
Load balancing for multi-threaded PDES of stochastic reaction-
diffusion in neurons

Zhongwei Lin1,3, Carl Tropper2,*, Yiping Yao3, Robert A. Mcdougal4, Mohammand Nazrul
Ishlam Patoary2, William W. Lytton5, and Michael L. Hines4

1State Key Laboratory of High Performance Computing, National University of Defense
Technology, China

2School of Computer Science, McGill University, Canada

3College of Information System and Management, National University of Defense Technology,
China

4Department of Neurobiology, Yale University, USA

5SUNY Downstate Medical Center, USA

Abstract

Stochastic simulation of chemical reactions and diffusion in a neuron helps to provide a realistic

view of the molecular dynamics within a neuron. We developed a multi-threaded PDES simulator,

Neuron Time Warp-Multi Thread, suitable for the stochastic simulation of reaction and diffusion

in a neuron. In this paper we make use of Q-Learning and Simulated Annealing to determine the

parameters for a dynamic load balancing algorithm and for dynamic window control. During the

simulation, the runtime statistics of each thread are collected and used to determine the execution

time of the simulation. Based upon this assessment, workload is migrated from the most

overloaded threads to the most under-load ones. As the results for a calcium wave model show,

both approaches can improve the execution time for small simulations by up to 31% (Q-Learning)

and 19% (SA). The simulated annealing approach is more suitable for larger populations,

decreasing execution time by 41%.

Keywords

Stochastic Neuronal Simulation; Multi-threaded PDES; Load Balancing; Window Control; Q-
Learning; Simulated Annealing

1 Introduction

The human brain may be viewed as a sparsely connected network containing approximately

1014 neurons. Each neuron receives inputs from thousands of dendrites and sends outputs to

thousands of other neurons by means of its axon.

*Correspondence: School of Computer Science, McGill University, Montreal, Quebec, H3A2K6, Canada. carltropper@gmail.com.

HHS Public Access
Author manuscript
J Simul. Author manuscript; available in PMC 2018 August 01.

Published in final edited form as:
J Simul. 2017 August ; 11(3): 267–284. doi:10.1057/s41273-016-0033-x.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Electrical models for neurons were developed some time ago, using well-known laws of

electricity (Ohm, Kirchkoff, capacitance) (Lytton, 2002; Carnevale and Hines, 2006; Sterratt

et al., 2011). However, these models provide a limited view of neuronal activity since

calcium and other species (nucleotides, peptides, proteins …) diffuse within the cytoplasm

of a cell and function as information messengers. In order to develop realistic models of

neurons it is necessary to develop models which account for the movement and functioning

of these messengers.

The combination of chemical reactions within a cell, flux of ions through the membrane, and

diffusion of ions in the cytoplasm can be modeled as a reaction-diffusion system and

simulated by (parabolic) partial differential equations (McDougal et al., 2013). However,

such a continuous model is not appropriate when there are a small number of molecules, i.e.

< 1000. In this case, a stochastic model provides a more realistic and accurate representation

(Sterratt et al., 2011; Ross, 2012; Blackwell, 2013). The concentration of calcium in the

cytosol is low, between 50–100 nM (Foskett et al., 2007). These low concentrations mean

that a small numbers of ions can play an important role in intracellular dynamics.

Calcium plays an important role in regulating a number of cellular processes, including

fertilization, gene transcription, muscle contraction and cell death. The calcium used for

signaling comes from both extracellular calcium that enters through the cell membrane, and

from intracellular sources (Berridge, 1998). An important intracellular source is Ca2+-

induced-Ca2+-release (CICR) (Berridge, 1998; Roderick et al., 2003). CICR can occur

spontaneously within a cell (Ross, 2012). This kind of localized CICR event is called

a ”spark” (Cheng et al., 1993; Tsugorka et al., 1995) or ”puff” (Parker and Ivorra, 1990;

Koizumi et al., 1999). It occurs stochastically in both temporally and spatially. In this

perspective, a stochastic model is the best choice to represent CICR.

Gillespie’s Stochastic Simulation Algorithm (SSA) (Gillespie, 1977) is a widely-used

stochastic algorithm. Under the assumption that the molecules of the system are uniformly

distributed, the algorithm simulates a single trajectory of the chemical system. Simulating a

number of these trajectories then gives a picture of the system. The Next Subvolume Method

(NSM) (Elf and Ehrenberg, 2004) is an extension of Gillespie’s algorithm which

incorporates the diffusion of molecules into the model. NSM partitions space into cubes

called subvolumes. The number of cells involved in a realistic simulation of a network of

neurons is immense, hence it is necessary to make use of Parallel Discrete Event Simulation

(PDES). In PDES the subvolumes are Logical Processes (LP) (Wang et al., 2011). The

diffusion of ions between neighboring subvolumes are events.

NEURON (Carnevale and Hines, 2006, 2013) is a widely used simulator in the neuroscience

community. It makes use of deterministic simulators for both reaction-diffusion (McDougal

et al., 2013) and electrical models. We are developing PDES simulators to simulate

stochastic reaction-diffusion models. We previously developed a process based simulator,

Neuron Time Warp (NTW) (Patoary et al., 2014). We verified and examined its performance

on a calcium buffer model and a predator-prey (Schinazi, 1997) model. The queuing

structure used in NTW and NTW-Multi Thread (NTW-MT) (Lin et al., 2015) is an

outgrowth of the multi-level queue in XTW (Xu and Tropper, 2005).

Lin et al. Page 2

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Communication latency is the main bottleneck of PDES systems (Fujimoto, 1999). In a

multi-threaded program each thread has its own execution flow and all threads share the

same memory space. Hence it is attractive to develop multi-threaded PDES systems.

The architecture of our multi-threaded simulator, NTW-MT, is depicted in Figure 1. One

process is the controller, exercising global control functions (GVT computing and load

balancing etc.). The remaining processes are worker processes, used to process events at the

LPs residing in each process. Each worker process contains a communication thread along

with processing threads. The communication overhead for this arrangement is high, hence

we remove message receiving and sending in the main event-processing loop and employ a

communication thread for receiving and sending messages for processing threads in the

same process. All of the worker processes have the same number of threads.

