice versa. Furthermore, the problem has a

special day-night structure as most of the nurses are contracted to work either days or nights in

one week but not both. These two characteristics mean that the finding and maintaining of

feasible solutions in any heuristic search is extremely difficult. Therefore, a penalty function

approach is needed while calculating the fitness of completed solutions. Since the chosen

encoding automatically satisfies constraint (2) of the integer programming formulation, we can

use the following formula to calculate the fitness of solutions (the fitter the solution, the lower its

fitness value):

 Minimize ∑∑ ∑∑ ∑∑
= = = = = =

















−+

n

i

m

j k

p

s

n

i

m

j
ijjkisksijij

xaqRwxp
1 1

14

1 1 1 1
5

0,max . (5)

Note that only undercovering is penalized not overcovering. Hence, the max function is used in

formula (5). The parameter w5 is the penalty weight used to adjust the penalty that a solution has

added to its fitness, and this penalty is proportional to the number of uncovered shifts. For

example, consider a solution with an objective function value of 15 that undercovers the Monday

day shift by one shift and the Tuesday night shift by two shifts. If the penalty weight was set to

20, the fitness of this solution would be 15 + (1+2)*20 = 75.

4 An Estimation of Distribution Algorithm with Intelligent Local Search

An Estimation of Distribution Algorithm (EDA) (Bosman and Thierens, 2000; Larranaga, 2002;

Larranaga and Lozano, 2002; Pelikan et al, 2002) is a probabilistic model-building genetic

algorithm. However, unlike a traditional genetic algorithm which applies crossover to pairs of

selected solutions and then applies mutation to each of the resulting solutions (e.g. see Sastry et

al, 2005), EDAs build a probabilistic model based on selected solutions and then sample the

model to generate new candidate solutions. This section introduces a memetic EDA, in which a

local search procedure conducted by an ant-miner algorithm is integrated in the EDA. Such a

procedure is applied to the solutions generated by the model-sampling process of the EDA before

they are returned as new candidate solutions.

4.1 Probabilistic Model-Building and Model-Sampling by Bayesian Networks

A Bayesian network (Pearl, 1988; Pelikan, 2005) comprises a structure and a set of parameters,

where the structure is encoded by a directed acyclic graph with the nodes corresponding to the

variables in the modelled data set. The edges in a Bayesian network correspond to conditional

dependencies between nodes, and the parameters are represented by a set of conditional

probability tables. Bayesian networks are often used to model multinomial data with both discrete

and continuous variables by encoding the conditional dependence relationships between the

variables contained in the modelled data.

 7

Mathematically, an acyclic Bayesian network encodes a full joint probability distribution by the

product

 ∏
=

=
n

i

ii XpaXpXp
1

))(|()(, (6)

where X = (X1, …, Xn) is a vector of all variables in the problem, pa(Xi) is the set of parents of Xi

in the network (the set of nodes from which there exists an individual edge to Xi), and

))(|(ii XpaXp is the conditional probability of Xi conditioned on its parents pa(Xi). This

distribution can be used to generate new instances using the marginal and conditional

probabilities.

Learning in a Bayesian network refers to the structure (i.e. topology) of the model, or the

parameters (i.e. the values of the conditional probabilities), or both depending on whether the

topology of the network is fixed (Mühlenbein and Mahnig, 1999) or not (Pelikan, 2005). The

directed graph shown in Figure 1 denotes the solution structure of the problem, which represents,

in essence, a fixed nurse-size vector of rules. In this model, the network structure is fixed, and

thus learning in the Bayesian network, in our case, refers to parametric learning only. The goal of

learning in this situation is to find the parameters of each conditional probability distribution that

maximizes the likelihood of the population consisting of a number of promising solutions.

Compared with structural learning, parametric learning for a given structure is simple, because

the value of each variable in the population of promising solutions is fully observed. In our

proposed network, learning amounts to counting and hence we use the symbol ‘#’ meaning ‘the

number of’ in the following equations. It calculates the conditional probabilities of each possible

value for each node given all possible values of its parents. For example, for node Ni+1,j’ with a

parent Nij, its conditional probability is computed as

),(#),(#

),(#

)(

),(
)|(

,1,1

,1,1

,1
trueNfalseNtrueNtrueN

trueNtrueN

NP

NNP
NNP

ijjiijji

ijji

ij

ijji

ijji ==+==

==
==

′+′+

′+′+
′+

. (7)

Note that nodes N1j in the first hierarchical layer have no parents. In this circumstance, their

probabilities are computed as

setsTraining

trueN

falseNtrueN

trueN
NP

j

jj

j

j
 #

)(#

)(#)(#

)(#
)(

1

11

1

1

=
=

=+=

=
= . (8)

To facilitate the understanding of how these probabilities are computed, let us create a simple

dummy problem of scheduling three nurses by three rules (shown in Figure 2 below). The

scheduling process is repeated 50 times. Each time, rules are randomly used to get a solution,

whether it is feasible or not. The value adjacent to each edge represents the total number of times

that this edge has been used in the 50 runs. For example, if one of the solutions is obtained by

using rule 2 to schedule nurse 1, rule 3 to nurse 2 and rule 1 to nurse 3, then there exists a path of

“N12�N23�N31”, and the count of edge “N12�N23” and edge “N23�N31” are increased by one

respectively.

