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Abstract

Stochastic simulation of chemical reactions and diffusion in a neuron helps to provide a realistic 

view of the molecular dynamics within a neuron. We developed a multi-threaded PDES simulator, 

Neuron Time Warp-Multi Thread, suitable for the stochastic simulation of reaction and diffusion 

in a neuron. In this paper we make use of Q-Learning and Simulated Annealing to determine the 

parameters for a dynamic load balancing algorithm and for dynamic window control. During the 

simulation, the runtime statistics of each thread are collected and used to determine the execution 

time of the simulation. Based upon this assessment, workload is migrated from the most 

overloaded threads to the most under-load ones. As the results for a calcium wave model show, 

both approaches can improve the execution time for small simulations by up to 31% (Q-Learning) 

and 19% (SA). The simulated annealing approach is more suitable for larger populations, 

decreasing execution time by 41%.
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1 Introduction

The human brain may be viewed as a sparsely connected network containing approximately 

1014 neurons. Each neuron receives inputs from thousands of dendrites and sends outputs to 

thousands of other neurons by means of its axon.
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Electrical models for neurons were developed some time ago, using well-known laws of 

electricity (Ohm, Kirchkoff, capacitance) (Lytton, 2002; Carnevale and Hines, 2006; Sterratt 

et al., 2011). However, these models provide a limited view of neuronal activity since 

calcium and other species (nucleotides, peptides, proteins …) diffuse within the cytoplasm 

of a cell and function as information messengers. In order to develop realistic models of 

neurons it is necessary to develop models which account for the movement and functioning 

of these messengers.

The combination of chemical reactions within a cell, flux of ions through the membrane, and 

diffusion of ions in the cytoplasm can be modeled as a reaction-diffusion system and 

simulated by (parabolic) partial differential equations (McDougal et al., 2013). However, 

such a continuous model is not appropriate when there are a small number of molecules, i.e. 

< 1000. In this case, a stochastic model provides a more realistic and accurate representation 

(Sterratt et al., 2011; Ross, 2012; Blackwell, 2013). The concentration of calcium in the 

cytosol is low, between 50–100 nM (Foskett et al., 2007). These low concentrations mean 

that a small numbers of ions can play an important role in intracellular dynamics.

Calcium plays an important role in regulating a number of cellular processes, including 

fertilization, gene transcription, muscle contraction and cell death. The calcium used for 

signaling comes from both extracellular calcium that enters through the cell membrane, and 

from intracellular sources (Berridge, 1998). An important intracellular source is Ca2+-

induced-Ca2+-release (CICR) (Berridge, 1998; Roderick et al., 2003). CICR can occur 

spontaneously within a cell (Ross, 2012). This kind of localized CICR event is called 

a ”spark” (Cheng et al., 1993; Tsugorka et al., 1995) or ”puff” (Parker and Ivorra, 1990; 

Koizumi et al., 1999). It occurs stochastically in both temporally and spatially. In this 

perspective, a stochastic model is the best choice to represent CICR.

Gillespie’s Stochastic Simulation Algorithm (SSA) (Gillespie, 1977) is a widely-used 

stochastic algorithm. Under the assumption that the molecules of the system are uniformly 

distributed, the algorithm simulates a single trajectory of the chemical system. Simulating a 

number of these trajectories then gives a picture of the system. The Next Subvolume Method 

(NSM) (Elf and Ehrenberg, 2004) is an extension of Gillespie’s algorithm which 

incorporates the diffusion of molecules into the model. NSM partitions space into cubes 

called subvolumes. The number of cells involved in a realistic simulation of a network of 

neurons is immense, hence it is necessary to make use of Parallel Discrete Event Simulation 

(PDES). In PDES the subvolumes are Logical Processes (LP) (Wang et al., 2011). The 

diffusion of ions between neighboring subvolumes are events.

NEURON (Carnevale and Hines, 2006, 2013) is a widely used simulator in the neuroscience 

community. It makes use of deterministic simulators for both reaction-diffusion (McDougal 

et al., 2013) and electrical models. We are developing PDES simulators to simulate 

stochastic reaction-diffusion models. We previously developed a process based simulator, 

Neuron Time Warp (NTW) (Patoary et al., 2014). We verified and examined its performance 

on a calcium buffer model and a predator-prey (Schinazi, 1997) model. The queuing 

structure used in NTW and NTW-Multi Thread (NTW-MT) (Lin et al., 2015) is an 

outgrowth of the multi-level queue in XTW (Xu and Tropper, 2005).
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Communication latency is the main bottleneck of PDES systems (Fujimoto, 1999). In a 

multi-threaded program each thread has its own execution flow and all threads share the 

same memory space. Hence it is attractive to develop multi-threaded PDES systems.

The architecture of our multi-threaded simulator, NTW-MT, is depicted in Figure 1. One 

process is the controller, exercising global control functions (GVT computing and load 

balancing etc.). The remaining processes are worker processes, used to process events at the 

LPs residing in each process. Each worker process contains a communication thread along 

with processing threads. The communication overhead for this arrangement is high, hence 

we remove message receiving and sending in the main event-processing loop and employ a 

communication thread for receiving and sending messages for processing threads in the 

same process. All of the worker processes have the same number of threads.