We extend the Multi-Level-Queue (MLQ) and RB-message algorithms in (Xu and Tropper,

2005) in order to reduce contention at the Thread Event Queues (TEQs) and the roll-back

overhead. Since the processing threads in NTW-MT are not aware of external messages, we

devised a hybrid of Mattern’s (Mattern, 1993) and Fujimoto’s (Fujimoto and Hybinette,

1997) algorithm to compute the GVT in order to get rid of the overhead for thread

synchronization.

PDES consumes a massive amount of memory, involves frequent allocation and

deallocation, and generates huge amount of data. Memory usage is managed in order to

avoid locking and unlocking when allocating and deallocating memory, and try to maximize

cache locality.

(Dematté and Mazza, 2008) points out that a conservative synchronization algorithm using

the NSM algorithm will perform poorly because of (1) the zero-lookahead property of an

exponential distribution and (2) the dependency graph of the reactions is likely to be highly

connected and filled with loops. This means that an optimistic synchronization algorithm is

necessary. NTW-MT uses Time Warp. However, the number of roll-backs increases as the

number of threads increase (Patoary et al., 2014; Lin et al., 2015) due to the zero-lookahead

property, meaning that it is important to control the optimism. Furthermore, our experiments

clearly indicated that load balancing is a very important issue.

In this paper, we present our solutions for these problems. The remainder of this paper is

organized as follows. Section 2 describes background and related work, section 3 is devoted

to static distribution of LPs to threads, section 4 describes our multi-stated Q-Learning (QL)

approach for dynamic load balancing, and section 5 presents the use of Simulated Annealing

(SA) for dynamic load balancing and window control. Section 6 describes our experimental

results and analysis. The conclusion and future work are presented in section 7.

2 Background and Related Work

In NSM the virtual time increment τ is inversely proportional to the sum of reaction rates

and diffusion rates. The reaction rate r of a reaction is proportional to the number of reactant

molecules, and the diffusion rate s is proportional to the number of molecules which can

diffuse (see the calculation of τ, r, s in (Elf and Ehrenberg, 2004)). Hence the virtual time

Lin et al. Page 3

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

advances more slowly in subvolumes which contain more molecules then in those which

have a smaller number of molecules. Let us examine the CICR model as an example of this.

In Figure 2, a dendrite is partitioned into 16 subvolumes which are evenly distributed

between two processing threads. At first the number molecules in each subvolume is the

same and the virtual time increment is (on the average) equal-hence the workload of the two

processing threads is balanced. Inositol 1,4,5-triphosphate (IP3) molecules are injected into

subvolume 0, activating the IP3 receptor (IP3R) in the subvolume. The number of Ca2+

molecules in the cytosol begins to increase and as a result, the virtual time increment in

subvolume 0 becomes smaller than that of the other subvolumes. As the wave spreads along

the dendrite, the same thing happens in the neighboring subvolumes (subvolumes 1, 2), and

the LPs residing on thread 2 encounter many stragglers.

In a parallel simulation LPs are partitioned into groups and are placed in Processing

Elements (PEs) prior to a run. Each PE is responsible for processing the events at the LPs

which it hosts. This leads us to static partitioning, the premise of which is that all of the PEs

host approximately same number of LPs. Recursive Bisection (RB) and Space-Filling Curve

(SFC) (Devine et al., 2005), are examples of static partitioning. Graph partitioning

(Feldmann, 2012; Andreev and Räcke, 2004) was introduced to minimize the

communication between PEs. Static partitioning is meant for applications in which the

workload is static during the simulation run (Devine et al., 2005). However in many

simulations the workload of the PEs changes due to the dynamics of the model being

simulated. Examples of such changes are (1) dynamic creation and destruction of LPs, e.g.

war game in (Yao and Zhang, 2008); (2) motion of LPs, e.g. motion in molecular dynamics

simulation (Zheng et al., 2010) (3) events which change the behavior of models, e.g. the

injection of IP3 molecules decreases the virtual time increment in subvolumes in a CICR

model (Lin et al., 2015). In the end, dynamic load balancing is a necessity for many

simulations.

Load sharing is a straightforward way to implement load balancing. In load sharing the PEs

share a pool of tasks. They fetch tasks from the pool, process them and put newly-generated

tasks back into the pool. In (Chen et al., 2011) and (Miller, 2010), all of the PEs for an

individual process share a global pending event set known as the task pool. In (Vitali et al.,

2012) the authors first compute an estimate of the computation workload for each kernel

instance(PE) and compute the CPU time for each PE. An overloaded PE gets more CPU

time than under-loaded PEs. Load sharing is easy to implement and can achieve good

results. Clearly the task pool can suffer contention (Chen et al., 2011).

A dynamic load balancing algorithm has three components (Alakeel, 2010) (1) an

information strategy-the collection of statistics about each PE in the system and a decision

as to whether the system is unbalanced (2) a location strategy-a decision as to which LPs are

to be transferred and when to transfer them (3) a transfer strategy-a determination of the

source and destination of the migrated workload.

There are two categories of dynamic load balancing algorithms-centralized and

decentralized. In a centralized algorithm, a specific node (the controller) makes the three

Lin et al. Page 4

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

decisions and other nodes transfer LPs. (Meraji et al., 2010) and (Meraji and Tropper, 2012)

employ centralized algorithms. They employ an AI algorithm and a simulated annealing

algorithm to determine the number of LPs which are to be transferred between PEs. (Zheng

et al., 2010) uses a hierarchical centralized load balancing scheme to balance the workload

for Charm++ applications. (Pilla et al., 2014) also employs a centralized scheme. It models

the Non-Uniform Memory Access (NU-MA) feature of multi-core clusters in order to

estimate the cost of migrating workload.

In decentralized algorithms there is no centralized controller-each PE collects information

and transfers workload independently. For example, (Cosenza et al., 2011) employs a

decentralized algorithm in which each PE changes workload by adjusting the boundary

regions between neighbors independently.

In general, centralized algorithms are easy to implement and as reported in (Zheng et al.,

2010) can scale up to a few thousand processors. Their drawbacks include (1) they may fail

due to a controller crash (2) the controller can be a system bottleneck (Cosenza et al., 2011).

(Zheng et al., 2010) argues that decentralized approaches can yield poor performance due to

incomplete information exchanged by neighboring processors.

