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1. Introduction

With the introduction of compliance guidelines such as Basel

II and Basel III, and the resulting higher need for more

accurate credit risk calculations, survival analysis gained more

importance over the recent years. Historically, survival

analysis is mainly used in the medical context as well as in

engineering, where the time duration until an event is

analyzed, for example the time until death or machine failure

(see Kalbfleisch and Prentice, 2002; Collett, 2003; Cox and

Oakes, 1984).

As an alternative to logistic regression, Narain (1992) first

introduced the idea of using survival analysis in the credit risk

context. The advantage of using survival analysis in this

context is that the time to default can be modeled, and not just

whether an applicant will default or not (Thomas et al, 2002).

Many authors followed the example of Narain (1992) and

started to use more advanced methods as compared to the

parametric accelerated failure time (AFT) survival methods

used in this first work. An overview is given in Table 1. With

its flexible nonparametric baseline hazard, the Cox propor-

tional hazards (Cox PH) model was an obvious first alternative

to the AFT model (Banasik et al, 1999), and subsequent

contributions extended both Cox PH and AFT models by

using, among others, coarse classification (Stepanova and

Thomas, 2002) and time-varying covariates (Bellotti and

Crook, 2009). In recent research some authors have experi-

mented with mixture cure models. These models allow to

model a ‘‘cured’’ fraction, a part of the population that will not

go into default, in survival models.

In the existing literature, some questions remain. Firstly,

except for Zhang and Thomas (2012), there has been no

attempt to compare a wide range of the available methods in

one paper. Secondly, in each of the papers listed in Table 1,

only one data set was analyzed, not allowing to draw

conclusions on which of the survival methods to use. Finally,

in the majority of the papers, the evaluation remains largely

focused on classification and the area under the receiver

operating characteristics curve (AUC). In this paper, we

contribute to the existing literature by analyzing ten different

data sets from five banks, using all classes of models listed in

Table 1, and using both statistical (AUC and default time

predictions) and economic evaluation measures (by predicting

the future value of the loan), applicable to all model types

considered, the ‘‘plain’’ survival models as well as the mixture

cure models.

Other interesting modeling approaches exist, though are not

included in this comparison. These include discrete time

hazard models such as used in Bellotti and Crook (2013, 2014)

and Leow and Crook (2016). For further research it would be

interesting to compare continuous time with discrete time

models.

The remainder of this paper is organized as follows.

Section 2 gives an overview of the survival analysis tech-

niques used. In Section 3 the data and the experimental setup

are discussed in more detail. The evaluation measures are
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covered in Section 4, followed by the results and discussion in

Sections 5 and 6.

2. Survival analysis methods

In survival analysis, one is interested in the timing, T, of a

certain event. The survival function can be expressed as the

probability of not having experienced the event of interest by

some stated time t, hence SðtÞ ¼ PðT [ tÞ. In the context of

credit risk, the event of interest is default (together with early

repayment and maturity for the mixture cure model with

multiple events, see Section 2.5). Given the survival function,

the probability density function f(u) is given by f ðuÞ ¼

� d

du
SðuÞ. Additionally, the hazard function

hðtÞ ¼ lim
s!0

Pðt�T\t þ s j T[ tÞ
s

models the instantaneous risk. This function can also be

expressed in terms of the survival function and the probability

density function

hðtÞ ¼ f ðtÞ
SðtÞ :

In survival analysis, a certain proportion of the cases is

censored, which means that for these cases, the event of

interest has not yet been observed at the moment of data

gathering. In this paper, we use two different definitions for

censoring.

1. In the first definition, censored cases are the loans that did

not reach their predefined end date at the moment of data

gathering (called ‘‘mature’’ cases), and did not experience

default nor early repayment by this time.

2. According to the second definition, a censored case

corresponds to a loan that did not experience default by

the moment of data gathering. Early repayment and mature

cases are marked censored. This kind of censoring is used

in models where default is the only event of interest.

One can interpret these two types of censoring as follows.

The first definition defines censoring as we observe it when

obtaining the data: some loan applicants defaulted, repayed

early or some loans matured (which is, fully repaid at the end

of the loan term). The remaining loans, where none of these

events have (yet) been observed, are censored. According to

the second definition, however, only two possible states are

considered (instead of four): default and censoring. Here, all

the cases that are labeled mature or early repayment according

to the first definition get the label ‘‘censored.’’

Hence, when applying survival analysis to model the time to

default, the second definition is used (models in Sections 2.1–

2.4). Only for the multiple event mixture cure models in

Section 2.5, where competing event types are taken into

account, the first definition is used. The censoring indicator for

the ith case is denoted by di, which is equal to 1 for an

uncensored observation and is zero when censored.

When using survival models as regression models, a

covariate vector and corresponding parameter vector are

present. In all models in Section 2, the covariate vector is

denoted by x, and the parameter vector by b.