Figure 2 about here

Therefore, we can calculate the (conditional) probabilities of each node according to the above

count. For the three nodes that have no parents, their probabilities are calculated as:

 8

50

15

)357()4115()3210(

3210
)(11 =

++++++++
++

=NP ,
50

20

50

4115
)(12 =

++
=NP ,

50

357
)(13

++
=NP .

For all other nodes that have parents, their conditional probabilities are calculated as:

15

10

3210

10
)|(1121 =

++
=NNP ,

15

2

3210

2
)|(1122 =

++
=NNP ,

15

3

3210

3
)|(1123 =

++
=NNP ,

20

5

4115

5
)|(1221 =

++
=NNP ,

20

10

4115

11
)|(

1222
=

++
=NNP ,

20

4

4115

4
)|(1223 =

++
=NNP ,

15

7

357

7
)|(1321 =

++
=NNP ,

15

5

357

5
)|(1322 =

++
=NNP ,

15

3

357

3
)|(1323 =

++
=NNP ,

19

7

397

7
)|(2131 =

++
=NNP ,

19

9

397

9
)|(2132 =

++
=NNP ,

19

3

397

3
)|(2133 =

++
=NNP ,

17

11

5111

11
)|(2231 =

++
=NNP ,

17

1

5111

1
)|(2232 =

++
=NNP ,

17

5

5111

5
)|(2233 =

++
=NNP ,

14

10

0410

10
)|(2331 =

++
=NNP ,

14

4

0410

4
)|(2332 =

++
=NNP ,

14

0

0410

0
)|(2333 =

++
=NNP .

Once the parameters of the Bayesian network have been learned, new candidate solutions (i.e.

new paths) are generated according to the distribution encoded by the learned network (see

formula 6). This can be done by applying the method of probabilistic logic sampling (Pelikan,

2005), which stochastically instantiates the Bayesian network, beginning with the root nodes and

using the appropriate conditional distribution to extend the instantiation through the network. For

our nurse rostering problem, since the first ancestral node in a solution has no parents, it will be

chosen from nodes N1j in the first layer according to their probabilities. The next node will be

chosen from nodes Nij according to their probabilities conditioned on the previous nodes. This

building process is repeated until the last node has been chosen from nodes Nnj, where n is the

number of the nurses. A link from nurse 1 to nurse n is thus created, representing a new possible

solution. Since all the probability values are normalized, the roulette-wheel method can be used

for rule selection.

4.2 A Memetic EDA for Nurse Rostering
Based on an estimation of conditional probabilities, we present a memetic EDA for the nurse

rostering problem. It uses techniques from the field of modelling data by Bayesian networks to

estimate the joint distribution of promising solutions. The nodes, or variables, in the Bayesian

network correspond to the individual nurse-rule pairs by which a schedule will be built step by

step.

The general procedure of the proposed memetic EDA is similar to that of a memetic genetic

algorithm. The initial population of candidate solutions, or paths, is generated at random

according to a uniform distribution over the space of all potential paths. In each generation, a set

of better paths is first selected from the current population. Any selection method biased towards

better fitness can be used, and in this paper, the traditional roulette-wheel selection (i.e.

proportional selection) is applied to sample the obtained selection probabilities. A probabilistic

model based on the Bayesian network described in Section 4.1 is then built and the (conditional)

probabilities of each node in the Bayesian network are computed. This built probabilistic model is

then sampled to generate new paths by using these conditional probability values. Subsequently,

an ant-miner algorithm implements local search on each resulting path and thus hopefully

produces a set of improved paths or solutions. These newly produced solutions are then added

 9

into the old population, replacing some of the old solutions. The process is repeated until stopping

conditions are reached. The memetic EDA procedure is outlined in Figure 3.