3 Initial Distribution of LPs to Threads

Our initial distribution of LPs to threads places the same number of LPs on each thread. In

NTW (Patoary et al., 2014) and NTW-MT (Lin et al., 2015), the LPs are partitioned using

their global identifier. Suppose there are N LPs, 0, 1, ⋯, N − 1, and p threads, 0, 1, ⋯, p − 1.

then a block=⌊N/p⌋ of LPs are placed in each thread -LPs with IDs from block × i to block ×

(i + 1) − 1 are placed in the ith thread, and the remaining LPs are placed in the last thread

(we called this the BLOCK strategy).

METIS (Schloegel et al., 2000) (the GRAPH strategy) was compared to BLOCK. In METIS

each subvolume is a node in a graph, and there is a bidirectional edge between each pair of

neighboring nodes. Since a molecule has the same probability for diffusing to each one of its

neighboring subvolumes, the weight of all of edges is set to the same value. We found that

both strategies had similar performances. The explanation for this is as follows. Note that the

ID of an individual LP is assigned by gid = x + y × X + z × (X × Y), where X, Y and Z are

the number of grids in each dimension, (x, y, z) is the coordinate of an individual grid.

Adjacent grids have contiguous IDs and probably reside in the same block. As a result

neighboring LPs are placed in the same thread. We made use of the BLOCK strategy in our

research.

4 Q-Learning Approach

We employ a centralized algorithm for dynamic load balancing. We first estimate the

workloads for each thread and detect imbalances using runtime statistics (section 4.1). This

is the information strategy of section 2. We then use multi-state Q-Learning in (Watkins and

Dayan, 1992; Meraji et al., 2010) to evaluate parameters which are critical to the

performance of the simulation (section 4.2). These parameters are (1) the type of workload

(communication or computation) (2) the number of threads involved in workload migration

Lin et al. Page 5

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and (3) the load to be exchanged (Meraji et al., 2010). LPs are migrated from the most

overloaded threads to the most under-loaded threads (section 4.3)-this corresponds to our

location strategy. The selection of which LPs (transfer strategy) depends on the type of

workload to be balanced, computation or communication.

4.1 Workload Estimation and Imbalance Detection

Assume that there are p = m × n processing threads (n worker processes, m processing
threads in each worker process), numbered 0, 1, ⋯, p − 1, The workload for each processing

thread is checked every TL seconds (one round). Rounds are numbered in increasing order, i

= 1, 2, 3, ⋯. In the ith round, processing thread j processes ordinary events. The receive

time of the smallest event in its TEQ is . indicates how far thread j is

running ahead of the ith Global Virtual Time (GVT). Let and ,

0 ≤ j < p, then the workload of the jth processing thread is calculated by equation (1), and

the computation balancing coefficient of the ith round is calculated by equation (2).

(1)

(2)

where , ζ, η ∈ [0, 1], ζ + η = 1. The computation workload

is unbalanced if CPLi > Tcmp, where Tcmp is threshold. In order to compute the

communication workload we proceed as follows. Each LP has an array LPComm of length

m × (n − 1), in which the ith element records the number of external events sent from this LP

to the corresponding thread since the last round. Each processing thread also holds an array

ThreadComm of length m × (n − 1) in which the ith element is set to the sum of LPCommi

of LPs hosted by that thread. Analogous to the definition of the computation workload, the

communication workload coefficient CMLi is defined by replacing in equation (1) by

 ThreadCommk, except for the second item.

4.2 Determination of Workload Migration

We utilize the multi-state Q-Learning algorithm from (Meraji et al., 2010). In Q-learning, an

agent stores information (Q) about the environment- the expected reward for each action in

each state of the environment. It selects an optimal action am in the present state st and

executes that action. In this way, the agent can find the optimal policy even if there is no

prior knowledge about the effects of the actions on the environment (Watkins and Dayan,

1992). The update rule (Watkins and Dayan, 1992) is:

Lin et al. Page 6

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(3)

where α, β ∈ (0, 1), α + β = 1. α and γ are the learning step and the discount rate of the Q-

learning algorithm. FA contains feasible actions for state st+1. rt+1 is the reward for the

action executed in state st.

The agent (a simulation run) can have four states: (1) Balanced computation and Balanced

communication (BPBM), if CPLi ≤ Tcmp and CMLi ≤ Tcmm; (2) Unbalanced computation

and Balanced communication (UPBM), if CPLi > Tcmp and CMLi ≤ Tcmm; (3) Balanced

computation and Unbalanced communication (BPUM), if CPLi ≤ Tcmp and CMLi > Tcmm;

(4) Unbalanced computation and Unbalanced communication (UPUM), if CPLi > Tcmp and

CMLi > Tcmm.

Three parameters are used to define actions: (1) A, the type of workload-computation or

communication (2) P, the percentage of threads involved in a migration (3) L, the number of

LPs transferred from one thread to another. A can have two values. If P has M values and L
has N values, there are 2 × M × N actions possible in each state.

The reward function plays an essential role to a Q-learning algorithm. We define the GVT

Advance Rate, GVTAR, to be the increment in GVT per second. Since the workload is

checked every TL seconds, GVTAR is defined by equation (4).

(4)

where i is the sequence number of the round and GVTi is the GVT for the ith round. If the

agent is in state si and executes action ax in the ith round, then the effect of ax could be

assessed in the successive round. However we can obtain a longer term assessment of the

effects of the action by calculating it later, in round i + k, k ∈ N*, where i + k is set as the

sequence number of next round in which the agent executes another action. The reward for

the action ax is computed as . We count the number of times

that an action a has been executed in state s, Ca, and set the reward of action a in state s to

(5)

For the first D rounds that the load check is executed, no migration is allowed, even if the

load is unbalanced, thereby making it possible to compute a reference value for GVTAR. If

executing action ax in state st leads to a higher GVTAR, the reward for this action increases

in equation (5) and the action has a higher probability of being selected in the future, i.e.

good actions are reinforced.

Lin et al. Page 7

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Migrations in successive load check rounds i and i + 1, are not allowed-the workload

estimate for the second round may be inaccurate because it takes time for workload on the

threads involved in the migration to arrive at steady state.

The controller process sends a LOAD_CHECK message to each worker process every TL

seconds and awaits a reply. Upon receiving a LOAD_CHECK message, the communication

thread in each worker process collects the appropriate statistics and sends them to the

controller process. The controller process executes algorithm 1 after all of the replies have

been received.