Table 1 Overview of the existing literature on the use of survival analysis in credit risk modeling

Paper Parametric/
AFT

Cox
PH

AFT/Cox
PH ?
extensions

Nonparametric Mixture
cure

Multi-
event
mixture
cure

Sample
size

Number
of

inputs

Evaluation
measure

Narain (1992) X 1242 7 None
Banasik et al
(1999)

X X 50000 [7 Classification

Stepanova and
Thomas (2001)

X X 11500 16 Classification, AUC,
profit measure

Stepanova and
Thomas (2002)

X X 50000 16 Classification, AUC

Bellotti and Crook
(2009)

X 200000 [11 Cost of a bad case

Cao et al (2009) X X X 25000 1 AUC
Tong et al (2012) X X 27527 14 AUC, H-measure,

Kolmogorov–Smirnov
Zhang and
Thomas (2012)

X X X 27000 21 Error in default time
prediction

Dirick et al
(2015)

X X 7521 8 AUC

The listed number of inputs is before variable selection (if applicable)
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2.1. Accelerated failure time models

Accelerated failure time (AFT) models are fully parametric

survival models where explanatory variables act as accelera-

tion factors to speed up or slow down the survival process as

compared to the baseline survival function. Formally, this is

denoted by

Sðt j xÞ ¼ S0 t � exp �b0xð Þð Þ

where the event rate is slowed down when 0\ expð�b0xÞ\1

and speeded up when expð�b0xÞ[ 1. The hazard function is

given by

hðt j xÞ ¼ h0 t � exp �b0xð Þð Þ exp �b0xð Þ:

In the general form, the accelerated failure time model can be

expressed as a log-linear model for the timing of the event of

interest logðTÞ ¼ b0xþ r�, with � a random error following

some distribution and r an additional parameter that rescales �.

As many classical survival distributions such as the Weibull

distribution, exponential distribution and log-logistic distribu-

tion have event times that are log-linear, AFT models are

often used as a starting point in order to parametrize these

distributions. The three models mentioned above are used in the

benchmark study and covered in Sections 2.1.1–2.1.3. For a

full overview on AFT models and more technical details we

refer to Collett (2003) and Kleinbaum and Klein (2011). AFT

models are used in the credit risk context by Narain (1992)

(who used an exponential distribution), Banasik et al (1999)

(who used exponential and Weibull distributions) and Zhang

and Thomas (2012) (who used Weibull, log-logistic and

gamma distributions).

2.1.1. Weibull AFT model The Weibull model in its classical

form can be expressed by the following survival and hazard

function with scale k and shape p

SðtÞ ¼ exp �ktpð Þ; hðtÞ ¼ kptp�1:

Using the relationship r ¼ 1

p
, it can be shown that a

Weibull-distributed random event time Ti ¼ expðb0xi þ r�iÞ
corresponds to a survival function

Siðt j xÞ ¼ exp �kit
1=r

� �
;

where ki ¼ exp �b0xi
r

� �
is the reparametrization used to

incorporate the explanatory variables.

2.1.2. Exponential AFT model The exponential distribution is

a special case of the Weibull distribution, with p ¼ 1. This

leads to a survival and hazard function

SðtÞ ¼ expð�ktÞ; hðtÞ ¼ k:

In the exponential distribution the strong assumption of a

constant hazard rate k is made, and for each case

ki ¼ expð�b0xiÞ. Note that � for the exponential is not rescaled

r ¼ 1

p
¼ 1

� �
.

2.1.3. Log-logistic AFT model The log-logistic distribution

with parameters h and j has a survival and hazard function

SðtÞ ¼ 1

1þ expðhÞtj ; hðtÞ ¼ expðhÞjtj�1

1þ expðhÞtj :

Using the AFT reparametrization, the relationship r ¼ 1

j
and the log-logistically distributed event time Ti has a survival

function

Siðt j xiÞ ¼
1

1þ expðhiÞt1=r

where hi ¼ �b0xi
r

.

2.2. Cox proportional hazards model

Another method which is commonly used in survival analysis

is the Cox proportional hazards model (Cox, 1972). This

method is more flexible than any AFT model as it contains a

nonparametric baseline hazard function, h0ðtÞ, along with a

parametric part. In this model, the hazard function is given by

hðt j xÞ ¼ h0ðtÞ exp b0xð Þ; ð1Þ

and the survival function is

Sðt j xÞ ¼ exp � exp b0xð Þ
Z t

0

h0ðuÞdu
� �

¼ exp � exp b0xð ÞH0ðtÞð Þ;

with H0ðtÞ the cumulative baseline hazard function. In this

paper, Breslow’s method is used to estimate the cumulative

baseline hazard rate, given by

bH0ðtÞ ¼
X
ti � t

1P
r2RðtiÞ exp b0xrð Þ ;

where RðtiÞ denotes the group of individuals at risk at time ti
(which are, in the credit risk context, the ones that have not yet

defaulted by time ti). For more information for the Breslow

and other estimators for the Cox PH model, we refer to Klein

and Moeschberger (2003). The Cox PH model was first used in

the credit context by Banasik et al (1999).
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2.3. Cox proportional hazards model with splines

