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Abstract

This paper focuses on the problem of identifying optimal protection strategies to

reduce the impact of flooding on a road network. We propose a dynamic mixed-integer

programming model that extends the classic concept of road network protection by

shifting away from single-arc fortifications to a more general and realistic approach

involving protection plans that cover multiple components. We also consider multiple

disruption scenarios of varying magnitude. To efficiently solve large problem instances,

we introduce a customised GRASP heuristic. Finally, we provide some analysis and

insights from a case study of the Hertfordshire road network in the East of England.

Results show that optimal protection strategies mainly involve safeguarding against

flooding events that are small and likely to occur, whereas implementing higher pro-

tection standards are not considered cost-effective.

Keywords: road transportation; flooding; network disruption; infrastructure protection;

MILP; GRASP

1 Introduction

Natural hazards can have serious impacts in terms of economic losses and human casualties.

Floods can be particularly dangerous due to the high number of people living in at-risk areas

and due to their relatively high frequency of occurrence. Both coastal and inland areas can

be affected by floods caused by the overflow of rivers and the sea. Even areas that are far

from a water course or coastal zone can still be at risk of flooding caused by heavy rain. The
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World Resources Institute estimates that climate change and population rise will more than

double (from 21 to 54 million) the number of people exposed to floods (Luo et al., 2015). In

the UK, one in six properties is at risk of flooding (Environmental Agency, 2009). The 2005

flood in New Orleans caused by Hurricane Katrina is one of the most tragic examples of the

disruptive power of such events. Even less dramatic floods can still lead to major disruption

of vital services and cause significant economic losses. During the winter of 2013-14 in the

UK, for example, heavy rainfall triggered numerous floods that left major roadways under

water and disrupted train lines. The government subsequently allocated £130M to repair

and maintain flood defences (Carrington and Weaver, 2014).

The first step to mitigate flood risk has to be done at the policy-level, so as to regulate

urban development in hazardous areas. Subsequently, risk analysis should be implemented

to identify vulnerabilities and suitable protection measures. Resources should also be used

to devise post-disaster strategies to reduce loss of life and economic damages.

Flood events are usually classified using the “return period” concept (Gumbel, 1941). The

return period is the time interval between two events of the same disruption size and can be

used to estimate the probability of a given scenario occurring. A 100 year flood, for instance,

it is estimated to happen with a 1% chance in any given year.

The same concept is also used to define the standard of protection offered by an engineered

flood defence measure. Common types of flood defence include building/replacing dikes,

embankments, slopes, sluices, and culverts. These structures differ in terms of the standard

of protection guaranteed, the cost to implement them, and the size of area afforded protection.

Relatively inexpensive defences like vertical walls or concrete structures can often be quickly

built to protect a small, targeted area. More ambitious plans, such as the construction of

diversion canals or large dams, can impact larger areas, but normally at a much higher cost.

Flood damages can be broadly split into three categories: urban, rural, and infrastructure

(Dutta et al., 2003). In this paper, we deal with the issue of protecting a road transportation

system. Transportation systems are often highly exposed to flood risk due to their con-

siderable size, which makes implementing fully comprehensive protection measures all but

impossible. In order to cope with the limited availability of resources for securing road net-

works, we propose a multi-period optimisation model for selecting multiple asset protection

plans to guard against a range of potential flood scenarios. Solving the proposed model to

optimality requires a substantial amount of computational effort. Accordingly, we devise a

heuristic solution approach to efficiently tackle realistic sized problem instances.
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2 Literature review

The problem of protecting critical infrastructure has been increasingly studied over the last

decade, especially in the context of facility location. A popular stream of literature focuses

on minimizing the impact of a worst-case scenario. This approach is particularly suited to

situations involving an intelligent adversary (e.g., military strikes or terrorist attacks) but can

still prove useful when dealing with large, catastrophic natural disasters (e.g., earthquakes

and hurricanes). Church and Scaparra (2007) study the problem of finding the optimal set of

facilities to protect in a supply chain system that is subject to disruption. Losada et al. (2012)

introduce the concept of recovery time into the facility protection problem. Aliakbarian et al.

(2015) extend the problem of protecting a supply chain system by considering hierarchical

facilities. Alguacil et al. (2014) study a model to find the best allocation of defensive or

hardening resources in an electric grid subject to intentional disruption.

The majority of work relating to transportation has focused on identifying system vulner-

abilities (i.e., using interdiction type models) rather than finding the best set of elements

to protect (i.e., using fortification-interdiction type models). One exception is Starita and

Scaparra (2015), who study the problem of protecting railway infrastructure over a planning

horizon through the use of flow networks. Likewise, Liberatore et al. (2011) consider the

problem of protecting facilities against worst-case attacks when the number of disrupted el-

ements is uncertain. Cappanera and Scaparra (2011) propose a model to identify the set of

elements to harden so as to minimise the shortest path between two nodes. Alderson et al.

(2011) investigate the problem of protecting bridges and tunnels of a transportation system

in the face of terrorist attacks. Jin et al. (2015), meanwhile, introduce a tri-level model for

the protection of urban rail transit networks. Sarhadi et al. (2015) focus on rail inter-modal

transportation, studying a fortification model that embeds a capacitated multi-commodity

flow problem with delivery times and penalty costs.

Protecting infrastructure is a complex problem in which numerous factors may be uncertain.

Worst-case models can be overly pessimistic, especially when dealing with natural events

that are more random in nature. To tackle this issue, a second important line of research

focuses on the development of stochastic programming models. Berman et al. (2007), for

example, optimise the location of unreliable facilities in a p-median network. They propose

exact and heuristic approaches for the situation in which facilities have site-dependent failure

probabilities. Zhang et al. (2014) propose a model to protect supply systems when facilities

are subject to random attacks. They also introduce a hybrid model aimed at finding optimal

protection strategies for both random and worst-case attacks.