We extend the Multi-Level-Queue (MLQ) and RB-message algorithms in (Xu and Tropper, 

2005) in order to reduce contention at the Thread Event Queues (TEQs) and the roll-back 

overhead. Since the processing threads in NTW-MT are not aware of external messages, we 

devised a hybrid of Mattern’s (Mattern, 1993) and Fujimoto’s (Fujimoto and Hybinette, 

1997) algorithm to compute the GVT in order to get rid of the overhead for thread 

synchronization.

PDES consumes a massive amount of memory, involves frequent allocation and 

deallocation, and generates huge amount of data. Memory usage is managed in order to 

avoid locking and unlocking when allocating and deallocating memory, and try to maximize 

cache locality.

(Dematté and Mazza, 2008) points out that a conservative synchronization algorithm using 

the NSM algorithm will perform poorly because of (1) the zero-lookahead property of an 

exponential distribution and (2) the dependency graph of the reactions is likely to be highly 

connected and filled with loops. This means that an optimistic synchronization algorithm is 

necessary. NTW-MT uses Time Warp. However, the number of roll-backs increases as the 

number of threads increase (Patoary et al., 2014; Lin et al., 2015) due to the zero-lookahead 

property, meaning that it is important to control the optimism. Furthermore, our experiments 

clearly indicated that load balancing is a very important issue.

In this paper, we present our solutions for these problems. The remainder of this paper is 

organized as follows. Section 2 describes background and related work, section 3 is devoted 

to static distribution of LPs to threads, section 4 describes our multi-stated Q-Learning (QL) 

approach for dynamic load balancing, and section 5 presents the use of Simulated Annealing 

(SA) for dynamic load balancing and window control. Section 6 describes our experimental 

results and analysis. The conclusion and future work are presented in section 7.

2 Background and Related Work

In NSM the virtual time increment τ is inversely proportional to the sum of reaction rates 

and diffusion rates. The reaction rate r of a reaction is proportional to the number of reactant 

molecules, and the diffusion rate s is proportional to the number of molecules which can 

diffuse (see the calculation of τ, r, s in (Elf and Ehrenberg, 2004)). Hence the virtual time 
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advances more slowly in subvolumes which contain more molecules then in those which 

have a smaller number of molecules. Let us examine the CICR model as an example of this.

In Figure 2, a dendrite is partitioned into 16 subvolumes which are evenly distributed 

between two processing threads. At first the number molecules in each subvolume is the 

same and the virtual time increment is (on the average) equal-hence the workload of the two 

processing threads is balanced. Inositol 1,4,5-triphosphate (IP3) molecules are injected into 

subvolume 0, activating the IP3 receptor (IP3R) in the subvolume. The number of Ca2+ 

molecules in the cytosol begins to increase and as a result, the virtual time increment in 

subvolume 0 becomes smaller than that of the other subvolumes. As the wave spreads along 

the dendrite, the same thing happens in the neighboring subvolumes (subvolumes 1, 2), and 

the LPs residing on thread 2 encounter many stragglers.

In a parallel simulation LPs are partitioned into groups and are placed in Processing 

Elements (PEs) prior to a run. Each PE is responsible for processing the events at the LPs 

which it hosts. This leads us to static partitioning, the premise of which is that all of the PEs 

host approximately same number of LPs. Recursive Bisection (RB) and Space-Filling Curve 

(SFC) (Devine et al., 2005), are examples of static partitioning. Graph partitioning 

(Feldmann, 2012; Andreev and Räcke, 2004) was introduced to minimize the 

communication between PEs. Static partitioning is meant for applications in which the 

workload is static during the simulation run (Devine et al., 2005). However in many 

simulations the workload of the PEs changes due to the dynamics of the model being 

simulated. Examples of such changes are (1) dynamic creation and destruction of LPs, e.g. 

war game in (Yao and Zhang, 2008); (2) motion of LPs, e.g. motion in molecular dynamics 

simulation (Zheng et al., 2010) (3) events which change the behavior of models, e.g. the 

injection of IP3 molecules decreases the virtual time increment in subvolumes in a CICR 

model (Lin et al., 2015). In the end, dynamic load balancing is a necessity for many 

simulations.

Load sharing is a straightforward way to implement load balancing. In load sharing the PEs 

share a pool of tasks. They fetch tasks from the pool, process them and put newly-generated 

tasks back into the pool. In (Chen et al., 2011) and (Miller, 2010), all of the PEs for an 

individual process share a global pending event set known as the task pool. In (Vitali et al., 

2012) the authors first compute an estimate of the computation workload for each kernel 

instance(PE) and compute the CPU time for each PE. An overloaded PE gets more CPU 

time than under-loaded PEs. Load sharing is easy to implement and can achieve good 

results. Clearly the task pool can suffer contention (Chen et al., 2011).