Algorithm 1

QL load balancing

1: Compute computation and communication workload
via equation (1), store the values in cplVector and cm-
l Vector respectively, sort the elements in each vector
in decreasing order.

2: Compute CPLi and CMLi via equation (2).

3: Check the new state of the agent si by using Tcmp
and Tcmm.

4: if si == BPBM then

5: return. {no need to balance workload}

6: else

7: Set the state of the simulation to si.

8: Compute GVTARi via equation (4), set r =
 GVTARi − GVTARi−k.

9: Run the Q-learning algorithm with r as the input.

10: end if

We use a straightforward strategy for selecting the threads involved in a computation

migration-we migrate workload from the most overloaded threads to the most underloaded

ones. For a communication workload, LP-s are migrated from the thread x which has the

largest communication workload to the thread y which receives the most messages from x.

The controller sends a LOAD_MIGRATION message containing the A and L values to each

process which has the threads which must transfer workload.

Algorithm 2

Q-Leanring

Input: reward of the latest execution of the last action

r

Output: A, P, L

 1: Update the reward of the last action via equation (5).

 2: Update the Q matrix by equation (3).

 3: Select the action with maximum reward in state si
with probability 1 − ε, else select an action from the
remaining feasible actions randomly.

Lin et al. Page 8

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 4: Compute A, P and L from the selected action.

4.3 Migrating Workload

Workload is transferred between worker processes directly. When a communication thread

receives a LOAD_MIGRATION message, it forwards this message to the source thread by

inserting this message into the corresponding TEQ. Each LP has at least one representative

event in the TEQ, then we say that LP x is more urgent then LP y if ex.rt < ey.rt (x ≠ y),

where ex.rt is the receive time of the representative event of LP x. When a processing thread

processes a LOAD_MIGRATION event, it selects the LPs and sends them to the destination

thread. The selection of LPs depends on the type of the workload. If it is computation, then

L LPs which are urgent are selected, otherwise it selects L LPs which have the most

communication with the target thread.

4.4 Window Control

Based on our observations, window control is a useful mechanism to control the optimism in

Time Warp. It works as follows- at a given wall clock time, suppose the GVT is G and the

window value is W, then only events with timestamp t ∈ (G, G + W] can be processed. The

value chosen for W is pivotal role- a small value can lead to many PEs being idle, while a

high value can fail to prevent excessive optimism.

5 Simulated Annealing

As pointed out in (Meraji and Tropper, 2012), the major drawback of Q-Learning is that

actions must be specified prior to the simulation. Worse yet, the time to pick the best action

in a given state is proportional to the number of actions-more actions take more time to

evaluate.

Simulated Annealing (SA) (Kirkpatrick et al., 1983) is a search technique used to produce

an approximate global optimum for a function defined on the search space. A defining

characteristic of the algorithm is that it can probabilistically pick a less then optimal solution

at each iteration of the algorithm in order to preserve the possibility of choosing a global

optimum. It takes its inspiration from an algorithm used to control the thermodynamic free

energy of a metal when cooling it. The parameter T in SA plays the role of the temperature

in the real annealing process. In the real annealing process the probability that molecules are

in state s satisfies the Boltzman distribution (Kirkpatrick et al., 1983) as follows.

(6)

where b is Boltzmann constant, E(s) calculates the energy of the system in state s,

, S refers to all states at which molecules are at temperature T. A

Lin et al. Page 9

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

new state s′ is accepted if E(s′) ≤ E(s) or with probability , where ΔE = E(s′) −

E(s) > 0. Once when the state s′ is accepted, the state of the system is updated by s′. An

outline for the SA algorithm is given by:

1. Initialization-set the the initial temperature T and the end conditions for the

algorithm. Set the initial state for the model to s0. Define two functions, the

objective function f : S → ℝ which evaluates each state and the the state

transition function g : S → S, which picks a neighboring state si+1 given the

present state si. Two types of end conditions are used- the algorithm ends if T < ε
or if the number of iteration n > Nmax, where ε and Nmax are given parameters.

2. Iteration- generate a new state si+1 = g(si) and evaluate the state fi+1 = f(si+1).

Accept si+1 if fi+1 < fi, else generate a random number r ~ U(0, 1) and accept si+1

if exp (−Δf/Ti) > r, where Δf = fi+1 − fi. Terminate the algorithm if the end

condition is satisfied.

3. Cooling down- decrease the temperature gradually and go to iteration phase. Our

cooling down scheme is defined by Ti+1 = αiTi, where αi ∈ (0, 1).

The SA algorithm does not depend on the initial state and can find an approximate global

optimum within a finite number of steps (Kirkpatrick et al., 1983).

Both computation and communication workload should be accounted for in defining our

workload. Hence our Load Coefficient (LC) in the ith round is defined by equation (7).

(7)

where λ ∈ [0, 1] is used to balance the weights of computation and communication

workload.

Let us first note that our simulation is balanced before the injection of IP3 molecules, hence

initiating a migration is unnecessary. LCi in equation (7) is small before the injection of IP3

molecules, while it can increase to a larger value if the simulation becomes unbalanced. To

distinguish between these two circumstances, a parameter B is used. The simulation is

balanced if LCi ≤ B, otherwise it is unbalanced.

We use the same two parameters, P and L which we used in the Q-Learning approach to

control the total number of LPs to be moved. A parameter W is used for the window size.

The values for each of these parameters is chosen from an interval of permissible values. So

we have a quadruple < B, P, L, W >, where each parameter has a valid interval (Xlow, Xup),

where X ∈ {B, P, L, W}. Each parameter is initialized randomly, choosing values from these

intervals.

As to the state transition function, we suppose that each parameter X, X ∈ {B, P, L, W}, can

increase or decrease at the same probability in each iteration step. To prevent the state

jumping from one end to the other end in the parameter space, we suppose an individual

parameter picks a value within an interval ρX in each iteration step. To adjust the distance

Lin et al. Page 10

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

between neighboring states, in each iteration step ρX is multiplied by a random number in

uniform distribution. In summary, the next state of a parameter is given by:

(8)

where φ, ψ ~ U(0, 1), X ∈ {B, P, L, W}. Each parameter, i.e. B, P, L and W, has its own

interval, say ρB, ρP, ρL and ρW, then the next state would locate within a four-dimensional

cube determined by the 16 points (b ± φ1 × ρB, p ± φ2 × ρP, l ± φ3 × ρL, w ± φ4 × ρW), where

(b, p, l, w) is the present state and also the center point of this cube. Here we can see the use

of ρX, φ and ψ is to help SA to explore the whole parameter space better.