Disruption of transportation and supply networks have been dealt with by various authors.
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Viswanath et al. (2004) study the problem of distributing resources to reduce the expected

shortest path of a network subject to independent random failures. Investments are made

on links to increase their survival probability. Du and Peeta (2014) introduce a two-stage

stochastic model which aims to reduce the expected post-disaster response time by dis-

tributing pre-disaster resources among the links of a shortest-path network. Rawls and

Turnquist (2010) study emergency response planning for hurricanes and other natural dis-

asters. A model is proposed to determine the quantity, type, and location of supplies to be

pre-positioned, while taking into account the availability of transportation links following a

disruption event. Fan and Liu (2010) investigate the protection of transportation networks

against disruption. Their model is formulated as a stochastic network optimisation problems

with equilibrium constraints that takes into account repair cost, travel delay cost, and unsat-

isfied demand. Liu et al. (2009) propose a two-stage stochastic model to optimally retrofit a

multi-commodity flow network. The aim is to fortify a subset of highway bridges so that the

transportation system’s resiliency is maximised according to a mean-risk objective. Madadi

et al. (2014) also examine the importance of risk attitude in the context of designing reliable

supply chain networks by comparing risk-neutral and risk-averse decision criteria.

A third distinct line of research looking at facility and network disruption involves the use of

robust optimisation. Here, the aim is to identify solutions that perform well across a defined

set of disruption scenarios. Often times, information about the likelihood of disruption events

is lacking or of lesser importance. Rather, scenarios are chosen based mainly on the severity

of impact they can have on system efficiency. This is often the case when planning against

large natural disasters.

Among the group of robust optimisation studies, Huang et al. (2007) develop a maximum

covering model for the optimal allocation of emergency vehicles in a transportation network.

Scenarios are included to handle variations in travel times and demand and a regret type

metric is used to evaluate the robustness of allocation strategies. Yin (2008) investigate the

problem of finding the optimal allocation of tow trucks so as to improve response times and

minimise disruptions to traffic flow. Scenarios correspond to different incident levels occurring

in the network and are used to form a conditional value-at-risk measure. Current et al. (1998)

consider a dynamic facility location problem where the number to open facilities is uncertain.

The goal of the problem is to minimise expected opportunity loss and minimise maximum

regret. Snyder and Daskin (2006) propose a robustness measure for facility location problems

called p-robustness. Their model seeks to minimise the expected cost of facility disruptions,

while bounding the relative regret of each scenario. Chen et al. (2006) introduce the α-reliable

mean-excess risk measure. The model they propose minimises expected regret, focusing on

an endogenously selected subset of scenarios. Peng et al. (2011) propose a model to design
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reliable supply chain networks. The aim is to minimise cost when no disruption occurs

and reduce the risk of disruptions using the p-robustness measure. Rawls and Turnquist

(2012) extend Rawls and Turnquist (2010) by incorporating a regret-based reliability metric

and illustrate their approach using a case study hurricanes threatening the North Carolina

area. Ben-Tal et al. (2011) develop a robust optimisation framework for a dynamic traffic

assignment problem with demand uncertainty. The framework is applied to an emergency

response and logistic planning test problem. Najafi et al. (2013) propose a multi-objective

robust optimisation model to efficiently use scarce emergency resources in the aftermath of

an earthquake. Baghalian et al. (2013) introduce a robust model for designing supply chains

when demand is uncertain and manufacturers are subject to disruptions.

Other studies dealing with infrastructure disruption that do not fit neatly within the afore

mentioned categories include Görmez et al. (2011), who study the problem of locating relief

centers in anticipation of a large earthquake. A sensitivity analysis is carried out to un-

derstand how solutions perform under various disruption scenarios. Jozefowiez et al. (2012)

propose a shortest-path based heuristic for rescheduling airlines over a multi-period hori-

zon when disruptions occur. Ishfaq (2013) formulate a shortest-path model which considers

inter-modal shipments to react to transportation link disruptions.

Focusing specifically on road transportation system vulnerability and protection, Ukkusuri

and Yushimito (2009) propose a heuristic based on user equilibrium flows to assess the crit-

icality of highway links. Faturechi and Miller-Hooks (2014) study a stochastic model with

equilibrium constraints to optimise travel time in a roadway network subject to disruption.

He and Liu (2012) propose a prediction-correction model to evaluate day-to-day traffic flow

evolution following a road network disruption. Chang (2003) develop a performance measure

based on accessibility to evaluate the functionality of an urban transportation system in the

aftermath of a disaster. Peeta et al. (2010) study a shortest-path based model to decide

which links to strengthen in a highway network that are subject to random failures.

Much less attention has been given to the effects of flooding on transportation services.

Suarez et al. (2005) propose a model to assess how flooding and climate change impact the

performance of urban transportation. They use an urban transportation modelling system

(UTMS) to simulate traffic flows and apply the model to the Boston metropolitan area.

Sohn (2006) assess the critical links in a highway network under flood damage. Criticality

is estimated according to an accessibility metric that integrates shortest path distances and

traffic flows.
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3 Model Formulation

3.1 Problem description and assumptions

Let a road network be represented as a graph G(N,A), where N is the set of nodes (junctions)

and A the set of arcs (road links). Suppose a set of flood disruption scenarios S is under

consideration. A given flood disruption scenario s ∈ S, which occurs with probability πs, will

cause a subset of arcs As ⊆ A to be disrupted. The disruption caused by any scenario s can

vary spatially such that arcs may face a range of discrete flood magnitudes represented by

set L. The return period of a given flood size ` ∈ L is given by r` and expresses the average

time interval (normally expressed in years) between two floods of the same magnitude. A

flood’s magnitudes and return period are directly linked. Specifically, flood events with

longer return periods have higher magnitude and vice versa. Set R = {r` : ` ∈ L} denotes

all possible return periods associated with flood sizes L.