A dynamic load balancing algorithm has three components (Alakeel, 2010) (1) an 

information strategy-the collection of statistics about each PE in the system and a decision 

as to whether the system is unbalanced (2) a location strategy-a decision as to which LPs are 

to be transferred and when to transfer them (3) a transfer strategy-a determination of the 

source and destination of the migrated workload.

There are two categories of dynamic load balancing algorithms-centralized and 

decentralized. In a centralized algorithm, a specific node (the controller) makes the three 
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decisions and other nodes transfer LPs. (Meraji et al., 2010) and (Meraji and Tropper, 2012) 

employ centralized algorithms. They employ an AI algorithm and a simulated annealing 

algorithm to determine the number of LPs which are to be transferred between PEs. (Zheng 

et al., 2010) uses a hierarchical centralized load balancing scheme to balance the workload 

for Charm++ applications. (Pilla et al., 2014) also employs a centralized scheme. It models 

the Non-Uniform Memory Access (NU-MA) feature of multi-core clusters in order to 

estimate the cost of migrating workload.

In decentralized algorithms there is no centralized controller-each PE collects information 

and transfers workload independently. For example, (Cosenza et al., 2011) employs a 

decentralized algorithm in which each PE changes workload by adjusting the boundary 

regions between neighbors independently.

In general, centralized algorithms are easy to implement and as reported in (Zheng et al., 

2010) can scale up to a few thousand processors. Their drawbacks include (1) they may fail 

due to a controller crash (2) the controller can be a system bottleneck (Cosenza et al., 2011). 

(Zheng et al., 2010) argues that decentralized approaches can yield poor performance due to 

incomplete information exchanged by neighboring processors.

3 Initial Distribution of LPs to Threads

Our initial distribution of LPs to threads places the same number of LPs on each thread. In 

NTW (Patoary et al., 2014) and NTW-MT (Lin et al., 2015), the LPs are partitioned using 

their global identifier. Suppose there are N LPs, 0, 1, ⋯, N − 1, and p threads, 0, 1, ⋯, p − 1. 

then a block=⌊N/p⌋ of LPs are placed in each thread -LPs with IDs from block × i to block × 

(i + 1) − 1 are placed in the ith thread, and the remaining LPs are placed in the last thread 

(we called this the BLOCK strategy).

METIS (Schloegel et al., 2000) (the GRAPH strategy) was compared to BLOCK. In METIS 

each subvolume is a node in a graph, and there is a bidirectional edge between each pair of 

neighboring nodes. Since a molecule has the same probability for diffusing to each one of its 

neighboring subvolumes, the weight of all of edges is set to the same value. We found that 

both strategies had similar performances. The explanation for this is as follows. Note that the 

ID of an individual LP is assigned by gid = x + y × X + z × (X × Y), where X, Y and Z are 

the number of grids in each dimension, (x, y, z) is the coordinate of an individual grid. 

Adjacent grids have contiguous IDs and probably reside in the same block. As a result 

neighboring LPs are placed in the same thread. We made use of the BLOCK strategy in our 

research.

4 Q-Learning Approach

We employ a centralized algorithm for dynamic load balancing. We first estimate the 

workloads for each thread and detect imbalances using runtime statistics (section 4.1). This 

is the information strategy of section 2. We then use multi-state Q-Learning in (Watkins and 

Dayan, 1992; Meraji et al., 2010) to evaluate parameters which are critical to the 

performance of the simulation (section 4.2). These parameters are (1) the type of workload 

(communication or computation) (2) the number of threads involved in workload migration 
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and (3) the load to be exchanged (Meraji et al., 2010). LPs are migrated from the most 

overloaded threads to the most under-loaded threads (section 4.3)-this corresponds to our 

location strategy. The selection of which LPs (transfer strategy) depends on the type of 

workload to be balanced, computation or communication.

4.1 Workload Estimation and Imbalance Detection

Assume that there are p = m × n processing threads (n worker processes, m processing 
threads in each worker process), numbered 0, 1, ⋯, p − 1, The workload for each processing 

thread is checked every TL seconds (one round). Rounds are numbered in increasing order, i 

= 1, 2, 3, ⋯. In the ith round, processing thread j processes  ordinary events. The receive 

time of the smallest event in its TEQ is .  indicates how far thread j is 

running ahead of the ith Global Virtual Time (GVT). Let  and , 

0 ≤ j < p, then the workload of the jth processing thread is calculated by equation (1), and 

the computation balancing coefficient of the ith round is calculated by equation (2).

(1)

(2)

where , ζ, η ∈ [0, 1], ζ + η = 1. The computation workload 

is unbalanced if CPLi > Tcmp, where Tcmp is threshold. In order to compute the 

communication workload we proceed as follows. Each LP has an array LPComm of length 

m × (n − 1), in which the ith element records the number of external events sent from this LP 

to the corresponding thread since the last round. Each processing thread also holds an array 

ThreadComm of length m × (n − 1) in which the ith element is set to the sum of LPCommi 

of LPs hosted by that thread. Analogous to the definition of the computation workload, the 

communication workload coefficient CMLi is defined by replacing  in equation (1) by 

 ThreadCommk, except for the second item.