The hazard function in the Cox PH model, see formula (1),

assumes a proportional hazards structure with a log-linear

model for the covariates. As a result, for any continuous

variable, e.g., age, the default hazard ratio between a 25- and a

30-year-olds is the same as the hazard ratio between an 70- and

75-year-olds. As it is likely that this assumption does not hold,

one has been looking for other functional forms of covariates;

for an overview, see Therneau and Grambsch (2000). One of

the most popular methods to deal with this is by using splines.

Splines are flexible functions defined by piecewise polynomi-

als that are joined in points called ‘‘knots.’’ Some constraints

are imposed to ensure that the overall curve is smooth. Any

continuous variable can be represented by a spline, hence

where in formula (1) the linear predictor is denoted by

b0x ¼
Xm
j¼1

bjxj:

Splines can be introduced modeling some or all, say these

are m� l, continuous covariates by a spline approximation

fjðxjÞ,

b0x ¼
Xl
j¼1

bjxj þ
Xm
j¼lþ1

fjðxjÞ:

For an example, see Figure 1. To get a smooth function, a

basis of functions with continuous first derivatives is often

used to construct a spline function. A popular spline basis is

the basis of cubic spline functions

1; x; x2; x3; ðx� j1Þ3þ; . . .; x� jq
� �3

þ

with q knots j1; . . .; jq. A spline model is formed by taking a

linear combination of the spline basis functions. The disad-

vantage of power bases, however, lies in the fact that they can

become numerically unstable when a large number of knots

are included. For this reason, an equivalent basis with more

stable numerical properties, the B-spline basis (de Boor, 2001),

is nowadays widely used. Both spline models in this study use

a cubic B-spline basis in the Cox PH model. For an overview

on splines in a general framework, we refer to Ruppert et al

(2003).

2.3.1. Natural splines A commonly used modification of the

cubic B-spline basis is the natural cubic spline basis. Natural

cubic splines satisfy the additional constraint that they are

linear in their tails beyond the boundary knots, which are taken

to be the endpoints of the data.

2.3.2. Penalized splines As the number of knots in a spline

becomes relatively large, a fitted spline function will show

more variation than justified by the data. To limit overfitting,

O’Sullivan (1986) introduced a smoothness penalty by

integrating the square of the second derivative of the fitted

spline function. Later, Eilers et al (1996) showed that this

penalty could also be based on higher-order finite differences

of adjacent B-splines. Penalized splines or ‘‘P-splines’’ use the

latter method to estimate spline functions.

2.4. Mixture cure model

In the medical context, mixture cure models were motivated

by the existence of a subgroup of long-term survivors, or a

‘‘cured’’ fraction (see Sy and Taylor, 2000; Peng and Dear,

2000). In contrast to non-mixture survival models, where the

event of interest is assumed to take place in the long run, these

types of models are typically used in contexts where a certain

proportion of the population will not experience the event.

Looking at the credit data, it becomes indeed apparent that a

very large proportion of the population will not go into default.

‘‘Cure’’ (or ‘‘non-susceptibility’’) can here be interpreted as a

situation where an individual is not expected to experience

default. The mixture cure model is then in fact a mixture

distribution where, on one hand, a logistic regression model

provides a mixing proportion of the ‘‘non-susceptible’’ cases.

On the other hand, a survival model describes the ‘‘survival

behavior’’ of the cases susceptible to the event of interest.

This type of models is of particular interest in credit risk

modeling as the event of interest here, default, will not occur

for a very high proportion of the cases. This idea was

introduced in the credit risk context for the first time by Tong

et al (2012). In Dirick et al (2015), a model selection criterion

adapted to these models was introduced and applied to credit
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Figure 1 Functional form for one of the covariates x, describing
the relationship between x and spline approximation f(x) using
penalized splines. x is a variable in one of the ten data sets (more
details are not disclosed due to confidentiality reasons). The
pointwise 95% confidence bands are given by the dotted lines.
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risk data. For the mixture cure model, the unconditional

survival function is given by:

Sðt j xÞ ¼ pðxÞSðt j Y ¼ 1; xÞ þ 1� pðxÞ; ð2Þ

where Y is the susceptibility indicator (Y ¼ 1 if an account is

susceptible, and Y ¼ 0 if not). Note that a new covariate vector

x is introduced, which is the covariate vector of the logistic

regression model, in this case the binomial logit,

pðxÞ ¼ PðY ¼ 1 j xÞ ¼ exp b0xð Þ
1þ exp b0xð Þ ;

with corresponding parameter vector b. In this paper, the

conditional survival function modeling the cases that are

susceptible is given by a Cox proportional hazards model,

Sðt j Y ¼ 1; xÞ ¼ exp � exp b0xð Þ
Z t

0

h0ðu j Y ¼ 1Þdu
� �

:

As in the Cox proportional hazards model in a non-mixture

context, the Breslow-type estimator is used for estimation of

the cumulative baseline hazard. Figure 2 shows the difference

between the survival curves for plain survival functions (such

as non-mixture Cox PH and AFT functions) compared to the

unconditional survival functions of the mixture cure model.