Under normal conditions, travel time along an arc k ∈ A is given by dk. Assuming no

additional protection is provided to an arc, flood scenario s ∈ S will cause a delay in travel

time of ∆dks for arc k ∈ As as a result of facing a flooding event with a return period of

ρks ∈ R. We assume that protection of any arc k to a standard sufficient to withstand a

flood of magnitude ` ∈ L will protect it against any flood of lesser magnitude (i.e., no delay

will occur for any flood `′ ∈ L having a return period r`′ < r`). With this in mind, let P be

a set of protection plans. An individual protection plan p ∈ P , which costs cp to implement,

can protect multiple arcs Âp ⊆ A to various standards. Specifically, plan p will protect arc

k ∈ Âp against any flood with a return period of σkp ∈ R or less.

Now the aim of our problem is to select a subset of protection plans in P over a specified

planning horizon of length T in order to minimise, across disruption scenarios S, the expected

all-pairs shortest path from a defined origin o ∈ N . Each time period is subject to the

same set of scenarios S. It is assumed that there is a budget bt available in each period for

implementing protection plans and that unused portions of the budget can be carried forward

to subsequent periods. It is further assumed that protection of any arc in time t = 1, ..., T

lasts for the remainder of the planning horizon t, ..., T . In cases where two or more protection

plans are implemented and would provide overlapping protection to the same arc, the arc

will be protected to the highest standard among the plans (e.g., if an arc has already been

protected to a standard ` and a subsequent plan would protect it to a lower standard `′ such

that r`′ < r`, then the previous higher standard ` would be retained).
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3.2 A Dynamic model for Road Protection against Flooding

To formulate our Dynamic Road Protection against Flooding (DRPF) model, consider the

following additional notation:

FS(i) = the forward star of node i (i.e., the set of arcs directed out of node i)

RS(i) = the reverse star of node i (i.e., the set of arcs directed into node i)

M = a large constant greater than or equal to the largest return period in set R

We also introduce the following decision variables:

yokst = the number of times arc k is included in a shortest path originating from

node o to any other node if scenario s occurs in period t

zpt =

1 if plan p is implemented in period t

0 otherwise

αkst =

1 if arc k is disrupted by scenario s in period t

0 otherwise

βkt = the largest return period that arc k would be protected against in period t

With this in place, a non-linear formulation of DRPF is given below.

[DRPF] min
∑
s∈S

πs

T∑
t=1

∑
o∈N

∑
k∈A

(dky
o
kst + ∆dksαksty

o
kst) (1)

s.t.

t∑
u=1

∑
p∈P

cpzpu ≤
t∑

u=1

bu t = 1, ..., T (2)

∑
k∈RS(i)

yokst −
∑

k∈FS(i)

yokst =

−|N |+ 1 if i = 0

1 otherwise

∀o ∈ N,∀i ∈ N,∀s ∈ S, t = 1, ..., T (3)

βkt = max
u≤t, p∈P

{σkpzpu} ∀k ∈ A, t = 1, ..., T (4)
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Mαkst ≥ ρks − βkt ∀k ∈ A,∀s ∈ S, t = 1, ..., T (5)

yokst ≥ 0 ∀o ∈ N,∀k ∈ A, ∀s ∈ S, t = 1, ..., T (6)

zpt ∈ {0, 1} ∀p ∈ P, t = 1, ..., T (7)

αkst ∈ {0, 1} ∀k ∈ A,∀s ∈ S, t = 1, ..., T (8)

βkt ∈ R ∀k ∈ A, ∀t = 1, ..., T. (9)

The aim of DRPF model is to choose protection plans that minimise the expected all-pairs

shortest path cost over all disruption scenarios (1). Inequalities (2) impose a budget restric-

tion on the cost of protection plans in each time period t. Equations (3) are the flow-balance

constraints for an all-pairs shortest-path problem. Equations (4) set βkt to the largest return

period that arc k would be protected against taking into account all of the protection plans

covering arc k that have been implemented in periods u ≤ t. Constraints (5) require variable

αkst to be equal to 1 whenever the highest safety standard implemented for arc k by period

t is insufficient to protect against scenario s (i.e., if ρks > βkt). Finally, constraints (6)-(9)

impose necessary the restrictions on the decision variables.

3.3 Linearisation of the objective function

The second term of the objective function ∆dkαksty
o
kst is non-linear. To linearise it, we

introduce auxiliary variables γokst as well as a large constant M ′. Objective function (1) can

then be replaced by:

min
∑
s∈S

πs

T∑
t=1

∑
k∈M

∑
o∈N

(dky
o
kst + ∆dkγ

o
kst) (10)

subject to (2)-(9) and the following.

γokst ≤M ′αkst ∀o ∈ N,∀k ∈ A, ∀s ∈ S, t = 1, ..., T (11)

γokst ≥ yokst +M ′(αkst − 1) ∀o ∈ N,∀k ∈ A, ∀s ∈ S, t = 1, ..., T (12)

γokst ≥ 0 ∀o ∈ N,∀k ∈ A, ∀s ∈ S, t = 1, ..., T (13)

Constraints (11) and (12) are introduced so that γokst = yokst whenever αkst = 1, 0 otherwise.