4.2 Determination of Workload Migration

We utilize the multi-state Q-Learning algorithm from (Meraji et al., 2010). In Q-learning, an 

agent stores information (Q) about the environment- the expected reward for each action in 

each state of the environment. It selects an optimal action am in the present state st and 

executes that action. In this way, the agent can find the optimal policy even if there is no 

prior knowledge about the effects of the actions on the environment (Watkins and Dayan, 

1992). The update rule (Watkins and Dayan, 1992) is:
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(3)

where α, β ∈ (0, 1), α + β = 1. α and γ are the learning step and the discount rate of the Q-

learning algorithm. FA contains feasible actions for state st+1. rt+1 is the reward for the 

action executed in state st.

The agent (a simulation run) can have four states: (1) Balanced computation and Balanced 

communication (BPBM), if CPLi ≤ Tcmp and CMLi ≤ Tcmm; (2) Unbalanced computation 

and Balanced communication (UPBM), if CPLi > Tcmp and CMLi ≤ Tcmm; (3) Balanced 

computation and Unbalanced communication (BPUM), if CPLi ≤ Tcmp and CMLi > Tcmm; 

(4) Unbalanced computation and Unbalanced communication (UPUM), if CPLi > Tcmp and 

CMLi > Tcmm.

Three parameters are used to define actions: (1) A, the type of workload-computation or 

communication (2) P, the percentage of threads involved in a migration (3) L, the number of 

LPs transferred from one thread to another. A can have two values. If P has M values and L 
has N values, there are 2 × M × N actions possible in each state.

The reward function plays an essential role to a Q-learning algorithm. We define the GVT 

Advance Rate, GVTAR, to be the increment in GVT per second. Since the workload is 

checked every TL seconds, GVTAR is defined by equation (4).

(4)

where i is the sequence number of the round and GVTi is the GVT for the ith round. If the 

agent is in state si and executes action ax in the ith round, then the effect of ax could be 

assessed in the successive round. However we can obtain a longer term assessment of the 

effects of the action by calculating it later, in round i + k, k ∈ N*, where i + k is set as the 

sequence number of next round in which the agent executes another action. The reward for 

the action ax is computed as . We count the number of times 

that an action a has been executed in state s, Ca, and set the reward of action a in state s to

(5)

For the first D rounds that the load check is executed, no migration is allowed, even if the 

load is unbalanced, thereby making it possible to compute a reference value for GVTAR. If 

executing action ax in state st leads to a higher GVTAR, the reward for this action increases 

in equation (5) and the action has a higher probability of being selected in the future, i.e. 

good actions are reinforced.
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Migrations in successive load check rounds i and i + 1, are not allowed-the workload 

estimate for the second round may be inaccurate because it takes time for workload on the 

threads involved in the migration to arrive at steady state.

The controller process sends a LOAD_CHECK message to each worker process every TL 

seconds and awaits a reply. Upon receiving a LOAD_CHECK message, the communication 

thread in each worker process collects the appropriate statistics and sends them to the 

controller process. The controller process executes algorithm 1 after all of the replies have 

been received.

Algorithm 1

QL load balancing

1: Compute computation and communication workload
via equation (1), store the values in cplVector and cm-
l Vector respectively, sort the elements in each vector
in decreasing order.

2: Compute CPLi and CMLi via equation (2).

3: Check the new state of the agent si by using Tcmp
and Tcmm.

4: if si == BPBM then

5:   return. {no need to balance workload}

6: else

7:   Set the state of the simulation to si.

8:   Compute GVTARi via equation (4), set r =
  GVTARi − GVTARi−k.

9:   Run the Q-learning algorithm with r as the input.

10: end if

We use a straightforward strategy for selecting the threads involved in a computation 

migration-we migrate workload from the most overloaded threads to the most underloaded 

ones. For a communication workload, LP-s are migrated from the thread x which has the 

largest communication workload to the thread y which receives the most messages from x. 

The controller sends a LOAD_MIGRATION message containing the A and L values to each 

process which has the threads which must transfer workload.

Algorithm 2

Q-Leanring

Input: reward of the latest execution of the last action

r

Output: A, P, L

  1: Update the reward of the last action via equation (5).

  2: Update the Q matrix by equation (3).

  3: Select the action with maximum reward in state si
with probability 1 − ε, else select an action from the
remaining feasible actions randomly.
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  4: Compute A, P and L from the selected action.

4.3 Migrating Workload

Workload is transferred between worker processes directly. When a communication thread 

receives a LOAD_MIGRATION message, it forwards this message to the source thread by 

inserting this message into the corresponding TEQ. Each LP has at least one representative 

event in the TEQ, then we say that LP x is more urgent then LP y if ex.rt < ey.rt (x ≠ y), 

where ex.rt is the receive time of the representative event of LP x. When a processing thread 

processes a LOAD_MIGRATION event, it selects the LPs and sends them to the destination 

thread. The selection of LPs depends on the type of the workload. If it is computation, then 

L LPs which are urgent are selected, otherwise it selects L LPs which have the most 

communication with the target thread.