Whereas plain survival curves go to zero as the time goes to

infinity, the unconditional survival curves for the mixture cure

model ‘‘plateau’’ at a positive value ð1� pðxÞÞ.
The mixture cure model is computationally more intensive

than plain survival models, as the use of an iterative procedure,

the expectation maximization (EM)-algorithm, is needed in

order to overcome incomplete information on Y. For more

information on mixture cure models, we refer to Farewell

(1982), Tong et al (2012) and Dirick et al (2015).

2.5. Mixture cure model with multiple events

In the medical context it is unusual to ever truly observe cure.

In cancer research, for example, a subject might pass away

from the specific cancer under research immediately after the

observation period, even though having a high probability of

being cured. Observed cure does exist in the credit risk

context, since as a loan reaches maturity, it is known that

default can not occur anymore. As the censoring indicator in

the mixture cure model only provides information on whether

default took place or not, information on maturity is not used

in the model. Another shortcoming is the fact that it does not

account for an important ‘‘competing risk,’’ early repayment,

where a lender repays the loan before the predetermined end

date.

Watkins et al (2014) recently proposed a method that

provides simultaneous modeling of multiple events, along with

a mature group. Dirick et al (2015) extended this model by

allowing for the semi-parametric Cox proportional hazards to

model the survival times, instead of the parametric survival

models proposed by the former authors. Applied to the credit

risk example, three indicators are introduced:

1. Ym, indicating that the loan is considered to be mature, so

repaid at the indicated end date of the loan;

2. Yd , indicating that default takes place;

3. Ye, indicating that early repayment takes place.

Note that an important limitation here is that Ym is only

defined for fixed term loans. As a result, the multiple event

mixture cure model in this form is not usable for applications

on revolving credit data sets. For the fixed end term data sets

used in this paper, the set of (Ym, Yd , Ye) is exhaustive and

mutually exclusive. However, when an observation is censored

(according to the first definition in Section 2), it is not known

which event type will occur. In analogy to Equation (2), the

unconditional survival function can be written as

Sðt j xÞ ¼ peðxÞSeðt j Ye ¼ 1; xÞ þ pdðxÞSdðt j Yd ¼ 1; xÞ
þ 1� peðxÞ � pdðxÞð Þ;

with Seðt j Ye ¼ 1; xÞ and Sdðt j Yd ¼ 1; xÞ denoting the con-

ditional survival functions for, respectively, early repayment

and default, which are modeled using a Cox proportional

hazards model, as in Equation (2). The pjðxÞ’s with j 2 fe; dg
are modeled using a multinomial logit model, hence:

pdðxÞ ¼ PðYd ¼ 1 j xÞ ¼ exp bd
0xð Þ

1þ exp bd
0xð Þ þ exp be

0xð Þ ; ð3Þ

peðxÞ is found analogously.
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Figure 2 A graphical example pointing out the difference
between two plain survival curves and the unconditional survival
curve in a mixture cure model. Full lines are plain survival curves
(modeled using a Weibull AFT model for the gray curve, and a
log-logistic AFT model for the black curve), and dotted lines
represent their corresponding unconditional survival curves in a
mixture cure model when assuming a cure rate of 30%.

656 Journal of the Operational Research Society Vol. 68, No. 6



3. The data and experimental setup

3.1. Data preprocessing and missing inputs

We received data sets from five financial institutions in the

UK and Belgium, consisting of mainly personal loans and

loans of small enterprises, with varying loan terms (for details,

see Table 2). Note that this resulted in data sets with either

only personal loans or data sets with a mix of personal and

small enterprise loans, for banks C and D. As the SMEs (small

and medium-sized enterprises) in our data sets were all sole

proprietorships, their properties were nearly identical to those

of personal loans. More information on the use of survival

models in SMEs in the broader sense can be found in, among

others (Fantazzini and Figini, 2009; Gupta et al, 2015; Holmes

et al, 2010).

For the banks with data covering several loan terms, the data

were split in order to get only one loan term per data set,

resulting in ten data sets. Table 3 lists these data sets which

were used to evaluate the different survival techniques listed in

Section 2. Except for bank C, where default is defined as

missing two consecutive payments, all banks defined default

as missing three consecutive months of payments.