We make use of GVTAR as our objective function because it is a measure of how fast a

simulation advances reactive to wall clock time-the bigger the better.

The SA algorithm is described in algorithm 3. The algorithm terminates when the

temperature gets close to zero or it uses 70%–80% of the iterations (Meraji and Tropper,

2012).

Algorithm 3

The SA algorithm

1: i = 0, iυ = 0

2: while temperture > ε and i < Nmax do

3: i + +

4: Wait for all the replies from worker processes

5: Calculate LCi via equation (1), (2) and (7)

6: if i < iυ then

7: Continue to the next load-check round

8: end if

9: if LCi > Bi and i ≥ iυ then

10: Balance workload among threads with Pi and Li

11: iυ = i + I

12: Continue to the next load-check round

13: end if

14: Calculate the new GVTAR fi

15: Evaluate the present state by algorithm 4

16: Generate a neighboring state using equation (8)

17: Cool down, temperature* = c, c = 0.8499

18: Broadcast the new window to all worker processes

19: end while

Lin et al. Page 11

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Algorithm 4

State evaluation

Input: New GVTAR fi

 1: if fi > fi−1 then

 2: Accept the neighboring state

 3: else

 4: Generate a random number rand ~ U (0, 1)

 5: if exp{(fi − fi−1)/temperature} > rand then

 6: Accept the neighboring state

 7: end if

 8: end if

6 Experimental Study

6.1 Model

A deterministic CICR model has been developed in NEURON (Neymotin et al., 2015).

Based on this model we developed a discrete event model and simulated it. In our

experiments we only take the IP3 and Ca2+ molecules into account. We simplified the CICR

receptor model by assuming that (1) the IP3 receptor opens when the concentration of IP3

and Ca2+ are both higher than some respective threshold (2) after opening an IP3 receptor

channel will close in a period of time determined by an exponential distribution. The

reactions include:

where refers to Ca2+ in the Endoplasmic Reticulum (ER), refers to Ca2+ in the

cytosol, [•] refers to the concentration of the species •, m = [IP3] / ([IP3]+kIP3),

, kIP3, kact, νIP3R, νleak, νSERCA and kSERCA are given constant

parameters, the values of which can be found in (Neymotin et al., 2015). can only

diffuse within the ER, while and IP3 can only diffuse within the cytosol.

The initial concentrations of Ca2+ (in the ER and cytosol) and IP3 are set to 9.511765 µM,

0.1 µM and 0.1 µM respectively. In each subvolume, 17% of the volume corresponds to the

Lin et al. Page 12

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ER while the remaining 83% corresponds to the cytosol. The threshold for controlling the

channel opening is 0.2 µM and 2 µM for cytosolic Ca2+ and IP3, respectively.

We executed this simplified model on a one-dimensional geometry for illustrative purposes.

The figures are in the online appendix. As these appended figures show, this simplified

model produces a calcium wave.

6.2 Platform and Geometry

We use two platforms. One machine (PEPI) is a cluster with 4 Intel(R) Xeon(R) E7 4860

2.27 GHz, 10 cores per processor, 1 TB memory, with Linux 2.6.32-358.2.1.el6.x86_64, Red

Hat Enterprise Linux Server release 6.4 (Santiago). The other is the SW2 node of Guillimin,

consisting of two Dual Intel(R) Sandy Bridge EP E5-2670 2.6 GHz CPUs, 8 cores per

processor, 8 GB of memory per core, and a Non-blocking QDR InfiniBand network with 40

Gbps between nodes. The node runs Linux 2.6.32-279.22.1.el6.x86 64 GNU/Linux.

We simulate the above CICR model for a CA1 hippocampal pyramidal neuron (Ishizuka et

al., 1995). The hippocampal pyramidal neuron used in our experiment is from

NeuroMorpho.Org (Ascoli et al., 2007) (NO. c91662). A three-dimensional view of this

neuron is given in the online appendix. The neuron is partitioned into mesh grids, where

each grid is a subvolume. We selected 14749 subvolumes with a distance of less than 50 µm

from the soma (a three-dimension view of the selected region is also displayed in the online

appendix). The length of each subvolume is 0.5 µm.

6.3 Verification

Free calcium is buffered by intracellular buffers (calmodulin or parvalbumin) and is

therefore unavailable. However, it can escape from these buffers, resulting in an almost

constant concentration of cytosolic calcium. This observation can be used to verify our

simulator. The buffer model includes two reactions as follows.

We executed this buffer model using the deterministic NEURON simulator on a ”Y” shaped

geometry which consists of three cylinders (10 µm long, 1 µm diameter). A sketch of this

geometry can be found in (Patoary et al., 2014) and is depicted in online appendix.

To show spatial effects, we initialize a high concentration of free calcium in one cylinder, a

low concentration in the remaining two cylinders, and trace the evolution of the molecules.

The initial high and low concentrations of Ca2+ are set to 1.0 mM and 0.1 mM respectively,

while the concentrations of Buf and CaBuf are set to 0.5 mM and 0.001 mM everywhere.

The reaction rates kf and kb are set to 0.06 and 0.01. In NTW-MT, the geometry is

partitioned into 2766 subvolumes, and the length of each subvolume is 0.25 µm. The high

Lin et al. Page 13

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://NeuroMorpho.Org

concentration of Ca2+ is initialized in the first 922 subvolumes (922/2766=1/3) by placing

10 molecules in each of those subvolumes, while 1 calcium molecule is placed in each of the

remaining 1844 subvolumes. The initial numbers of Buf and CaBuf molecules in each

subvolume are 5 and 0, respectively. From Figure 3, we can see that the stochastic model

exhibits a similar behavior to that of the deterministic model.

6.4 Performance Results and Analysis

6.4.1 Q-Learning—The Q matrix is set to zero, indicating the agent has no knowledge

about the environment. The reward for a feasible action in each state is initialized to 0, while

the rewards for infeasible actions are −∞. ε, γ, α are initialized to 0.1, 0.9 and 0.1,

respectively.

P has two values (0.1 and 0.2), and L has three values (0.003, 0.004 and 0.005). The number

of LPs to be migrated is L × NLPavg, where NLPavg = N/nThread, N is the number of LPs

and nThread is the number of processing threads.