Figure 3 about here

4.3 An Ant-Miner Algorithm for Local Refinement
In nature, ants searching for food are able to find the shortest path between a food source and

their nest by exchanging information via pheromones. This substance is laid on the ground when

an ant moves, thus marking its path by a pheromone trail. While an isolated ant moves essentially

at random, an ant encountering a previously laid trail can detect it and is attracted to it with high

probability, thus reinforcing the trail with its own pheromone. The more ants follow a trail, the

more attractive that trail becomes for the following ants. The process is thus characterized by a

positive feedback loop, in which the probability that an ant will choose a path increases with the

number of ants that previously chose the same path.

Ant colony algorithms (Dorigo and Stützle, 2004) are inspired by the behaviour of real ants. In

ant colony algorithms, artificial ants are used to search for good quality solutions to the

combinatorial optimization problems under considered. Each ant constructs a complete solution

by starting with a null solution and adding a solution component at each step until a complete

solution is constructed. The selection of this added component is influenced through problem-

specific heuristic information as well as (artificial) pheromone trails. After an artificial ant has

constructed a feasible solution, the pheromone trails are updated depending on the objective

function value of the constructed solution. This update will influence the selection process of the

next ants.

Using ant colony algorithms in nurse rostering is a rather new approach. The only related work

we have found in the literature is an in press paper (Gutjahr and Rauner, 2006), which solves a

dynamic regional nurse-scheduling problem in Austria. Our ant-miner algorithm also takes ideas

from the ant colony paradigm and has been adapted to a different nurse rostering problem in the

UK to improve individual solutions further. It is more like a simplified ant colony algorithm by

allowing just one ant in each ant-cycle to speed up the local search process. Each move that an ant

takes corresponds to a node (i.e. a nurse-rule pair shown in Figure 1) which has some amount of

pheromone indicating how good the choice of that node was in former runs. The amount of

pheromone on each node is constantly assessed and updated, intending to reinforce nodes that are

used in better solutions. Since the nurse rostering problem that we are addressing in this paper is a

minimization problem, once a solution is constructed, some amount of pheromone, which is

inversely proportional to the cost of the resulting solution, will be evenly laid on all nodes in the

solution. The smaller the solution cost, the greater the amount of pheromone assigned to each

node in the solution.

We call a cycle of the ant-miner algorithm a generation, after which a path from nurse 1 to nurse

n connecting n nodes is constructed and a new solution is thus obtained. Let τij(t) be the intensity

of the pheromone trail for node }),...,1{};,...,1{(rjniN
ij

∈∈ , where n is the number of nurses and

r is the number of rules used to schedule nurses, at generation t. The trail intensity of node Nij at

the next generation (t+1) is updated according to the following formula

ijijij

tt ττρτ ∆+×=+)()1(, (9)

where ρ is a coefficient such that (1-ρ) represents the evaporation of each trail between two

generations, and the value of ρ must be smaller than 1 to avoid unlimited accumulation of

pheromone trails. ∆τij is the amount of pheromone laid on node Nij, which is defined as

 10







 ×

=∆

 otherwise 0,

solution current thebuild toused is N node if ,
ij

tij
c

DQ

τ (10)

and





=
 otherwise 1,

far so foundsolution best theissolution current theif ,d
D (11)

where Q is a constant, ct is the solution cost obtained at the t-th generation and d is also a constant

representing the additional reinforcement times if the resulting solution is also the best solution

found so far.

As a local search processor, the ant-miner algorithm starts the search from individual solutions

already produced by the main EDA. In each solution’s refinement process, high pheromone levels

must be deposited on the initial trail in order for later miners to follow the trail with high

probability. Thus, we initialize the trail intensities of node Nij for each ant-miner algorithm started

from each generation of the EDA as





=
 otherwise ,

antan for solution initial in the used is N node if ,
)0(

2

ij1

B

B
ij

τ (12)

where B1 and B2 are constants, satisfying B1 > B2.

In determining which nodes should be used in building a schedule, nodes with higher trail

intensity are more desirable. Thus, we can define the probability of choosing node Nij at

generation t as

 },...,2,1{,

)(

)(
)(

1

ni

t

t
tp

r

j

ij

ij

ij ∈∀=

∑
=

τ

τ
. (13)

Given the definitions above, we design an ant-miner algorithm to implement local refinement

starting from individual resulting solutions in each generation of the memetic EDA (described in

Section 4.2). The general structure of the proposed algorithm is outlined in Figure 4.