As survival analysis techniques are unable to cope with

missing data, and with several data sets having a considerable

amount of missing inputs, some preprocessing mechanism to

cope with missing data is needed. We want to stress that there

are many ways of doing this. As this benchmark paper aims to

focus on different models, however, rather than data prepro-

cessing (which is typical for benchmarking studies (see

Baesens et al, 2003; Dejaeger et al, 2012; Loterman et al,

2012, among others)), we chose to employ the rule of thumb

also used in the benchmarking paper by Dejaeger et al (2012).

Therefore, for continuous inputs, median imputation is used

when B25% of the values are missing, and the inputs are

removed if more than 25% is missing. For categorical inputs, a

missing value category is created if more than 15% of the

values is missing, otherwise the observations associated with

the missing values are removed from the data set.

The number of input variables in the resulting data sets

varies from 6 to 31, and the number of observations from 7521

to 80,641. For each observation, an indicator for default, early

repayment and maturity is included, taking the value of 1 for

the respective event of interest that took place, and 0 for the

others (note that only one event type can occur for each

observation). Percentages of occurrences of these three event

types per data set are given in Table 3. For censored

observations according to the first censoring definition, all

indicators are 0. According to the second censoring definition,

only defaults are considered uncensored. In terms of our data

sets, this means that censoring rates are ranging from around

20 to 85% according to the first definition (used for the

multiple event mixture cure model), whereas censoring

percentages are not lower than 94.56% up to 98.16%

according to the second definition.

Additionally, a time variable is included for each observa-

tion, representing the respective month of the event, which

takes an integer value. Note that the time variable for a mature

event is always equal to the length of the loan term (e.g., a

matured loan for data set 5 has value 24), and the time variable

for a censored event is given by the last observed month in

which a repayment was observed to take place.

3.2. Experimental setup

Each data set was randomly split up in a training set and a test

set consisting of 2/3 and 1/3 of the observations, respectively.

The models are estimated on the training sets, and the

corresponding test sets are used for evaluation.

For all models, the software R is used. AFT and Cox

proportional hazards modeling is possible through the use of the

R-package survival (Therneau, 2015), with additional use of

Table 2 Bank data sets

Bank Type of loans Country

Bank A Personal loan data Belgium
Bank B Personal loan data UK
Bank C Personal loan data and SME Belgium
Bank D Personal loan data and SME Belgium
Bank E Personal loan data Belgium

Table 3 Data set specifications

Data set Bank Loan term
(months)

Data
size

Inputs
(number)

Cat.
(number)

Cont.
(number)

Default
(%)

Early
(%)

Mature
(%)

Data set 1 Bank A 36 42903 31 13 18 4.03 26.80 49.72
Data set 2 Bank A 48 46970 31 13 18 4.02 28.61 40.49
Data set 3 Bank A 60 80641 31 13 18 5.44 32.74 24.80
Data set 4 Bank B 12 10027 13 7 6 2.73 53.80 24.43
Data set 5 Bank B 24 9979 13 7 6 4.74 38.46 28.88
Data set 6 Bank B 36 7521 13 7 6 5.00 39.78 3.58
Data set 7 Bank C 48 9980 6 5 1 1.84 9.20 19.80
Data set 8 Bank C 60 17378 6 5 1 1.84 8.95 4.13
Data set 9 Bank D 37 35856 11 8 3 3.56 19.27 46.83
Data set 10 Bank E 60 9785 8 4 4 1.62 10.09 17.85
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functions ns and pspline for inclusion of natural splines and

penalized splines in the covariates, respectively. An ad hoc

method was used to decide on which of the continuous variables

a spline function should be introduced. Using the pspline-

function on each continuous variable in the model separately, the

resulting spline curves were inspected to track some possible

nonlinear relationships, with knots determined by the adapted

AIC method (Eilers et al, 1996, included in the package). The

resulting Cox proportional hazards pspline models consisted of

all the P-splines where nonlinear relationships were observed. As

the ns-function does not have a built-in function to optimize the

number of knots, the same continuous variables and number of

knots were chosen as in the pspline models. For some of the data

sets, the number of splines or knots using the natural splines was

altered in comparison with the pspline models, in order to get a

feasible fit.

For the mixture cure model, the R-package smcure by Cai

et al (2012a, b) is used. An extended code based on this

package, as in Dirick et al (2015), is used for the multiple

event mixture cure model (code available upon request).

4. Performance criteria/evaluation metrics

Three main performance criteria were used.

4.1. AUC in ROC curves

In the credit risk context, an ubiquitous method to evaluate

binary classifiers is by means of the receiver operating

characteristics curve. This curve illustrates the performance

of a binary classifier for each possible threshold value, by

plotting the true positive rate against the false positive rate.

The specific measure of interest is the area under the curve

(AUC), which can also be computed in the context of survival

analysis. In this context, evaluation is possible at any timepoint

of the survival curve (see Heagerty and Saha, 2000). For each

data set and each model, the AUC for the test sets at 1/3 and

2/3 of the time to maturity and at the maturity time itself

(which is equal to the loan term) is listed in Table 4.