We used PEPI for this experiment. All of the processing threads were placed in the same

process, hence no messages were used to send LPs between processing threads (note that the

migrated LPs are reassigned to the target thread and still accessible there). The results are

shown in Figure 4 and 5.

From Figure 4 and 5, the execution time and the number of roll-backs both decrease when

load balancing is used. The biggest improvement (about 31% in execution time) takes place

when 8 threads are used and ζ is set to 0.5.

Comparing the weight of the two items in equation (1), we see that when ζ is set to 1 and

0.8 we improve the performance by up to 25%. The thread which runs furthest ahead

receives more stragglers and has more roll-backs then the other threads. Setting both terms

to equal weights brings the best improvement. The results of giving more weight to the

second item are inconsistent. When fewer threads are used the threads did not get seriously

unbalanced. When more threads (8, 16) are used equation (1 may give an overly optimistic

estimate of workload because the virtual time increment varies from 0 to a much higher

value, thereby leading to unnecessary migration.

A collection of cluster nodes are used for larger models in which LPs are distributed among

the processes and migrate between them. We start several processes on PEPI and Guillimin

and transfer LPs between the processes using shared memory or MPI. The results are shown

in Figure 6 and 7.

From Figure 6, we see that the execution time decreases by up to 21% when 8 threads are

used. The results are not as good as those achieved by intra-process migration (differs about

10%) because of the extra overhead for sending LPs. Placing more threads in the same

process results in slightly better performance.

Excessive LP migration can overwhelm the gains obtained by load balancing. In the ”pure

remote” mode of Figure 7, in which each worker process has one processing thread and all

worker processes occupy separate nodes, all inter-process messages are transferred between

Lin et al. Page 14

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the nodes. When two processing threads are used, the execution time is about 8% more than

that of a simulation which does not employ load balancing. In the remaining cases (the

number of migrated LPs is not excessive), the best improvement is about 16% when 8

threads are used and ppn is 3.

6.4.2 Simulated Annealing—The parameters ζ and η in equation (1) are both set to 0.5

as is λ in equation (7). The intervals for the parameters in SA are as follows: B ∈ (0, 4), P ∈
(0, 0.5), L ∈ (0, 0.1), W ∈ (0, 10). The number of LPs to be migrated is L × NLPavg.

In the following experiment, run on PEPI, all of the processing threads are placed in the

same worker process. The results are depicted in Figure 8 and 9.

From Figure 8 and 9, we see that both Q-Learning and SA can decrease the execution time

as the number of processing threads increases. SA did not perform as well as Q-Learning-the

best improvement for Q-Learning is about 30%, while only 19% improvement results from

SA. The reason for this is that the size of this simulation is small-the simulation ends before

SA finds the optimal value. At some points (small B and large P, L), SA may lead to

unnecessary migration or a too large migration, resulting in an increase in execution time.

This is quite clear when 2 threads are used because too many LPs are transferred in an

individual migration. SA results in fewer rollbacks then Q-learning. For example, 37% of the

roll-backs are reduced by SA when four threads are used. Since SA employed window

control and QL did not, one direct inference is that window control contributes to decreasing

the overall roll-back.

We ran SA in the same scenario as Q-Learning in order to see the effects of interprocess

communication. We depict the results in Figure 10.

In Figure 10 we see similar behavior; SA takes longer than an execution which does not

employ load balancing when a small number of threads are used. This is due to the overhead

for LP migration. The execution time decreases when more threads are used.

To determine the effect of SA on large scale runs, we increase the total number of LPs in the

simulation and the END condition. This is done by selecting subvolumes in a larger region

around the soma of the CA1 neuron. There are 23547 subvolumes within a radius 120 µm

from the soma of the CA1 neuron. We run the same scenario on the Guillimin. Results are

contained in Figure 11.

From Figure 11, we see that for a larger model SA performs well-it can achieve a 41%

improvement in execution time when 8 threads are used within a process, and even decreases

execution time by up to 34% in the pure remote mode. Big migrations (i.e. 2 threads are

used) always leads to the least improvement due to the overhead of transferring LPs. This

implies that the number of LPs to be exchanged should be selected properly. We note that in

all cases, the best improvement happens when 8 threads are used. The explanation for this is

as follows. The performance of PDES is highly dependent on the number of LPs which can

be run in parallel. In a three-dimensional grid, one subvolume can have no more than 6

adjacent subvolumes, which leads to at most 7 threads inserting events at an individual LP

simultaneously. Let θ = number of processing threads/7, if θ < 1, there is not enough threads

Lin et al. Page 15

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

to process events even though some events can be processed (note that only the host thread

can process the events at the LPs hosted by that thread). The total rollback is not large in this

case. On the other hand, if θ ≫ 1, neighboring LPs are separated and distributed to threads,

and get opportunity to be processed (note that there are enough threads now), which can lead

to concatenate rollback among those neighboring LPs. As a result, it shows a rollback

expansion when many threads are used. In both cases, the highest parallelism cannot be

achieved. This leaves us with 8 threads as the best choice for the number of threads to use.

Finally, we note that better performance is achieved by placing more threads within the same

process/node.

7 Conclusion

Stochastic simulation of reaction and diffusion in neurons can provide a realistic view of the

molecular dynamics within and between neurons. We have developed a multi-threaded

PDES simulator, NTW-MT (Lin et al., 2015) which accomplishes this. It makes use of a

Multi-Level Queue (MLQ) and a RB-message-involved roll-back (Xu and Tropper, 2005)

mechanism to disperse contention and decrease the overhead of roll-backs.

Load balancing is an important issue for parallel and distributed systems. In this paper, we

present load balancing algorithms and a dynamic window control algorithm for NTW-MT

which make use of techniques from artificial intelligence.

Prior to the start of the simulation we use a static partitioning. During run time we make use

of dynamic load balancing. In static partitioning, LPs are given IDs according to their

geometric location and are placed in processing threads so that neighboring LPs are in the

same thread.

We make use of two load balancing algorithms. One is based on reinforcement learning

while the second makes use of simulated annealing. The reinforcement learning algorithm

employs multi-state Q-Learning (Meraji et al., 2010) to evaluate the parameters involved in

the algorithm. These are the type of workload, the number of threads involved in LP

migration and the load to be transferred. The transmission of LPs depends on the location of

the source and destination threads-if they reside in the same process, the LPs are reassigned

to the target thread, otherwise the LPs are transferred to the target thread. On a calcium wave

model with 14749 LPs on a CA1 neuron, Q-Learning achieved a 31% improvement in

execution time by migrating workload between threads within the same process, and a 16%

when improvement when remote communication was used.