Figure 4 about here

To explain how the pheromone trails are laid and reinforced, we will give a simple example of

scheduling three nurses by four rules. In the trail intensity updating formulae (10), (11) and (12),

we set constant Q = 4, d = 2, coefficient ρ = 0.5, B1 = 5 and B2 = 1. The initial solution S0, with an

associated cost of 5, is generated by using “rule 1 for nurse 1, rule 4 for nurse 2 and rule 3 for

nurse 3” denoted as the node sequence “
332411

NNN →→ ”. The next solution, with a cost of 4, is

generated by using “rule 4 for nurse 1, rule 2 for nurse 2 and rule 3 for nurse 3” denoted as

“
332214

NNN →→ ”. Thus, the trail intensity matrix (13) at each generation is updated as follows:

 Gen. 0 Gen. 1

















=
















×+

×+

×+

⇒
















5.05.45.05.0

5.25.05.25.0

5.25.05.05.2

2/14/)24(2/52/12/1

2/52/14/)24(2/52/1

4/)24(2/12/12/12/5

1511

5111

1115

 11

5 Computational Results

In this section, we present the results of extensive experiments on a nurse rostering problem with

52 real data instances collected from a major UK hospital and we compare them to results of the

same data instances found previously by other algorithms.

5.1 Details of Algorithms
Table 1 lists detailed computational results of various approaches over 52 instances. The results

listed in Table 1 are based on multiple runs with different random seeds and the last row contains

the mean values of all columns (N/A indicates no feasible solution was found):

• IP: optimal solutions found with a commercial IP software package (called XPRESS MP)

(Dowsland and Thompson, 2000);

• GA: best result out of 20 runs from a parallel GA with multiple sub-populations and

intelligent parameter adaptation (Aickelin and White, 2004);

• Rd-1: best result of 20,000 iterations of a random search, i.e. only the first random rule is in

use;

• Rd-2: best results of 20,000 iterations of a search with random rule-selection, i.e. using six

rules but every rule has an equal opportunity to be chosen all the time for all nurses;

• Cost: best result out of 20 runs;

• Inf: number of runs terminating with the best solution being infeasible;

• #: number of runs terminating with the best solution being optimal or equal to the best

known;

• <3: number of runs terminating with the best solution being within three cost units of the

optimum. The value of three units was chosen as it corresponds to the penalty cost of

violating the least important level of requests in the original formulation. Thus, these

solutions are still acceptable to the hospital.

For all data instances, we used the following set of fixed parameters to implement our

experiments. These parameters are based on our experience and intuition and thus are not

necessarily the best for each instance. We have kept them the same for consistency at this stage.

• Number of generations: 200 for the EDA and 5 for each ant-miner algorithm;

• For the ‘k-Cheapest’ rule, k = 5;

• Weight set in formula (4): w1 =1, w2 =1, w3 =8 and w4 =2;

• Penalty weight in fitness function (5): w5 =200;

• The number of solutions kept in each generation = 140 (EDA only), in which 100 solutions

are selected by the roulette wheel method and remaining ones are the best 40 solutions in the

previous generation;

• The trail intensities updating in formulae (9), (10) and (11): ρ = 0.97, Q = 100 and d = 2;

• The initial trail densities in formula (12): B1 = 10 and B2 = 1;

• Number of runs = 20.

 12

Our proposed algorithm was coded in Java 2, and all instances were run on the same Pentium 4

2.0GHz PC with 512MB RAM under the Windows XP operating system. The execution time per

run per data instance is approximately half a minute for the EDA without local refinement and 2-

3 minutes for the EDA with local refinement. With regard to the IP and the parallel GA, they

were run on a different Pentium III PC. This took in excess of 24 hours (ILP) and approximately

half a minute (single parallel GA run using C) respectively. However, an accurate comparison in

terms of CPU time among the three algorithms is difficult due to the different environments that

were in use. We still conclude that our algorithm is much faster than the ILP and probably a bit

slower than the GA, particularly when we implement local refinement in the EDA. However, if

we compare the EDA with the GA based on the ‘number of evaluations’ (e.g. population size

times number of generations), then they are approximately the same.

5.2 Analysis of Results
First, let us discuss the results in Table 1. Comparing the computational results on various test

instances, one can see that using the random rule alone does not yield a single feasible solution, as

the ‘Rd.1’ column shows. This underlines the problem difficulty. In addition, without learning,

the results of randomly selecting one of the six rules at each move are much weaker, as the ‘Rd.2’

column shows. Thus, it is not simply enough to use the six rules to build schedules. With regard

to the results of EDAs with and without local search, in general, the results found by the EDA

without local search rival those found by a complex multi-population GA (with features of

competing sub-populations and self-learning for good parameters), and the results by the EDA

with local refinement are much better. Particularly impressive is the fact that, for both algorithms,

a feasible solution is found in 100% of cases. Note that independently of the algorithm used,

some data instances (i.e. 29, 31, 32, 50, 51 and 52) are harder to solve than others due to a

shortage of nurses in some weeks.

Table 1 about here

Figures 5 and 6 show the results of the memetic EDA and the multi-population GA graphically.