Despite the fact that AUC and other classification-based

evaluation methods are most common in the literature (see

Table 1), this way of evaluating survival analysis in credit risk

does not fully highlight the benefits of using survival analysis

in this context. First of all, the AUC does not fully summarize

the time aspects of survival analysis (the AUC is calculated at

one specific timepoint), and secondly, the financial aspect is

neglected. The next two sections focus on the timing aspects

and economic/financial evaluation, respectively.

4.2. Evaluation through default time prediction

When evaluating through default time prediction, we look at

how we are able to predict the default times of the defaults in

the test set. A survival curve does not give one time estimate,

but a distribution of time estimates. With a high amount of

censoring, mean values of these survival analyses do not give

good predictors. Zhang and Thomas (2012) compute a

predictor for the recovery rate in survival analysis by looking

at each percentile of the training set and calculate the squared

and absolute deviations from the predictions to the observed

values of the default cases. Next, the percentiles resulting in

the lowest deviations are withheld and used to compute the

deviations in the test set.

We use the same method as Zhang and Thomas (2012), but

consider the default time instead of recovery values, and look

at each permille. For each data set, the permilles that result in

smallest deviations for the training sets are withheld and used

to compute default time predictions in the test sets. The results

are listed in Table 5, where the MSE columns list the mean of

the squared differences between the predicted and observed

default times, and the MAE columns list the mean of the

absolute differences between the predicted and observed

default times.

Note that the part of the data set which is evaluated is

considerably smaller here compared to the AUC method. A

schematic representation is given in Figure 3. Each letter

represents an observation in the entire data set, where four

possible end states are possible: early repayment (‘‘E’’),

default (‘‘D’’), maturity (‘‘M’’) and censored (‘‘C’’). The green

circle encompasses the test set elements, which are all

evaluated when computing the AUC. The default time

prediction method, however, only evaluates the default times

of the ‘‘actual’’ defaults in the test set, which are in the red

circle. As the evaluation set differs from one method to

another, the sample size for each of the resulting test sets is

included in result (Tables 4, 5, 6, 7).

4.3. Evaluation using annuity theory

When banks grant a loan to a customer, they are particularly

interested in the expected future value at the end of the loan

term. One can use the principles of annuity theory (for an

overview, see Kellison and Irwin 1991) to compute this value,

though these basic principles do not incorporate risk; hence,

these formulas start from the assumption that loans will be

repaid with a 100% certainty. Including this risk aspect is

exactly what can be done using survival analysis, as it provides

us with an accurate estimate for the probability that a customer

is still repaying his loan at every time instant of the survival

curve.

In this study, we computed the true future value of the

uncensored test set loans (given by the observations in the blue

circle in Figure 3), taking into account their true end-state

(default, early repayment or maturity) and compare them to

their estimated values using each of the survival models. In

order to make the results comparable, some assumptions are

made and applied when evaluating the models for all data sets:
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1. Loans are repaid at the end of each month, with a fixed

sum;

2. The (yearly) interest rate iy used is 5%;

3. The loans are treated as if they all started at the same point

in time, in order to make them comparable.

Let us introduce:

(a) Ls the initial amount of the loan, or the debt of subject s;

(b) Rs the constant monthly repayment for subject s;

(c) n the number of periods;

(d) i the monthly interest rate (i ¼ ð1þ iyÞ1=12 � 1);

(e) ðEÞFV the (expected) future value of a loan.

A bank can reinvest the repayment sums Rs as soon as they

are paid by the client. Assume that the same interest rate

applies. If there is no risk for default nor early repayment, the

future value can be given by

FVs ¼ Rs ð1þ iÞn�1 þ ð1þ iÞn�2 þ � � � þ ð1þ iÞ0
� �

¼ Rs
ð1þ iÞn � 1

i
:

ð4Þ

For the uncensored test set loans, we wish to estimate the

future loan values. In Section 4.3.1, we describe how we

compute the true future values when knowing the eventual

state (‘‘D,’’ ‘‘M’’ or ‘‘E’’), and in Sections 4.3.2–4.3.3, the

expected future loan value is estimated when using the model

predictions. Table 6 lists the mean absolute differences

between the observed future values and the expected future

loan values using the model estimations. In Table 7, we

consider the mean expected future values per loan and

compare them with the mean observed future value.