Constant M ′ needs to be greater than or equal to the total number of origin-destination

pairs. Constraints (13) are the non-negativity requirements for the γokst variables.
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3.4 Linearisation of the protection level constraints

Constraints (4) can be linearised by introducing additional decision variables xkt` defined as:

xkt` =


1 if the highest protection standard afforded to arc k in period t

is sufficient to withstand a flood of size `

0 otherwise

Further, let Pk` be the subset of plans in P that would protect arc k to a standard sufficient

to withstand a flood of size `. With this in place, equalities (4) can be replaced with the

following set of linear constraints.

βkt =
∑
`∈L

r`xkt` ∀k ∈ A, t = 1, ..., T (14)

∑
`∈L

xkt` ≤ 1 ∀k ∈ A, t = 1, ..., T (15)

xkt` ≤
t∑

u=1

∑
p∈Pk`

zpu ∀k ∈ A, ∀` ∈ L, t = 1, ..., T (16)

xkt` ∈ {0, 1} ∀k ∈ A, t = 1, ..., T (17)

Constraints (14) are used to set βkt to the highest protection standard implemented for arc k

by period t. Inequalities (15) stipulate arc k can be protected to at most one safety standard

` in period t. Constraints (16) state that arc k can be protected to a safety standard of ` in

period t if a plan p ∈ Pk` has been implemented in the time window 1, ..., t. Constraints (17)

are the binary requirements for variables xkt`.

4 Solution approach

The proposed model can be solved directly with a general purpose mixed integer linear

programming (MILP) solver like CPLEX. The formulation, however, requires a very large

number of variables and constraints, even when a moderate number of scenarios, protection

plans, and time periods is considered. This has a strong impact on the performance of

the MILP solver, both in terms of computing time and memory requirements. Moreover,

shortest-path problems can be solved very efficiently using specialised algorithms. These

considerations suggest that more effective solution approaches can be devised. Here, we
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present a heuristic algorithm based on the GRASP (Greedy Randomised Adaptive Search

Procedure) meta-heuristic for building an initial solution combined with a local search to

further explore the feasible space.

4.1 GRASP step

GRASP was introduced by Feo and Resende (1995) to overcome the limits of purely greedy

construction algorithms. It is an iterative procedure that at each step builds up a solution by

randomly choosing elements from a dynamically constructed restricted candidate list (RCL).

The RCL consists of a subset of elements which are selected according to a greedy scheme.

Once GRASP has produced a starting solution, a local search can be carried out to find an

improved solution. The entire process can be repeated multiple times in an effort to more

fully explore the solution space.

The following is the notation used in our GRASP implementation:

− itr is the iteration index

− plansitr and objitr are the solution and corresponding objective value obtained at iter-

ation itr

− bestP lans and bestObj refer to the best solution found and corresponding objective

value

− MAXITER is the maximum number of iterations

− RCLSIZE is the size of the restricted candidate list

− Φpt is a greedy metric used to rank the pair (p, t) (i.e., the importance of plan p

implemented at time t)

− Sk` is the set of scenarios that disrupt arc k at level `

− ∆s is the increment in the all-pairs shortest path expected cost generated by disruption

scenario s

We further introduce some crucial subroutines used in the algorithm:

− computeShortestPath(plansitr) finds a solution, with protection strategy plansitr as

input, to the all-pairs shortest path problem subject to the disruption scenarios. The

function is implemented efficiently using the Floyd-Warshall algorithm (Floyd, 1962).
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− updateImportance(plansit) updates the metric Φpt given plansit as input. Before defin-

ing Φpt mathematically, we need to introduce an additional parameter λk` for each

arc and flood size pair (k, `). Specifically, let λk` =
∑

`′≤`
∑

s∈Sk`
∆s. Parameter λk`

gives the cumulative increment in the shortest path expected travel cost generated by

all scenarios disrupting arc k at level `′ ≤ `. For the sake of clarity, we define fit =

computeShortestPath(plansitr) and fit(p, t) = computeShortestPath(plansitr∪(p, t)).

The difference between these two values, fit− fit(p, t), represents the net decrease in

overall travel costs obtained when adding (p, t) to the solution. The importance metric

is then computed by the following formula:

Φpt =

∑
k∈Âp

λkσkp(fit− fit(p, t))
cp

(18)

Looking at (18), importance is defined as the benefit obtained by including plan p

at time t to the set of implemented protections weighted by parameter λkσkp and the

inverse of the cost cp of implementing that plan.

− buildRCL(plansitr) creates the restricted candidate list of size RCLSIZE by selecting

the best pairs (p, t) according to their Φpt values.

− updateFeasibeP lans(plansitr) is used to keep track of plans that can be added to

plansitr without violating the budget constraints.

In Algorithm 1, we provide pseudo-code of the GRASP heuristic.

4.2 Improvements to the GRASP algorithm

Here, we briefly discuss some expedients that have been adopted to improve the GRASP

algorithm both in terms of efficiency and accuracy. The first improvement takes advantage

of multi-core processors by implementing a multi-thread version of the algorithm. Using

concurrent programming allows for a more in-depth exploration of the solution space without

any increase in execution time. Furthermore, threads can work with different algorithm

settings to implement different policies so that the probability of exploring the same solution

is reduced. To provide this flexibility, we extend the definition of Φpt as follows:

Φpt =
µ(p)

∑
k∈Âp

λkσp(fit− fit(p, t))
cp

(19)
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Algorithm 1 GRASP pseudo-code.

bestP lans← ∅; bestObj =∞; itr = 1
while itr ≤MAXITER do
plansitr = ∅; objitr =∞
updateImportance(plansitr)
updateFeasibeP lans(plansitr)
while there are feasible plans do
buildRCL(plansitr)
randomly select a plan

(
p̂, t̂
)

from RCL

plansitr = plansitr ∪
(
p̂, t̂
)

updateImportance(plansitr)
updateFeasibeP lans(plansitr)

end while
objitr = computeShortestPath(plansitr)
if objitr < bestObj then
bestP lans← plansitr; bestObj = objitr

end if
itr = itr + 1

end while
return bestP lans; bestObj

The function µ(p) is used to weight each plan according to the protection level offered.