4.4 Window Control

Based on our observations, window control is a useful mechanism to control the optimism in 

Time Warp. It works as follows- at a given wall clock time, suppose the GVT is G and the 

window value is W, then only events with timestamp t ∈ (G, G + W] can be processed. The 

value chosen for W is pivotal role- a small value can lead to many PEs being idle, while a 

high value can fail to prevent excessive optimism.

5 Simulated Annealing

As pointed out in (Meraji and Tropper, 2012), the major drawback of Q-Learning is that 

actions must be specified prior to the simulation. Worse yet, the time to pick the best action 

in a given state is proportional to the number of actions-more actions take more time to 

evaluate.

Simulated Annealing (SA) (Kirkpatrick et al., 1983) is a search technique used to produce 

an approximate global optimum for a function defined on the search space. A defining 

characteristic of the algorithm is that it can probabilistically pick a less then optimal solution 

at each iteration of the algorithm in order to preserve the possibility of choosing a global 

optimum. It takes its inspiration from an algorithm used to control the thermodynamic free 

energy of a metal when cooling it. The parameter T in SA plays the role of the temperature 

in the real annealing process. In the real annealing process the probability that molecules are 

in state s satisfies the Boltzman distribution (Kirkpatrick et al., 1983) as follows.

(6)

where b is Boltzmann constant, E(s) calculates the energy of the system in state s, 

, S refers to all states at which molecules are at temperature T. A 
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new state s′ is accepted if E(s′) ≤ E(s) or with probability , where ΔE = E(s′) − 

E(s) > 0. Once when the state s′ is accepted, the state of the system is updated by s′. An 

outline for the SA algorithm is given by:

1. Initialization-set the the initial temperature T and the end conditions for the 

algorithm. Set the initial state for the model to s0. Define two functions, the 

objective function f : S → ℝ which evaluates each state and the the state 

transition function g : S → S, which picks a neighboring state si+1 given the 

present state si. Two types of end conditions are used- the algorithm ends if T < ε 
or if the number of iteration n > Nmax, where ε and Nmax are given parameters.

2. Iteration- generate a new state si+1 = g(si) and evaluate the state fi+1 = f(si+1). 

Accept si+1 if fi+1 < fi, else generate a random number r ~ U(0, 1) and accept si+1 

if exp (−Δf/Ti) > r, where Δf = fi+1 − fi. Terminate the algorithm if the end 

condition is satisfied.

3. Cooling down- decrease the temperature gradually and go to iteration phase. Our 

cooling down scheme is defined by Ti+1 = αiTi, where αi ∈ (0, 1).

The SA algorithm does not depend on the initial state and can find an approximate global 

optimum within a finite number of steps (Kirkpatrick et al., 1983).

Both computation and communication workload should be accounted for in defining our 

workload. Hence our Load Coefficient (LC) in the ith round is defined by equation (7).

(7)

where λ ∈ [0, 1] is used to balance the weights of computation and communication 

workload.

Let us first note that our simulation is balanced before the injection of IP3 molecules, hence 

initiating a migration is unnecessary. LCi in equation (7) is small before the injection of IP3 

molecules, while it can increase to a larger value if the simulation becomes unbalanced. To 

distinguish between these two circumstances, a parameter B is used. The simulation is 

balanced if LCi ≤ B, otherwise it is unbalanced.

We use the same two parameters, P and L which we used in the Q-Learning approach to 

control the total number of LPs to be moved. A parameter W is used for the window size. 

The values for each of these parameters is chosen from an interval of permissible values. So 

we have a quadruple < B, P, L, W >, where each parameter has a valid interval (Xlow, Xup), 

where X ∈ {B, P, L, W}. Each parameter is initialized randomly, choosing values from these 

intervals.

As to the state transition function, we suppose that each parameter X, X ∈ {B, P, L, W}, can 

increase or decrease at the same probability in each iteration step. To prevent the state 

jumping from one end to the other end in the parameter space, we suppose an individual 

parameter picks a value within an interval ρX in each iteration step. To adjust the distance 
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between neighboring states, in each iteration step ρX is multiplied by a random number in 

uniform distribution. In summary, the next state of a parameter is given by:

(8)

where φ, ψ ~ U(0, 1), X ∈ {B, P, L, W}. Each parameter, i.e. B, P, L and W, has its own 

interval, say ρB, ρP, ρL and ρW, then the next state would locate within a four-dimensional 

cube determined by the 16 points (b ± φ1 × ρB, p ± φ2 × ρP, l ± φ3 × ρL, w ± φ4 × ρW), where 

(b, p, l, w) is the present state and also the center point of this cube. Here we can see the use 

of ρX, φ and ψ is to help SA to explore the whole parameter space better.

We make use of GVTAR as our objective function because it is a measure of how fast a 

simulation advances reactive to wall clock time-the bigger the better.

The SA algorithm is described in algorithm 3. The algorithm terminates when the 

temperature gets close to zero or it uses 70%–80% of the iterations (Meraji and Tropper, 

2012).