A drawback of Q-Learning is the need to specify its actions prior to actual simulation.

Simulated Annealing (Kirkpatrick et al., 1983) does not depend on the initial state and can

find quasi-optimal values within a finite number of steps. We employ SA to learn four

parameters-B, the threshold beyond which the simulation is unbalanced; P, the number of

thread pairs involved in a migration; L, the number of LPs to be transferred, and W, the

window size. It is well known that employing a window in an optimistic simulation serves to

decrease the number of rollbacks. SA performed well-it achieved a 41% improvement in

execution time when 8 threads were used within a process, and decrease execution time by

Lin et al. Page 16

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

up to 34% even in the pure remote mode. We attribute a decrease in the number of rollbacks

(up to 37%) to the use of window control.

SA tends to transfer too many LPs when few (e.g. 2, 4) threads are used, thus one future

effort is to find a better determination of this parameter. Deterministic simulations run much

faster than exact algorithms (e.g. Gillespie’s SSA, NSM), and are applicable in regions

where the number of molecules is large, thus a hybrid (deterministic-stochastic) algorithm is

another future effort.

Acknowledgments

This work is supported by China Scholarship Council and in part by the National Natural Science Foundation of
China (No. 61170048), Research Project of State Key Laboratory of High Performance Computing of National
University of Defense Technology of China (No. 201303-05) and the Research Fund for the Doctoral Program of
High Education of China (No. 20124307110017). This work is also funded by U.S. National Institutes of Health
grants R01MH086638 and T15LM007056.

References

Alakeel AM. A guide to dynamic load balancing in distributed computer systems. International Journal
of Computer Science and Network Security (IJCSNS). 2010; 10(6):153–160.

Andreev, K., Räcke, H. Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’04. New York, NY, USA: ACM; 2004. Balanced graph
partitioning; p. 120-124.

Ascoli GA, Donohue DE, Halavi M. Neuromorpho.org: A central resource for neuronal morphologies.
The Journal of Neuroscience. 2007; 27(35):9247–9251. [PubMed: 17728438]

Berridge MJ. Neuronal calcium signaling. Neuron. 1998; 21(1):13–26. [PubMed: 9697848]

Blackwell K. Approaches and tools for modeling signaling pathways and calcium dynamics in
neurons. Journal of neuroscience methods. 2013; 220(2):131–140. [PubMed: 23743449]

Carnevale, NT., Hines, ML. The NEURON book. New York, NY, USA: Cambridge University Press;
2006.

Carnevale NT, Hines ML. Neuron, for empirically-based simulations of neurons and networks of
neurons. 2009–2013 [Last access on May 1st 2015] http://www.neuron.yale.edu.

Chen, L-l, Lu, Y-s, Yao, Y-p, Peng, S-l, Wu, L-d. Proceedings of the 2011 IEEE Workshop on
Principles of Advanced and Distributed Simulation. Nice, France: IEEE Computer Society; 2011. A
well-balanced time warp system on multi-core environments; p. 1-9.

Cheng H, Lederer W, Cannell MB. Calcium sparks: elementary events underlying excitation-
contraction coupling in heart muscle. Science. 1993; 262(5134):740–744. [PubMed: 8235594]

Cosenza, B., Cordasco, G., De Chiara, R., Scarano, V. Parallel, Distributed and Network-Based
Processing (PDP), 2011 19th Euromicro International Conference on. IEEE; 2011. Distributed
load balancing for parallel agent-based simulations; p. 62-69.

Dematté, L., Mazza, T. On parallel stochastic simulation of diffusive systems. In: Heiner, M.,
Uhrmacher, AM., editors. Computational methods in systems biology, volume 5307 of Lecture
Notes in Computer Science. Berlin Heidelberg, Germany: Springer; 2008. p. 191-210.

Devine KD, Boman EG, Heaphy RT, Hendrickson BA, Teresco JD, Faik J, Flaherty JE, Gervasio LG.
New challenges in dynamic load balancing. Applied Numerical Mathematics. 2005; 52(2):133–
152.

Elf J, Ehrenberg M. Spontaneous separation of bi-stable biochemical systems into spatial domains of
opposite phases. Systems biology. 2004; 1(2):230–236. [PubMed: 17051695]

Feldmann AE. Balanced partitioning of grids and related graphs. Diss., Eidgenössische Technische
Hochschule ETH Zürich, Nr. 20371, 2012. 2012

Foskett JK, White C, Cheung K-H, Mak D-OD. Inositol trisphosphate receptor ca2+ release channels.
Physiological Reviews. 2007; 87(2):593–658. [PubMed: 17429043]

Lin et al. Page 17

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://Neuromorpho.org
http://www.neuron.yale.edu

Fujimoto, RM. Parallel and Distribution Simulation Systems. 1st. New York, NY, USA: John Wiley &
Sons, Inc.; 1999.

Fujimoto RM, Hybinette M. Computing global virtual time in shared-memory multiprocessors. ACM
Transactions on Modeling and Computer Simulation (TOMACS). 1997; 7(4):425–446.

Gillespie DT. Exact stochastic simulation of coupled chemical reactions. The journal of physical
chemistry. 1977; 81(25):2340–2361.

Ishizuka N, Cowan WM, Amaral DG. A quantitative analysis of the dendritic organization of
pyramidal cells in the rat hippocampus. Journal of Comparative Neurology. 1995; 362(1):17–45.
[PubMed: 8576427]

Kirkpatrick S Jr, C G, Vecchi M. Optimization by simulated annealing. SCIENCE. 1983; 220(4598):
671–680. [PubMed: 17813860]

Koizumi S, Bootman MD, Bobanović LK, Schell MJ, Berridge MJ, Lipp P. Characterization of
elementary ca 2+ release signals in ngf-differentiated pc12 cells and hippocampal neurons.
Neuron. 1999; 22(1):125–137. [PubMed: 10027295]

Lin, Z., Tropper, C., Ishlam Patoary, MN., McDougal, RA., Lytton, WW., Hines, ML. Proceedings of
the 3rd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, SIGSIM
PADS ’15. New York, NY, USA: ACM; 2015. Ntw-mt: A multi-threaded simulator for reaction
diffusion simulations in neuron; p. 157-167.