Specifying different functional forms of µ for each thread will result in different solutions being

explored, thus increasing the chance of finding an optimal solution. For example, µ(p) = 1

weights all plans p equally. Alternatively, µ(p) = `maxp , where `maxp is the index number of the

maximum protection standard afforded to any arc in plan p (i.e., `maxp = arg maxk∈Âp
σkp),

puts higher weight on plans offering potentially higher levels of protection. This, in turn,

increases the probability of having such plans in the solutions.

The algortihm can be further improved by optimizing the routine updateImportance(). The

idea behind the improvement is as follows. If there are available protection resources at time

t, the most important plans (the ones with higher Φ) will more likely be the plans (p, t′) with

t′ ∈ [t, t+ 1]. As a consequence, we can reduce the number of plans for which Φ needs to be

recomputed by excluding the plans (p, t′) such that t′ ∈ [t+ 2, T ].

Finally, if we keep track of the highest possible level of disruption threatening each arc, we

can ignore any plans that overprotect. Formally, a plan p is excluded from consideration if:

σkp > max
s∈S
{ρks} ∀k ∈ Âp ∧ ∃p′ s.t. c′p < cp, Â

′
p ⊆ Âp,

σkp ≥ σkp′ ≥ max
s∈S
{ρks} ∀k ∈ Âp′ (20)
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4.3 Local search step

The best solution found by the GRASP procedure is used as the starting point for a local

search. The temporal component of the model makes the implementation of an effective

local search challenging. In fact, a search procedure should take into account the fact that

the GRASP solution generated might include plans that are not included in the optimal

solution and/or plans that are in the optimal solution but should be implemented at different

time periods. To tackle this issue, we implemented two types of swap moves: internal and

external. For each type, two approaches were devised. The four different swaps are carried

out sequentially in the same order as they are introduced in the next sections.

4.3.1 Internal swap

Internal swaps can perform single or multiple swaps between the elements of a solution.

Specifically, these swaps change only the time when plans are implemented, not the type of

plans chosen. Swaps are done only among plans implemented in consecutive time periods.

We consider two combinations of swaps:

− 1-to-2 swap: A plan (p, t) with t ∈ [1, T − 1] is postponed one period. Simultaneously,

up to two plans implemented at time t + 1 are brought forward one period. Every

combination involving 1 or 2 plans is considered. Non-feasible solutions are discarded.

The pseudo-code for this move is shown in Algorithm 2.

− 2-to-3 swap: This move is almost identical to the previous one. The only difference is

the number of plans that are postponed (2) and the number that are brought forward

(up to 3).

Table 1 shows an example of a 1-to-2 internal swap, where the plans in bold are those being

swapped. It is worth mentioning that the code has been implemented to avoid unnecessary

computation. For instance, assuming that the swap p2 ↔ (p3, p5) generates a feasible solution,

then swaps p2 ↔ p3 and p2 ↔ p5 are not considered.

Before
t Plans
0 p1 p2
1 p3 p4 p5
2 p6 p7

After
t Plans
0 p1 p3 p5

1 p2 p4
2 p6 p7

Table 1: Example of 1-to-2 internal swap.
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Algorithm 2 Internal 1-to-2 swap

plans← bestP lans
for t = 1; t < T ; t+ + do
for (p, t) ∈ planst do
plans← plans \ (p, t) ∪ (p, t+ 1)
for (p′, t′)1 ∈ planst+1 do
plans← plans \ (p′, t′)1 ∪ (p′, t′ − 1)1

if plans is a feasible solution then
obj = computeShortestPath(plans)
if obj < bestObj then
bestP lans← plans; bestObj = obj

end if
for (p′, t′)2 ∈ planst+1 ∧ (p′, t′)2 6= (p′, t′)1 do
plans← plans \ (p′, t′)2 ∪ (p′, t′ − 1)2

if plans is a feasible solution then
obj = computeShortestPath(plans)
if obj < bestObj then
bestP lans← plans; bestObj = obj

end if
end if
plans← plans \ (p′, t′ − 1)2 ∪ (p′, t′)2

end for
end if
plans← plans \ (p′, t′ − 1)1 ∪ (p′, t′)1

end for
plans← plans \ (p, t+ 1) ∪ (p, t)

end for
end for

4.3.2 External swap

External swaps remove one or more plans from the incumbent solution and replace them

with one or more plans not currently included in the solution. As with internal swaps, we

consider two cases:

− 1-to-2 swap: A plan (p, t) is removed from the solution. Simultaneously, up to two

plans are added in its place. Only plans that would generate a feasible solution are

considered. The pseudo-code for this move is shown in Algorithm 3.

− 2-to-3 swap: This move is nearly identical to the previous one. The only difference is

the number of plans swapped out (2) and swapped in (up to 3).
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Algorithm 3 External 1-to-2 swap

plans← bestP lans
for (p, t) ∈ plans do
plans← plans \ (p, t)
updateFeasibeP lans(plans)
for (p′, t′)1 ∈ FeasibleP lans do
plans← plans ∪ (p′, t′)1

updateFeasibeP lans(plans)
if FeasibleP lans \ (p, t) 6= ∅ then
for (p′, t′)2 ∈ FeasibleP lans do
plans← plans ∪ (p′, t′)2

obj = computeShortestPath(plans)
if obj < bestObj then
bestP lans← plans; bestObj = obj

end if
plans← plans \ (p′, t′)2

end for
else
obj = computeShortestPath(plans)
if obj < bestObj then
bestP lans← plans; bestObj = obj

end if
end if
plans← plans \ (p′, t′)1

end for
plans← plans ∪ (p, t)

end for

Table 2 shows an example of 1-to-2 external swap with swapped plans shown in bold.