The bars above the x-axis represent solution quality: the black bars show the number of optimal

solutions found (i.e. the value of ‘#’ in Table 1), the grey acceptable solutions (i.e. the value of

‘<3’ in Table 1). The margin of ‘3’ is chosen because under the current hospital rules this

represents the lowest level of a penalty for a single unfulfilled request and is still regarded as

‘high quality’. The bars below the x-axis represent the number of times the algorithm failed to

find a feasible solution (i.e. the value of ‘Inf’ in Table 1). Hence, the shorter the bar is below the

x-axis and the longer above, the better the algorithm’s performance. Note that ‘missing’ bars

mean that feasible, but not optimal solutions were found.

Figure 5 shows that for the memetic EDA, 41 out of 52 data instances are solved to or near to

optimality (within three cost units), and feasible solutions are always found for all data sets. For

the genetic algorithm's performance shown in Figure 6, the results are similar: 42 data sets are

solved well. However, many solutions are infeasible and, for two instances, not a single feasible

solution had been identified. All algorithms except the IP one have difficulties in solving the data

instances with nurse shortages, but the memetic EDA performs much better.

 Figure 5 about here

 Figure 6 about here

 13

The behaviour of an individual run of the memetic EDA is as expected. By using a sample data

instance 04, Figure 7 depicts its searching process. In this figure, the x-axis represents the number

of generations and the y-axis represents the best solution cost found in each generation consisting

of a number of candidate solutions. As shown in Figure 7, the optimal solution, with a cost of 17,

is achieved at the generation of 57. Although the actual values may differ among various

instances, the characteristic shapes of the curves are similar for all seeds and data instances.

 Figure 7 about here

Figure 8 gives the optimal or best-known solutions found by an IP software package, and

compares the performance of different GAs (Aickelin and Dowsland, 2000; Aickelin and

Dowsland, 2004) with two versions of our EDAs (i.e. with and without local search). These

different versions of GAs are briefly explained as follows: The ‘Basic GA’ is a GA with standard

genetic operators; the ‘Adapt GA’ is the same as the basic GA, but it also tries to self-learn good

parameters during the runtime; the ‘Multipop GA’ is the same as the ‘Adapt GA’, but it also

features competing sub-populations; the ‘Hillclimb’ GA is the same as the ‘Multipop GA’, but it

also includes a local search in the form of a hill-climber around the current best solution. The

comparison results are encouraging: within similar computational time, most complex GAs are

outperformed in terms of feasibility, average and best results. Only the ‘Hillclimb GA’ performs

slightly better in terms of best performance.

 Figure 8 about here

6 Conclusions and Future Work

This paper presents a memetic EDA for nurse rostering, in which a local search procedure

conducted by an ant-miner algorithm is embedded, to improve the resulting solutions in each

generation of the EDA. Unlike most existing approaches, the new approach has the ability to

build schedules using flexible, rather than fixed rules. Experimental results from real-world nurse

rostering problems demonstrate that the proposed approach performs better than most existing

approaches. Moreover, our approach is not “hard coded” to certain instances. It has been designed

with the goal of being able to learn about new problem solving situations in mind. This emphasis

is complementary to recent work on hyper-heuristics (Burke et al, 2003a; Ross, 2005).

Although this work is presented in terms of nurse rostering, it is suggested that the method for

explicit learning in our approach could be applied to many other scheduling problems where the

schedules will be built systematically according to specific rules. It is also hoped that this

research would shed light on the significant issue of how to include human-like learning into

scheduling algorithms. It may, therefore, be of interest to practitioners and researchers in the areas

of scheduling and evolutionary computation.

Our future work will investigate the identification and extraction of good features in the solutions.

Such features can be used more explicitly to solve the problem and hence reduce the search space.

Furthermore, they will help the human scheduler to understand the problem better and actually

learn from the search process for future rescheduling. Another direction for future research is to

study how the order in which the nurses appear in the directed graph might affect solution quality.

This paper applies a fixed order throughout the search and, potentially, a variable order would

make it possible to improve the solution quality even further.

 14

Acknowledgements

The work was funded by the UK’s Engineering and Physical Sciences Research Council

(EPSRC), under grants GR/S70197/01 and GR/S31550/01.

References

Aickelin U (2002). An indirect genetic algorithm for set covering problems. Journal of

Operational Research Society 51: 1118-1126.

Aickelin U and Dowsland K (2000). Exploiting problem structure in a genetic algorithm approach

to a nurse rostering problem. Journal of Scheduling 3: 139-153.

Aickelin U and Dowsland K (2004). An indirect genetic algorithm for a nurse scheduling

problem. Computers and Operations Research 31: 761-778.

Aickelin U and White P (2004). Building better nurse scheduling algorithms. Annals of

Operations Research 128: 159-177.