Lytton, WW. From Computer to Brain. New York, USA: Springer-Verlag; 2002.

Mattern F. Efficient algorithms for distributed snapshots and global virtual time approximation. Journal
of Parallel and Distributed Computing. 1993; 18(4):423–434.

McDougal RA, Hines ML, Lytton WW. Reaction-diffusion in the neuron simulator. Frontiers in
Neuroinformatics. 2013; 7(28)

Meraji S, Tropper C. Optimizing techniques for parallel digital logic simulation. Parallel and
Distributed Systems, IEEE Transactions on. 2012; 23(6):1135–1146.

Meraji, S., Zhang, W., Tropper, C. Proceedings of the 2010 IEEE Workshop on Principles of Advanced
and Distributed Simulation. IEEE Computer Society; 2010. A multistate q-learning approach for
the dynamic load balancing of time warp; p. 142-149.

Miller RJ. Optimistic parallel discrete event simulation on a beowulf cluster of multi-core machines.
PhD thesis, University of Cincinnati. 2010 [last access on May 1st 2015]

Neymotin SA, McDougal RA, Sherif MA, Fall CP, Hines ML, Lytton WW. Neuronal calcium wave
propagation varies with changes in endoplasmic reticulum parameters: A computer model. Neural
Computation. 2015; 27(4):898–924. [PubMed: 25734493]

Parker I, Ivorra I. Localized all-or-none calcium liberation by inositol trisphosphate. Science. 1990;
250(4983):977–979. [PubMed: 2237441]

Patoary, MNI., Tropper, C., Lin, Z., McDougal, R., Lytton, WW. Proceedings of the 2014 Winter
Simulation Conference, WSC ’14. Piscataway, NJ, USA: IEEE Press; 2014. Neuron time warp; p.
3447-3458.

Pilla LL, Ribeiro CP, Coucheney P, Broquedis F, Gaujal B, Navaux PO, Mhaut J-F. A topology-aware
load balancing algorithm for clustered hierarchical multi-core machines. Future Generation
Computer Systems. 2014; 30:191–201.

Roderick H, Berridge MJ, Bootman MD. Calcium-induced calcium release. Current Biology. 2003;
13(11):R425. [PubMed: 12781146]

Ross WN. Understanding calcium waves and sparks in central neurons. Nat Rev Neurosci. 2012;
13(3):157–168. [PubMed: 22314443]

Schinazi RB. Predator-prey and host-parasite spatial stochastic models. The Annals of Applied
Probability. 1997; 7(1):1–9.

Schloegel, K., Karypis, G., Kumar, V. Supercomputing, ACM/IEEE 2000 Conference. IEEE; 2000. A
unified algorithm for load-balancing adaptive scientific simulations; p. 59-59.

Sterratt, D., Graham, B., Gillies, A., Willshaw, D. Principles of computational modelling in
neuroscience. New York, USA: Cambridge University Press; 2011.

Tsugorka A, Rios E, Blatter LA. Imaging elementary events of calcium release in skeletal muscle cells.
Science. 1995; 269(5231):1723–1726. [PubMed: 7569901]

Lin et al. Page 18

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vitali R, Pellegrini A, Quaglia F. Load sharing for optimistic parallel simulations on multi core
machines. ACM SIGMETRICS Performance Evaluation Review. 2012; 40(3):2–11.

Wang B, Hou B, Xing F, Yao Y. Abstract next subvolume method: A logical process-based approach
for spatial stochastic simulation of chemical reactions. Computational biology and chemistry.
2011; 35(3):193–198. [PubMed: 21704266]

Watkins CJ, Dayan P. Q-learning. Machine learning. 1992; 8(3–4):279–292.

Xu, Q., Tropper, C. Proceedings of the 19th Workshop on Principles of Advanced and Distributed
Simulation. Monterey, California, USA: IEEE Computer Society; 2005. Xtw, a parallel and
distributed logic simulator; p. 181-188.

Yao Y, Zhang Y. Solution for analytic simulation based on parallel processing. Journal of System
Simulation. 2008; 20(24):6617–6621.

Zheng, G., Meneses, E., Bhatele, A., Kale, LV. Parallel Processing Workshops (ICPPW, 2010 39th
International Conference on. IEEE; 2010. Hierarchical load balancing for charm++ applications on
large supercomputers; p. 436-444.

Lin et al. Page 19

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
Architecture of NTW-MT simulator.

Lin et al. Page 20

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Unbalanced workload among threads in CICR model.

Lin et al. Page 21

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Deterministic NEURON simulation vs. stochastic NTW-MT simulation, Ca_H and Ca_L

refer to high and low concentration of calcium in respective region in deterministic and

stochastic simulation.

Lin et al. Page 22

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Execution time on PEPI machine using Q-Learning.

Lin et al. Page 23

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Roll-backs on PEPI machine using Q-Learning.

Lin et al. Page 24

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.
Execution time with inter-process migration using Q-Learning on PEPI, ζ = 0.5, L= 0.003,

0.004 and 0.005.

Lin et al. Page 25

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7.
Execution time with inter-process migration using Q-Learning on Guillimin,, ζ = 0.5, L=

0.003, 0.004 and 0.005, ppn refers to process per node.

Lin et al. Page 26

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8.
Execution time using SA on PEPI.

Lin et al. Page 27

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9.
Roll-backs using SA on PEPI.

Lin et al. Page 28

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 10.
Execution time with inter-process migration on Guillimin using SA.

Lin et al. Page 29

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 11.
Execution time for bigger geometry on Guillimin using SA.

Lin et al. Page 30

J Simul. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Initial Distribution of LPs to Threads
	4 Q-Learning Approach
	4.1 Workload Estimation and Imbalance Detection
	4.2 Determination of Workload Migration

	Algorithm 1
	Algorithm 2
	4.3 Migrating Workload
	4.4 Window Control

	5 Simulated Annealing
	Algorithm 3
	Algorithm 4
	6 Experimental Study
	6.1 Model
	6.2 Platform and Geometry
	6.3 Verification
	6.4 Performance Results and Analysis
	6.4.1 Q-Learning
	6.4.2 Simulated Annealing

	7 Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11