Before
t Internal plans External plans
0 p1 p2 p8 p9 p10
1 p3 p4 p5 p8 p9 p10
2 p6 p7 p8 p9 p10

After
t Internal plans External plans
0 p1 p2 p7 p8
1 p3 p4 p5 p7 p8
2 p6 p9 p10 p7 p8

Table 2: Example of 1-to-2 external swap.

5 Computational tests

For our initial computational tests, we generated undirected square networks of size n×m,

where n is the number of nodes and m is the number of arcs. We assume that the travel time
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Figure 1: An example 16× 24 grid.

along a link is independent of travel direction and that protections and disruptions affect

simultaneously and equally both directions. In Figure 1, we show the topology of an example

16× 24 grid. Arcs travel times dk were drawn uniformly in the range [1, 10].

We consider 4 different flood sizes, categorised in terms of their return period: 20, 50,

100, and 250 years. The same values are used to identify levels of protection, hence R =

{20, 50, 100, 250}. According to the disruption level of each scenario, the delay ∆dks is set to

2.5, 5, 10, and 20 times the baseline travel time dk. We examined three types of protection

plans: arc, node, and row/column plans. Arc plans protect a single arc. Node plans protect

all the arcs incident to a node. Finally, row/column plans include all the arcs forming a row

or a column in the grid. For example, if we consider the grid in Figure 1, the node plan cor-

responding to node 6 includes arcs 2-6, 5-6, 6-7, and 6-10. The row plan corresponding to the

second row includes arcs 2-6, 6-10, and 10-14. Overall, we can identify m+3n different plans

using this scheme. Each plan can be implemented at 4 levels of protection. Consequently,

for each instance we use 4(m + 3n) protection plans. In Table 3, we show the criteria used

to estimate the costs of implementing the protection plans.

The discount factor f was set to 1.3. It is incorporated so that adopting a node or row-column

Return period (yrs)
Type of plan 20 50 100 250
Arc dk 2dk 3dk 4dk
Node [f−1

∑
k∈Âp

ck] [2f−1
∑

k∈Âp
ck] [3f−1

∑
k∈Âp

ck] [4f−1
∑

k∈Âp
ck]

Row/Column [f−1
∑

k∈Âp
ck] [2f−1

∑
k∈Âp

ck] [3f−1
∑

k∈Âp
ck] [4f−1

∑
k∈Âp

ck]

Table 3: Cost of implementing a given type of plan according to its protection level.
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plan p will be cheaper than independently protecting all the arcs included in p.

We assume that all arcs face the same level of disruption for any given flood scenario (i.e.,

ρks = ρs, ∀k ∈ As) and that the number of arcs disrupted in each scenario is dependent on

the scenario’s return period. The least damaging scenario is capable of disrupting only 1 arc.

The number of disrupted arcs increases with the scenario’s size from 1 to m/4 (i.e., the most

severe disruption scenario can disrupt 25% of the network). In Table 4, we list the number

of disrupted arcs for each of the return periods considered.

Return period (yrs)
20 50 100 250

No. disrupted arcs 1 d(m+ 20)/24e d(m+ 5)/9e dm/4e

Table 4: Number of disrupted arcs based on a scenario’s return period.

Scenarios were built in such a way that arcs affected by a given scenario formed a connected

sub-network. This was done so that the elements affected by a flood event were contiguous,

as is often the case in real life. In Table 5, we report the number of scenarios generated for

each level of flooding. The probability of occurrence for a scenario was set as the inverse of

the scenario’s return period. We generated 30 instances using networks of size 9×12, 16×24,

and 25× 40.

Return period (yrs)
20 50 100 250

No. scenarios m dm/2e dm/4e dm/8e

Table 5: Number of scenarios generated for each return period.

We considered a 4-period planning horizon (i.e., T = 4). We chose a total protection budget

equal to 10% of the resources needed to protect the entire network at the highest safety level.

The budget was equally spread over the time periods. We ran the heuristic with the number

of threads set to 4. Each thread uses a different µ vector to compute Φ based on equation

(19). The values for the different policies used in each thread are listed in Table 6.

Return period (yrs)
Thread ID 20 50 100 250

0 1 1 1 1
1 1 2 3 4
2 1 1.3 1.6 1.9
3 1 2 2 1

Table 6: Set of µ values used for each thread.
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CPLEX Heuristic
Network size Instance Obj Time(s) Obj Time(s) Gap(%) Time diff(%)

9× 12 1 2168.6 7 2168.6 2.5 0.00% -64.29%
2 2595.5 6.9 2595.5 3.3 0.00% -52.17%
3 2282.4 9.7 2282.4 3.8 0.00% -60.82%
4 2831.9 6.5 2831.9 2.9 0.00% -55.38%
5 2476.4 4.7 2476.4 3.1 0.00% -34.04%
6 3107.9 6.6 3107.9 3.3 0.00% -50.00%
7 2360.5 8.8 2360.5 3.8 0.00% -56.82%
8 2600.1 6.9 2600.1 3.6 0.00% -47.83%
9 2505.0 5.6 2505.0 3.3 0.00% -41.07%
10 1755.5 8.9 1756.1 2.7 0.03% -69.66%