Algorithm 3

The SA algorithm

1: i = 0, iυ = 0

2: while temperture > ε and i < Nmax do

3:   i + +

4:   Wait for all the replies from worker processes

5:   Calculate LCi via equation (1), (2) and (7)

6:   if i < iυ then

7:     Continue to the next load-check round

8:   end if

9:   if LCi > Bi and i ≥ iυ then

10:     Balance workload among threads with Pi and Li

11:     iυ = i + I

12:     Continue to the next load-check round

13:   end if

14:   Calculate the new GVTAR fi

15:   Evaluate the present state by algorithm 4

16:   Generate a neighboring state using equation (8)

17:   Cool down, temperature* = c, c = 0.8499

18:   Broadcast the new window to all worker processes

19: end while
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Algorithm 4

State evaluation

Input: New GVTAR fi

  1: if fi > fi−1 then

  2:   Accept the neighboring state

  3: else

  4:   Generate a random number rand ~ U (0, 1)

  5:   if exp{(fi − fi−1)/temperature} > rand then

  6:     Accept the neighboring state

  7:   end if

  8: end if

6 Experimental Study

6.1 Model

A deterministic CICR model has been developed in NEURON (Neymotin et al., 2015). 

Based on this model we developed a discrete event model and simulated it. In our 

experiments we only take the IP3 and Ca2+ molecules into account. We simplified the CICR 

receptor model by assuming that (1) the IP3 receptor opens when the concentration of IP3 

and Ca2+ are both higher than some respective threshold (2) after opening an IP3 receptor 

channel will close in a period of time determined by an exponential distribution. The 

reactions include:

where  refers to Ca2+ in the Endoplasmic Reticulum (ER),  refers to Ca2+ in the 

cytosol, [•] refers to the concentration of the species •, m = [IP3] / ([IP3]+kIP3), 

, kIP3, kact, νIP3R, νleak, νSERCA and kSERCA are given constant 

parameters, the values of which can be found in (Neymotin et al., 2015).  can only 

diffuse within the ER, while  and IP3 can only diffuse within the cytosol.

The initial concentrations of Ca2+ (in the ER and cytosol) and IP3 are set to 9.511765 µM, 

0.1 µM and 0.1 µM respectively. In each subvolume, 17% of the volume corresponds to the 
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ER while the remaining 83% corresponds to the cytosol. The threshold for controlling the 

channel opening is 0.2 µM and 2 µM for cytosolic Ca2+ and IP3, respectively.

We executed this simplified model on a one-dimensional geometry for illustrative purposes. 

The figures are in the online appendix. As these appended figures show, this simplified 

model produces a calcium wave.

6.2 Platform and Geometry

We use two platforms. One machine (PEPI) is a cluster with 4 Intel(R) Xeon(R) E7 4860 

2.27 GHz, 10 cores per processor, 1 TB memory, with Linux 2.6.32-358.2.1.el6.x86_64, Red 

Hat Enterprise Linux Server release 6.4 (Santiago). The other is the SW2 node of Guillimin, 

consisting of two Dual Intel(R) Sandy Bridge EP E5-2670 2.6 GHz CPUs, 8 cores per 

processor, 8 GB of memory per core, and a Non-blocking QDR InfiniBand network with 40 

Gbps between nodes. The node runs Linux 2.6.32-279.22.1.el6.x86 64 GNU/Linux.

We simulate the above CICR model for a CA1 hippocampal pyramidal neuron (Ishizuka et 

al., 1995). The hippocampal pyramidal neuron used in our experiment is from 

NeuroMorpho.Org (Ascoli et al., 2007) (NO. c91662). A three-dimensional view of this 

neuron is given in the online appendix. The neuron is partitioned into mesh grids, where 

each grid is a subvolume. We selected 14749 subvolumes with a distance of less than 50 µm 

from the soma (a three-dimension view of the selected region is also displayed in the online 

appendix). The length of each subvolume is 0.5 µm.

6.3 Verification

Free calcium is buffered by intracellular buffers (calmodulin or parvalbumin) and is 

therefore unavailable. However, it can escape from these buffers, resulting in an almost 

constant concentration of cytosolic calcium. This observation can be used to verify our 

simulator. The buffer model includes two reactions as follows.

We executed this buffer model using the deterministic NEURON simulator on a ”Y” shaped 

geometry which consists of three cylinders (10 µm long, 1 µm diameter). A sketch of this 

geometry can be found in (Patoary et al., 2014) and is depicted in online appendix.

To show spatial effects, we initialize a high concentration of free calcium in one cylinder, a 

low concentration in the remaining two cylinders, and trace the evolution of the molecules. 

The initial high and low concentrations of Ca2+ are set to 1.0 mM and 0.1 mM respectively, 

while the concentrations of Buf and CaBuf are set to 0.5 mM and 0.001 mM everywhere. 