4.3.1. The true future loan values The true future loan value

depends on the eventual loan outcome or state. For mature

loans, Equation (4) can be used with n the total number of

periods or the loan term. Hence,

FVs2mature ¼ Rs
ð1þ iÞn � 1

i
:

For the future value of a loan with early repayment, the

resulting amount of the debt in any time period k is given by

Table 5 Deviation measures when predicting the default times for observed defaults in the test set of the ten data sets, using different
methods

Data set 1 Data set 2 Data set 3 Data set 4 Data set 5

Loan term 36 months 48 months 60 months 12 months 24 months

sample size 567 626 1507 95 166

Method/deviation measure MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

AFT Weibull 333.43 13.51 662.40 18.39 612.89 18.16 121.34 4.29 79.48 6.75
AFT exponential 434.42 15.94 762.30 20.67 677.47 19.40 4233.42 20.17 127.89 8.46
AFT log-logistic 344.53 13.55 678.44 18.36 613.16 18.22 123.08 4.32 79.52 6.75
Cox PH 229.08 11.91 412.77 15.62 510.87 16.93 12.59 2.97 63.78 6.34
Cox PH with natural splines 235.98 12.03 415.69 15.71 532.30 17.41 17.02 3.25 71.60 6.83
Cox PH with penalized splines 235.61 12.14 412.00 15.69 512.63 17.06 14.44 3.12 70.90 6.80
Mixture cure 233.33 11.99 412.21 15.68 527.01 17.22 12.55 2.86 68.54 6.63
Multiple event mixture cure 262.81 12.65 475.08 16.72 564.77 17.70 13.47 3.11 68.11 6.54

Data set 6 Data set 7 Data set 8 Data set 9 Data set 10

Loan term 36 months 48 months 60 months 37 months 60 months

Sample size 116 57 104 428 59

Method/deviation measure MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

AFT Weibull 88.29 6.87 281.89 12.50 434.65 16.52 385.94 13.18 490.57 18.37
AFT exponential 136.93 8.14 444.42 17.81 768.92 20.76 487.06 16.32 837.56 24.31
AFT log-logistic 90.79 6.89 263.62 12.53 436.83 16.55 382.82 13.13 494.64 18.44
Cox PH 89.09 7.15 245.18 11.25 414.76 16.34 185.27 10.37 505.24 18.31
Cox PH with natural splines 111.78 7.54 285.44 12.75 415.78 16.62 188.13 10.40 521.93 18.20
Cox PH with penalized splines 92.15 7.13 237.89 11.32 413.55 16.25 189.38 10.42 491.15 17.56
Mixture cure 92.28 7.24 359.54 15.23 410.42 16.37 186.75 10.62 511.81 18.00
Multiple event mixture cure 90.17 7.74 278.32 12.19 418.88 16.48 210.38 11.06 524.63 18.86

Top performances for each test set are underlined. Performances that are significantly different at a 5% level from the top performance with respect to a

one-sided Mann-Whitney test are denoted in boldface
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Ls;k ¼ 1� ð1þ iÞk � 1

ð1þ iÞn � 1

 !
Ls:

When an early repayment takes place in period k, we

assume that the loan is repaid as usual until this period k and

that the sum Lk is fully being repaid in this period. This sum

can still be reinvested for n� k � 1 periods. Note that early

repayment always yields a smaller revenue compared to a

matured loan,

FVs2early ¼ Rs

Xk
j¼1

ð1þ iÞn�j

 !
þ Ls;kð1þ iÞn�k�1:

The future value for a loan where default takes place after

k months is equal to

FVs2default ¼ Rs

Xk
j¼1

ð1þ iÞn�j

 !
;

hence, we assume that when default takes place, nothing of the

remaining sum Lk is recovered.

4.3.2. The expected future loan values using non-mixture

survival models In each of the survival models in

Sections 2.1–2.3, the model provides us with a survival

probability estimate at each point in time. We denote bSðtÞds;m
the estimated probability that subject s has not defaulted by time

t, using model m. Then we can calculate the expected terminal

value of a loan according to a certain model m as follows:

EFVs;m ¼ Rs

Xn
j¼1

bSðjÞds;mð1þ iÞn�j

 !
:

4.3.3. The expected future loan values using mixture cure

models When computing the expected future loan values by

means of the mixture cure models, we need to take the results

of the binomial (single event) and multinomial logit (multiple

event) part of the model into account. For the mixture cure

model in Section 2.4, we have probabilities of being

susceptible to default or not (PD and 1� PD) for every

subject. We define

PDs ¼ p̂ðxsÞ ¼
exp b̂0xs
� �

1þ exp b̂0xs
� � ; ð5Þ

then we have

EFVs;m ¼ PDs � Rs

Xn
j¼1

bSðjÞds;mð1þ iÞn�j

 !

þ ð1� PDsÞ � Rs
ð1þ iÞn � 1

i
;

ð6Þ

Figure 3 Schematic representation of the data set. Each letter
represents an observation in the data set. The data set elements
that are in the test set are in the largest (green) circle. All test set
elements are evaluated using the AUC evaluation method. The
uncensored test set elements (according to the first definition of
censoring, see Section 2) that are in the middle (blue) circle are
evaluated through the economic evaluation method using annuity
theory. Default time prediction evaluation can only be performed
on the defaulted elements of the test set, encompassed by the
smallest (red) circle (Color figure online).