Avg 7.2 3.2 0.00% -53.21%
16× 24 1 17020.9 1900.1 17020.9 176.9 0.00% -90.69%

2 19487.3 3581.8 19487.3 164.7 0.00% -95.40%
3 21347.0 1714.5 21347.0 131.6 0.00% -92.32%
4 16744.5 1553.9 16747.5 166.6 0.02% -89.28%
5 18646.8 1354.2 18646.8 129.4 0.00% -90.44%
6 16661.8 4395.2 16662.7 187.8 0.01% -95.73%
7 15346.2 4322.8 15349.1 135.1 0.02% -96.87%
8 14288.9 387.1 14288.9 207.4 0.00% -46.42%
9 18783.4 2177.7 18783.4 192.2 0.00% -91.17%
10 12225.7 1971.92 12225.7 180.9 0.00% -90.83%

Avg 2335.9 167.3 0.00% -87.92%
25× 40 1 106278.9† 21600.0 106064.0 3183.7 -0.20% -85.26%

2 88124.5† 21600.0 87981.4 3665.6 -0.16% -83.03%
3 97700.2† 21600.0 97684.1 3676.1 -0.02% -82.98%
4 91102.4† 21600.0 91025.2 3448.5 -0.08% -84.03%
5 109276.9† 21600.0 109091.0 3876.9 -0.17% -82.05%
6 80102.2† 21600.0 79972.0 4384.8 -0.16% -79.70%
7 88891.3† 21600.0 88729.7 4102.1 -0.18% -81.01%
8 97849.8† 21600.0 97818.4 4315.6 -0.03% -80.02%
9 115763.9† 21600.0 115681.0 3937.2 -0.07% -81.77%
10 83557.7† 21600.0 83530.9 3988.9 -0.03% -81.53%

Avg 21600.0 3857.9 -0.11% -82.14%

†Best objective value found after 6 hours of running time.

Table 7: Computational results for test problem instances.

Thread 0 treats all the protection plans equally. Threads 1 and 2 give more importance to

plans that grant higher levels of protection. Finally, thread 4 weights more heavily medium

level protection plans. These values were chosen empirically to maximise the probability of

discovering an optimal solution. The size of the RCL is dependent on the problem size. It

was set to 3 for 9× 12 and 16× 24 networks and to 4 for 25× 40 networks. The number of

iterations was set to 100 and we specified a 6-hour limit on the run time of the algorithm.

In Table 7, we compare the performance of CPLEX against our GRASP heuristic on the 30
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test problem instances. The “Obj” and “Time” columns show the objective value and the

solution time obtained by the two algorithms. “Gap” is the percentage gap between the best

feasible solution obtained with CPLEX and the value returned by the heuristic. A negative

value for “Gap” indicates that the heuristic found a better solution. Finally, “Time diff” is

the percentage difference between the computing times of the two algorithms. A negative

value for “Time diff” indicates that the heuristic was faster than CPLEX. The table shows

that CPLEX can find a verified optimal solution within 6 hours only for small and mediums

sized instances. In fact, on the 25 × 40 networks, CPLEX never converges to an optimal

solution. The heuristic, on the other hand, finds optimal or near-optimal solutions much

more efficiently. It is on average at least 82% faster than CPLEX and always returns better

solutions for the 25× 40 networks.

6 Case study

In this section, we present a case study based on the A-road network infrastructure of Hert-

fordshire in the UK. The network is composed of 36 nodes and 47 undirected arcs. We used

historical data on floods, which are publicly available through the Environmental Agency

(EA). Using geographic information system (GIS) software (ArcGIS), we generated disrup-

tion scenarios by identifying regions where floods and the road network overlapped. Over

the past 70 years, 29 floods in Hertfordshire are recorded in the EA database. Among them,

16 overlapped with the A-road network.

In Figure 2, we show the road network considered in our case study. Recorded floods are

shown in light blue; in dark blue are shown events that affected the A-road network. Unfor-

tunately, floods are not categorised in the database. Consequently, we allocated them into

three size categories (small, medium, and large) according to the extent of the area flooded.

The corresponding return periods for each flood size is shown in Table 8. Coming up with

more precise estimates for return periods and, consequently, the likelihood of each flood cat-

egory requires a detailed hydrogeological analysis that goes beyond the scope of this paper.

Area flooded (km2)
(0, 2.5] (2.5, 10] (10, 50]

Flood category Small Medium Large
No. observed events 13 2 1
Return period (yrs) 5 35 70

Table 8: Return period estimation.
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Figure 2: Hertfordshire A-road network.

For simplicity, we use the number of events in each category that occurred over the past 70

years to estimate return periods (see Table 8).

We consider all single arc protection plans. To this, we add some multiple arc plans based on

a proximity criteria. The costs of implementing protection plans are assumed to be dependent

on arc lengths in the same way as was done in Section 5 for the test instances. The protection

budget is computed as a percentage of the resources needed to implement the highest level

of protection for the entire network (equivalent to 9,825 protection units).

Table 9 reports how the shortest path cost decreases when the protection budget is increased.

The first two increments (from 0% to 2% and from 2% to 4%) are the most significant.

Investing a budget of 10% results in a 26% reduction in the expected shortest path cost over

the planning horizon.

Budget
0% 2% 4% 6% 8% 10%

∆Obj 0% -8% -16% -21% -23% -26%

Table 9: Change in expected all-pairs shortest path cost (∆Obj) versus budget.
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Figure 3: Selected protections given a protection budget of 10%.

In Figure 3, we show the set of selected protection plans when the protection budget is equal

to 10%. The map shows, along with the protected links, the protection level of each arc. The

majority of protections are designed to thwart small floods. No link is fortified at the highest

possible level of protection. The results indicate that the central area of the network (close

to the town of Hertford) is the most critical. Interestingly, arc 29-30 is initially protected

at a small level in the first period and subsequently upgraded to a medium level in the last

period.