The reaction rates kf and kb are set to 0.06 and 0.01. In NTW-MT, the geometry is 

partitioned into 2766 subvolumes, and the length of each subvolume is 0.25 µm. The high 
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concentration of Ca2+ is initialized in the first 922 subvolumes (922/2766=1/3) by placing 

10 molecules in each of those subvolumes, while 1 calcium molecule is placed in each of the 

remaining 1844 subvolumes. The initial numbers of Buf and CaBuf molecules in each 

subvolume are 5 and 0, respectively. From Figure 3, we can see that the stochastic model 

exhibits a similar behavior to that of the deterministic model.

6.4 Performance Results and Analysis

6.4.1 Q-Learning—The Q matrix is set to zero, indicating the agent has no knowledge 

about the environment. The reward for a feasible action in each state is initialized to 0, while 

the rewards for infeasible actions are −∞. ε, γ, α are initialized to 0.1, 0.9 and 0.1, 

respectively.

P has two values (0.1 and 0.2), and L has three values (0.003, 0.004 and 0.005). The number 

of LPs to be migrated is L × NLPavg, where NLPavg = N/nThread, N is the number of LPs 

and nThread is the number of processing threads.

We used PEPI for this experiment. All of the processing threads were placed in the same 

process, hence no messages were used to send LPs between processing threads (note that the 

migrated LPs are reassigned to the target thread and still accessible there). The results are 

shown in Figure 4 and 5.

From Figure 4 and 5, the execution time and the number of roll-backs both decrease when 

load balancing is used. The biggest improvement (about 31% in execution time) takes place 

when 8 threads are used and ζ is set to 0.5.

Comparing the weight of the two items in equation (1), we see that when ζ is set to 1 and 

0.8 we improve the performance by up to 25%. The thread which runs furthest ahead 

receives more stragglers and has more roll-backs then the other threads. Setting both terms 

to equal weights brings the best improvement. The results of giving more weight to the 

second item are inconsistent. When fewer threads are used the threads did not get seriously 

unbalanced. When more threads (8, 16) are used equation (1 may give an overly optimistic 

estimate of workload because the virtual time increment varies from 0 to a much higher 

value, thereby leading to unnecessary migration.

A collection of cluster nodes are used for larger models in which LPs are distributed among 

the processes and migrate between them. We start several processes on PEPI and Guillimin 

and transfer LPs between the processes using shared memory or MPI. The results are shown 

in Figure 6 and 7.

From Figure 6, we see that the execution time decreases by up to 21% when 8 threads are 

used. The results are not as good as those achieved by intra-process migration (differs about 

10%) because of the extra overhead for sending LPs. Placing more threads in the same 

process results in slightly better performance.

Excessive LP migration can overwhelm the gains obtained by load balancing. In the ”pure 

remote” mode of Figure 7, in which each worker process has one processing thread and all 

worker processes occupy separate nodes, all inter-process messages are transferred between 
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the nodes. When two processing threads are used, the execution time is about 8% more than 

that of a simulation which does not employ load balancing. In the remaining cases (the 

number of migrated LPs is not excessive), the best improvement is about 16% when 8 

threads are used and ppn is 3.

6.4.2 Simulated Annealing—The parameters ζ and η in equation (1) are both set to 0.5 

as is λ in equation (7). The intervals for the parameters in SA are as follows: B ∈ (0, 4), P ∈ 
(0, 0.5), L ∈ (0, 0.1), W ∈ (0, 10). The number of LPs to be migrated is L × NLPavg.

In the following experiment, run on PEPI, all of the processing threads are placed in the 

same worker process. The results are depicted in Figure 8 and 9.

From Figure 8 and 9, we see that both Q-Learning and SA can decrease the execution time 

as the number of processing threads increases. SA did not perform as well as Q-Learning-the 

best improvement for Q-Learning is about 30%, while only 19% improvement results from 

SA. The reason for this is that the size of this simulation is small-the simulation ends before 

SA finds the optimal value. At some points (small B and large P, L), SA may lead to 

unnecessary migration or a too large migration, resulting in an increase in execution time. 

This is quite clear when 2 threads are used because too many LPs are transferred in an 

individual migration. SA results in fewer rollbacks then Q-learning. For example, 37% of the 

roll-backs are reduced by SA when four threads are used. Since SA employed window 

control and QL did not, one direct inference is that window control contributes to decreasing 

the overall roll-back.

We ran SA in the same scenario as Q-Learning in order to see the effects of interprocess 

communication. We depict the results in Figure 10.

In Figure 10 we see similar behavior; SA takes longer than an execution which does not 

employ load balancing when a small number of threads are used. This is due to the overhead 

for LP migration. The execution time decreases when more threads are used.

To determine the effect of SA on large scale runs, we increase the total number of LPs in the 

simulation and the END condition. This is done by selecting subvolumes in a larger region 

around the soma of the CA1 neuron. There are 23547 subvolumes within a radius 120 µm 

from the soma of the CA1 neuron. We run the same scenario on the Guillimin. Results are 

contained in Figure 11.