Bard J F and Purnomo W (2007). A cyclic preference scheduling of nurses using a Lagrangian-

based heuristic. Journal of Scheduling 10 (to appear).

Beddoe G and Petrovic S (2006). Selecting and weighting features using a genetic algorithm in a

case-based reasoning approach to personnel rostering. European Journal of Operational Research

(to appear).

Bosman P A N and Thierens D (2000). Expanding from discrete to continuous estimation of

distribution algorithms: The IDEA. In: Deb Schoenauer M et al. (eds). Parallel Problem Solving

from Nature. Springer Lecture Notes in Computer Science Volume 1917, pp. 767-776.

Brusco M J and Jacobs L W (1995). Cost analysis of alternative formulations for personnel

scheduling in continuously operating organisations. European Journal of Operational Research

86: 249-261.

Burke E K, Causmaecker P, Vanden Berghe G and Landeghem H (2004). The state of the art of

nurse rostering. Journal of Scheduling 7: 441-499.

Burke E K, Cowling P, Causmaecker P and Vanden Berghe G (2001). A memetic approach to the

nurse rostering problem. Applied Intelligence 15: 199-214.

Burke E K, Causmaecker P and Vanden Berghe G (1999). A hybrid tabu search algorithm for the

nurse rostering problem. In McKay B (ed). Simulated Evolution and Learning. Springer Lecture

Notes in Artificial Intelligence Vol. 1585, pp. 187-194.

Burke E K, Kendall G, Newall J, Hart E, Ross P, and Schulenburg S (2003a). Hyper-heuristics:

an emerging direction in modern search technology. In: Glover F and Kochenberger G (eds).

Chapter 16 in Handbook of Meta-Heuristics. Kluwer, pp. 451-470.

 15

Burke E K, Kendall G and Soubeiga E (2003b). A tabu-search hyperheuristic for timetabling and

rostering. Journal of Heuristics 9: 451-470.

Burke E K, MacCollum B, Meisels A, Petrovic S and Qu R (2006). A graph-based hyperheuristic

for educational timetabling problems. European Journal of Operational Research (to appear).

Burke E K, Petrovic S and Qu R (2006). Case based heuristic selection for timetabling problems.

Journal of Scheduling 9: 115-132.

Cheang B, Li H, Lim A and Rodrigues B (2003). Nurse rostering problems – a bibliographic

survey. European Journal of Operational Research 151: 447-460.

Dorigo M and Stützle T (2004). Ant Colony Optimization. The MIT Press.

Dowsland K and Thompson J M (2000). Solving a nurse scheduling problem with knapsacks,

networks and tabu search. Journal of Operational Research Society 51: 825-833.

Dowsland K, Soubeiga E and Burke E K (2006). A simulated Annealing hyper-heuristic for

determining shipper sizes. European Journal of Operational Research (to appear).

Easton F F and Mansour N (1999). A distributed genetic algorithm for deterministic and

stochastic labor scheduling problems. European Journal of Operational Research 118: 505–523.

Gutjahr W J and Rauner M S (in print). An ACO algorithm for a dynamic regional nurse-

scheduling problem in Austria. Computers & Operations Research.

Ikegami A and Niwa A (2003). A subproblem-centric model and approach to the nurse rostering

problem. Mathematical Programming 97: 517-541.

Kawanaka H, Yamamoto K, Yoshikawa T, Shinogi T, and Tsuruoka S (2001). Genetic algorithm

with the constraints for nurse scheduling problem. in: Proceedings of Congress on Evolutionary

Computation. IEEE Society, pp 1123-1130.

Kendall G and Mohd Hussin (2005). Tabu search hyper-heuristic approach to the examination

timetabling problem at the MARA University of Technology. In: Burke E K and Trick M (eds).

Practice and Theory of Automated Timetabling. Springer LNCS 3616, pp. 270-293.

Krasnogor, N.; Smith, J. (2005). A tutorial for competent memetic algorithms: model, taxonomy,

and design issues, IEEE Transactions on Evolutionary Computation, 9: 474- 488.

Krasnogor, N; Hart, W. and Smith, J. (editors) (2004), Recent Advances in Memetic Algorithms

and Related Search Technologies , Springer, 2004.

Larranaga P (2002). A review on estimation of distribution algorithms. In: Larranaga P and

Lozano J A (eds). Estimation of Distribution Algorithm: A New Tool for Evolutionary

Computation. Kluwer, pp. 57-100.

Larranaga P and Lozano J A (2002). Estimation of Distribution Algorithms. Kluwer Academic

Publishers.