Next, we compare the results of our base model with those obtained by adopting the p-

robustness criteria introduced by Snyder and Daskin (2006). The p-robustness measure is

combined with our model by adding the following set of constraints:

T∑
t=1

∑
k∈A

∑
o∈N

(dky
o
kst + ∆dkγ

o
kst) ≤ (1 + p)D∗s ∀s ∈ S (21)

where D∗s is the objective value obtained by solving our base model with only scenario s as

input.
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Figure 4: Maximum regret versus expected travel cost when the protection budget is equal
to 5%.

The results of this analysis are summarised in Figure 4. The values of p are obtained following

the same approach used by Snyder and Daskin (2006). We solve the problem with p =∞ and

then set p to the maximum regret minus 0.00001. Subsequently, p is decremented by 0.00001

until the problem becomes infeasible. Figure 4 shows that improvements in robustness are

not justified by the costs. At best, a 0.00018 (0.23%) decrease in relative regret (p) can be

achieved for a 7.5% increase in expected travel cost when the protection budget is 5%. Using

higher budgets and or different values of p for different scenarios did not have any appreciable

impact on robustness (results not reported).

We also carried out a sentivity analysis to understand how uncertainty in the estimation of

return periods might impact optimal protection strategies. Specifically, we allowed the return

period to vary by ±20% from the base case for small, medium, and large floods, resulting in

a total of 27 cases as shown in Table 10. The budget used in this analysis was set to 10%.

Figure 5 shows the net percentage change in expected travel cost relative to a 0% protection

budget. The figure clearly highlights that it is the return period of small floods that has the

strongest impact on the objective value. In particular, the different flood scenarios clearly

separate into three sub-categories (cases 1-9, cases 10-18, and cases 19-27) based entirely on

the return period for small floods. Within these three sub-categories, only relatively small
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Return period (yrs) Return period (yrs) Return period (yrs)
Case Small Medium Large Case Small Medium Large Case Small Medium Large
1 4 28 56 10 5 28 56 19 6 28 56
2 4 28 70 11 5 28 70 20 6 28 70
3 4 28 84 12 5 28 84 21 6 28 84
4 4 35 56 13 5 35 56 22 6 35 56
5 4 35 70 14 5 35 70 23 6 35 70
6 4 35 84 15 5 35 84 24 6 35 84
7 4 42 56 16 5 42 56 25 6 42 56
8 4 42 70 17 5 42 70 26 6 42 70
9 4 42 84 18 5 42 84 27 6 42 84

Table 10: List of different return period value permutations for small, medium, large floods.

changes in the objective value are observed depending on the return periods for medium and

large floods. For example, increasing the return period of small floods from just 4 to 5 years

(the equivalent of going from a 0.25 to a 0.2 chance of occuring in any given year), causes net

expected travel cost to drop by more than 2-fold, with values in the range [−9%,−12%] versus

[−25%,−28%], respectively. What this suggests is that errors in return periods estimates for

medium and large floods are of less concern compared to small floods.

Finally, we evaluate the robustness of optimal protection strategies to uncertainty in flood

return periods. Table 11 reports the percentage increase in the objective function for the

base case solution (i.e., case 14) across all 27 permutations for small, medium, and large

Figure 5: Net percentage change in expected travel cost give a protecton budget of 10%.
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flood return period values. The table indicates that base case optimal solution is highly

robust even when the estimation error for return periods is as high as 20%. Indeed, the base

case solution produced no increase in expected travel cost for 21 out the 27 cases. In the

remaining 6 cases, the increase in cost was marginal (i.e., under 0.3%).

Case Inc (%) Case Inc (%) Case Inc (%)
1 0.00% 10 0.00% 19 0.17%
2 0.00% 11 0.00% 20 0.24%
3 0.00% 12 0.04% 21 0.29%
4 0.00% 13 0.00% 22 0.00%
5 0.00% 14 0.00% 23 0.00%
6 0.00% 15 0.00% 24 0.00%
7 0.00% 16 0.00% 25 0.00%
8 0.01% 17 0.00% 26 0.00%
9 0.03% 18 0.00% 27 0.00%

Avg 0.01% 0.00% 0.08%

Table 11: Robustness of the base case optimal solution to flood return period uncertainty.

7 Conclusions

In this paper, we introduce a scenario-based model to identify the optimal set of plans to adopt

for protecting a road network against flooding. When dealing with flood protection, a large

number of measures may be under consideration. These measures can differ significantly

in terms of cost and the level of protection provided. We incorporate these aspects by

considering different design safety standards and using protection plans involving multiple

road links as opposed to single road links. A multi-period planning horizon is adopted to

take into account the possibility that protection resources are distributed over time. The

consequences of disruptions are estimated in terms of the expected all-pairs shortest path

travel cost.

We find that solving the problem with a general purpose solver is challenging. A GRASP

heuristic is introduced to solve realistic sized problem instances. Tests on randomly generated

networks of different size demonstrate the efficiency of the heuristic. Finally, a case study of

the Hertfordshire A-road network provides some useful insights regarding road infrastructure

protection planning in the face of flood risk.

Future work might focus on the incorporation of user-equilibrium constraints so that the

relationship between travel time and traffic flow is more accurately captured. Such a model

would invariably be considerably harder to solve, thus necessitating the need to devise efficient
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and scalable solution approaches. A further extension of our model might be to consider using

fragility curves to characterise the probability that a protection measure fails (e.g., due to

overtopping). It would also be interesting to consider partial protection of road links. Finally,

future research might focus on the development of integrated models that combine protection

of urban areas, rural areas, and roads or other infrastructure.
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