From Figure 11, we see that for a larger model SA performs well-it can achieve a 41% 

improvement in execution time when 8 threads are used within a process, and even decreases 

execution time by up to 34% in the pure remote mode. Big migrations (i.e. 2 threads are 

used) always leads to the least improvement due to the overhead of transferring LPs. This 

implies that the number of LPs to be exchanged should be selected properly. We note that in 

all cases, the best improvement happens when 8 threads are used. The explanation for this is 

as follows. The performance of PDES is highly dependent on the number of LPs which can 

be run in parallel. In a three-dimensional grid, one subvolume can have no more than 6 

adjacent subvolumes, which leads to at most 7 threads inserting events at an individual LP 

simultaneously. Let θ = number of processing threads/7, if θ < 1, there is not enough threads 
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to process events even though some events can be processed (note that only the host thread 

can process the events at the LPs hosted by that thread). The total rollback is not large in this 

case. On the other hand, if θ ≫ 1, neighboring LPs are separated and distributed to threads, 

and get opportunity to be processed (note that there are enough threads now), which can lead 

to concatenate rollback among those neighboring LPs. As a result, it shows a rollback 

expansion when many threads are used. In both cases, the highest parallelism cannot be 

achieved. This leaves us with 8 threads as the best choice for the number of threads to use. 

Finally, we note that better performance is achieved by placing more threads within the same 

process/node.

7 Conclusion

Stochastic simulation of reaction and diffusion in neurons can provide a realistic view of the 

molecular dynamics within and between neurons. We have developed a multi-threaded 

PDES simulator, NTW-MT (Lin et al., 2015) which accomplishes this. It makes use of a 

Multi-Level Queue (MLQ) and a RB-message-involved roll-back (Xu and Tropper, 2005) 

mechanism to disperse contention and decrease the overhead of roll-backs.

Load balancing is an important issue for parallel and distributed systems. In this paper, we 

present load balancing algorithms and a dynamic window control algorithm for NTW-MT 

which make use of techniques from artificial intelligence.

Prior to the start of the simulation we use a static partitioning. During run time we make use 

of dynamic load balancing. In static partitioning, LPs are given IDs according to their 

geometric location and are placed in processing threads so that neighboring LPs are in the 

same thread.

We make use of two load balancing algorithms. One is based on reinforcement learning 

while the second makes use of simulated annealing. The reinforcement learning algorithm 

employs multi-state Q-Learning (Meraji et al., 2010) to evaluate the parameters involved in 

the algorithm. These are the type of workload, the number of threads involved in LP 

migration and the load to be transferred. The transmission of LPs depends on the location of 

the source and destination threads-if they reside in the same process, the LPs are reassigned 

to the target thread, otherwise the LPs are transferred to the target thread. On a calcium wave 

model with 14749 LPs on a CA1 neuron, Q-Learning achieved a 31% improvement in 

execution time by migrating workload between threads within the same process, and a 16% 

when improvement when remote communication was used.

A drawback of Q-Learning is the need to specify its actions prior to actual simulation. 

Simulated Annealing (Kirkpatrick et al., 1983) does not depend on the initial state and can 

find quasi-optimal values within a finite number of steps. We employ SA to learn four 

parameters-B, the threshold beyond which the simulation is unbalanced; P, the number of 

thread pairs involved in a migration; L, the number of LPs to be transferred, and W, the 

window size. It is well known that employing a window in an optimistic simulation serves to 

decrease the number of rollbacks. SA performed well-it achieved a 41% improvement in 

execution time when 8 threads were used within a process, and decrease execution time by 
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up to 34% even in the pure remote mode. We attribute a decrease in the number of rollbacks 

(up to 37%) to the use of window control.

SA tends to transfer too many LPs when few (e.g. 2, 4) threads are used, thus one future 

effort is to find a better determination of this parameter. Deterministic simulations run much 

faster than exact algorithms (e.g. Gillespie’s SSA, NSM), and are applicable in regions 

where the number of molecules is large, thus a hybrid (deterministic-stochastic) algorithm is 

another future effort.
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Figure 1. 
Architecture of NTW-MT simulator.
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Figure 2. 
Unbalanced workload among threads in CICR model.
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Figure 3. 
Deterministic NEURON simulation vs. stochastic NTW-MT simulation, Ca_H and Ca_L 

refer to high and low concentration of calcium in respective region in deterministic and 

stochastic simulation.
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Figure 4. 
Execution time on PEPI machine using Q-Learning.

Lin et al. Page 23

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Roll-backs on PEPI machine using Q-Learning.
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Figure 6. 
Execution time with inter-process migration using Q-Learning on PEPI, ζ = 0.5, L= 0.003, 

0.004 and 0.005.
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Figure 7. 
Execution time with inter-process migration using Q-Learning on Guillimin,, ζ = 0.5, L= 

0.003, 0.004 and 0.005, ppn refers to process per node.
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Figure 8. 
Execution time using SA on PEPI.
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Figure 9. 
Roll-backs using SA on PEPI.
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Figure 10. 
Execution time with inter-process migration on Guillimin using SA.
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Figure 11. 
Execution time for bigger geometry on Guillimin using SA.
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