 16

Li J and Aickelin U (2004). The application of Bayesian optimization and classifier systems in

nurse scheduling. In: Yao X et al. (eds). Parallel Problem Solving from Nature. Springer Lecture

Notes in Computer Science Volume 3242, pp 581-590.

Li J and Kwan R S K (2003). A fuzzy genetic algorithm for driver scheduling. European Journal

of Operational Research 147: 334-344.

Li J and Kwan R S K (2005). A self-adjusting algorithm for driver scheduling. Journal of

Heuristics 11: 351-367.

Meyer auf’m Hofe H (2001). Solving rostering tasks as constraint optimization. In: Burke E K

and Erben W (eds). Practice and Theory of Automated Timetabling, 3rd International

Conference. Springer Lecture Notes in Computer Science Volume 2079, pp. 191-212.

Mühlenbein H and Mahnig T (1999). FDA – A scalable evolutionary algorithm for the

optimization of additively decomposed functions. Evolutionary Computation 7: 45-68.

Pearl J (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann Publishers.

Pelikan M (2005). Hierarchical Bayesian Optimization Algorithm: Toward a New Generation of

Evolutionary Algorithm. Springer.

Pelikan M, Goldberg D E and Lobo F G (2002). A survey of optimization by building and using

probabilistic models. Computational Optimization and Applications 21: 5-20.

Rattadilok P, Gaw A and Kwan R S K (2005). Distributed choice function hyper-heuristics for

timetabling and scheduling. In: Burke E K and Trick M (eds). Practice and Theory of Automated

Timetabling. Springer Lecture Notes in Computer Science Volume 3616, pp. 51-67.

Ross P (2005). Hyper-heuristics, In: Burke E K and Kendall G (eds). Chapter 16 in Search

Methodologies: Introductory Tutorials in Optimization and Decision Support Methodologies.

Springer.

Ross P, Marín-Blázquez J G, Schulenburg S and Hart E (2003). Learning a Procedure That Can

Solve Hard Bin-Packing Problems: A New GA-Based Approach to Hyper-heuristics In:

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2003). Springer

Lecture Notes in Computer Science Volume 2724, pp. 1295-1306.

Sastry, K, Kendall, G and Goldberg D (2005). Genetic algorithms. In: Burke E K and Kendall G
(eds). Search Methodologies: Introductory Tutorials in Optimisation, Decision Support and
Search Techniques. Springer, pp. 97-125.

Tien J M and Kamiyama A (1982). On manpower scheduling algorithms. Society for Industrial

and Applied Mathematics 24: 275–287.

Warner M and Prawda J (1972). A mathematical programming model for scheduling nursing

personnel in a hospital. Management Science 19: 411–422.

 17

Figure 1: A graphic representation for rule-based nurse rostering

Figure 2: A dummy problem with a size of 3-nurse and 3-rule

__
The memetic EDA for nurse rostering ()

{

t’=0;

Generate an initial population P(0);

While (stopping condition not reached) {

Select a set of promising paths S(t’) from P(t’);

Build probabilistic model M(t’) for S(t’);

Sample M(t’) to generate a set of new paths P1(t’);

Improve each member in P1(t’) by an ant-miner algorithm and

thus obtain a set of new paths P2(t’);

Add P2(t’) into P(t’);

t=t+1;

}

Return the best path;

}

 Figure 3: The pseudocode of the memetic EDA

N11 N12 N1,r

N22

Nn-1,2 Nn-1,1 Nn-1,r

Nn,1 Nn,2
Nn,r

N21 N2,r

N3,r N32 N31 . . .

. . .

. . .

.

. . .

. . .

7
N11 N12 N13

N21 N22 N23

N31 N32 N33

10 2

3
5

11

4

5 3

7 9

3
11

1

5
10

4 0

 18

__
The ant-miner algorithm for local refinement ()

{

t=0;

cbest= c0;

for (i=0; i<Number of nurses; i++)

for (j=0; j<Number of rules; j++) {

If (node Nij is used in the initial solution) τij(0)=B1;

Else τij(0)=B2;

}

While (t< Max. number of generations) {
t = t+1;

/* Build a solution according to the intensity of trails */

for (i=0; i<Number of nurses; i++)

Use formula (13) to select one rule for nurse i;

Compute ct; /* ct is the cost of the resulting solution */

If (ct ≤ cbest) cbest=ct;

Use formula (12) to update τij(t) on all nodes

}

Return the best solution cost cbest;

}

 Figure 4: The pseudo code of the ant-miner algorithm

-20

-10

0

10

20

No. infeasible No. Optimal No. within 3

 Figure 5: Results of the memetic EDA over 52 instances

 19

-20

-15

-10

-5

0

5

10

15

20

No. infeasible No. Optimal No. within 3

 Figure 6: Results of the multi-population GA over 52 instances

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80

Generation

Cost

 Figure 7: Sample run of the memetic EDA (for instance 04)

0

10

20

30

40

50

60

70

80

90

100

B
as
ic
 G
A

A
da
pt
 G
A

M
ul
ti
po
p
G
A

H
ill
cl
im
b
G
A

B
as
ic
 E
D
A

M
em
et
ic
 E
D
A

O
pt
im
al
 I
P

Type of Optimisation Algorithm

F
ea
si
b
il
it
y
(%
)
/
S
o
lu
ti
o
n
 C
o
st

Feasibility Average Best

 Figure 8: Summary results of various optimization algorithms

 20

Set IP GA Rd-1 Rd-2 EDA without ant-miner EDA with ant-miner

 Cost Inf # <3 Cost Inf # <3

01 8 8 N/A 27 8 0 19 20 8 0 19 19

02 49 50 N/A 85 56 0 0 0 55 0 0 0

03 50 50 N/A 97 50 0 2 5 50 0 5 8

04 17 17 N/A 23 17 0 20 20 17 0 20 20

05 11 11 N/A 51 11 0 8 16 11 0 10 19

06 2 2 N/A 51 2 0 17 17 2 0 17 20

07 11 11 N/A 80 14 0 0 3 14 0 0 6

08 14 15 N/A 62 15 0 0 11 14 0 3 14

09 3 3 N/A 44 14 0 0 0 3 0 2 5

10 2 4 N/A 12 2 0 2 10 2 0 4 14

11 2 2 N/A 12 2 0 2 20 2 0 5 19

12 2 2 N/A 47 3 0 0 2 3 0 0 6

13 2 2 N/A 17 3 0 0 20 3 0 0 19

14 3 3 N/A 102 4 0 0 7 4 0 0 11

15 3 3 N/A 9 4 0 0 20 4 0 0 19

16 37 38 N/A 55 38 0 0 20 38 0 0 20

17 9 9 N/A 146 9 0 4 11 9 0 8 15

18 18 19 N/A 73 19 0 0 20 19 0 0 18

19 1 1 N/A 135 10 0 0 0 9 0 0 0

20 7 8 N/A 53 7 0 5 19 7 0 8 20

21 0 0 N/A 19 1 0 0 20 1 0 0 20

22 25 26 N/A 56 26 0 0 15 26 0 0 19

23 0 0 N/A 119 1 0 0 20 0 0 5 20

24 1 1 N/A 4 1 0 20 20 1 0 20 20

25 0 0 N/A 3 0 0 18 20 0 0 20 20

26 48 48 N/A 222 52 0 0 1 51 0 0 4

27 2 2 N/A 158 28 0 0 0 18 0 0 0

28 63 63 N/A 88 65 0 0 3 65 0 0 7

29 15 141 N/A 31 109 0 0 0 23 0 0 0

30 35 42 N/A 180 38 0 0 3 38 0 0 7

31 62 166 N/A 253 159 0 0 0 111 0 0 0

32 40 99 N/A 102 43 0 0 4 41 0 0 5

33 10 10 N/A 30 11 0 0 8 11 0 0 12

34 38 48 N/A 95 41 0 0 2 41 0 0 3

35 35 35 N/A 118 46 0 0 0 43 0 0 0

36 32 41 N/A 130 45 0 0 0 44 0 0 0

37 5 5 N/A 28 7 0 0 7 7 0 0 12

38 13 14 N/A 130 25 0 0 0 23 0 0 0

39 5 5 N/A 44 8 0 0 3 8 0 0 8

40 7 8 N/A 51 8 0 0 10 8 0 0 7

41 54 54 N/A 87 55 0 0 15 55 0 0 19

42 38 38 N/A 188 41 0 0 1 41 0 0 4

43 22 39 N/A 86 23 0 0 13 23 0 0 17

44 19 19 N/A 70 24 0 0 0 22 0 0 2

45 3 3 N/A 34 6 0 0 2 6 0 0 6

46 3 3 N/A 196 7 0 0 0 7 0 0 0

47 3 4 N/A 11 3 0 13 20 3 0 16 18

48 4 6 N/A 35 5 0 0 10 5 0 0 17

49 27 30 N/A 69 30 0 0 2 30 0 0 2

50 107 211 N/A 162 109 0 0 1 109 0 0 4

 21

51 74 N/A N/A 197 171 0 0 0 107 0 0 0

52 58 N/A N/A 135 67 0 0 0 66 0 0 0

Av 21.1 37.1 N/A 82.9 29.7 0 2.5 8.5 25.2 0 3.1 10.1

 Table 1: Comparison of results by various approaches over 52 instances