Table 6 Analyzing model performance using financial metrics

MAD from FV DS 1 DS 2 DS 3 DS 4 DS 5 DS 6 DS 7 DS 8 DS 9 DS 10
Loan term (months) 36 48 60 12 24 36 48 60 37 60
Sample size 11517 11453 16901 2705 2424 1249 985 824 8339 947

AFT Weibull 334.1 748.8 1695.7 29.3 133.2 384.0 669.0 1522.4 420.1 887.6
AFT exponential 350.4 769.2 1709.6 32.6 139.1 386.7 687.2 1524.3 446.7 917.1
AFT log-logistic 334.5 750.6 1699.7 29.4 133.4 384.9 670.1 1524.2 424.7 889.3
Cox PH 332.0 744.4 1693.1 30.2 135.9 383.2 667.1 1519.7 428.0 887.5
Cox PH nat. splines 335.2 756.9 1716.1 30.0 136.2 388.5 661.5 1556.7 409.1 885.4
Cox PH penal. splines 332.0 740.3 1673.7 29.9 134.5 387.6 659.3 1519.7 409.1 888.6
Mixt. cure 330.8 746.2 1692.8 29.5 135.7 382.0 672.4 1526.4 411.6 906.3
Multi-event mixt. cure 409.9 940.9 2109.5 31.5 148.9 435.3 744.5 1691.1 467.4 1054.6

Mean absolute deviations from the observed future loan values for the uncensored cases (first definition) of the test set. Top performances for each test set

are underlined. Performances that are significantly different at a 5% level from the top performance with respect to a one-sided Mann–Whitney test are

denoted in boldface

Lore Dirick et al—Time to default in credit scoring using survival analysis 661



where bSðtÞds;m ¼ bSðt j Y ¼ 1Þs;m, denoting the conditional

aspect of the survival estimates in the mixture cure context

as in (2).

For the multiple event mixture cure model in Section 2.5,

the multinomial logit (expression 3) leads in a similar way as

(5) to probabilities of early repayment PE and probabilities of

maturity PM (which is, in fact, 1� PD� PE).Here, bSðtÞes;m ¼
bSðt j Ye ¼ 1Þs;m and bSðtÞds;m ¼ bSðt j Yd ¼ 1Þs;m are again con-

ditional probabilities (given Yd and Ye) that subject s has not

repaid early or defaulted, respectively, by time t. The expected

future value is given by

EFVs;m ¼ PDs � Rs

Xn
j¼1

bSðjÞds;mð1þ iÞn�j

 !

þ PMs � Rs
ð1þ iÞn � 1

i

þ PEs � Rs

Xn
j¼1

bSðjÞes;mð1þ iÞn�j

 ! 

þ
Xn�1

j¼1

bSðj� 1Þes;m � bSðjÞes;m
� �

Ls;jð1þ iÞn�j�1
� �!

:

ð7Þ

The first two lines of (7) are completely identical to (6),

where (1� PD) is replaced by PM (or, in other words,

1� PD� PE, as early repayment is also considered here). The

second part of the expression is dominated by the event of early

repayment. Early repayment works in a similar way as default,

in the sense that repayment of the fixed sum Rs occurs each

month with a probability bSðjÞes;m, which explains the first term

in the second line of (7). The main difference with default,

however, is that when early repayment occurs at timepoint j

(this happens with a probability bSðj� 1Þes;m � bSðjÞes;m), the bank
receives Ls;j, the resulting amount of the outstanding debt at

timepoint j. This idea is displayed in the last term of (7).

Note that this expression assumes that the penalty term for

early repayment is equal to zero, where in reality usually a

fixed fee needs to be payed [see Ma et al (2010), where the fee

is 2 months of interest on the outstanding debt]. The reason for

this assumption is twofold. First of all, with data from different

sources and no information on the extent of early repayment

fees, it seems that taking a fee of zero is the more fair decision.

On the other hand, where including a fixed fee will increase

both the observed and expected future value, it does not seem

that the fee will affect the relative performance of the methods.

4.3.4. Evaluating the expected future value with respect

to the observed future value For each of the uncensored test

set cases, the observed future value can be computed giving

the eventual outcome and be compared with the expected

future values using the models. Table 6 lists the mean of the

absolute differences between the expected and the observed

values per case. In Table 7, the mean expected future values of

all uncensored test set loans are listed and can be compared

with the mean of the true future loan value at the bottom of the

table.

5. Results

The results in Tables 4, 5, 6 and 7 are grouped per evaluation

measure. For Tables 5 and 6, we used a notational convention

where the best test result (each time the smallest value) per

data set is underlined and denoted in boldface. Performances

that are significantly different at a 5% level from the top

performance with respect to a one-sided Mann-Whitney test

are denoted in boldface (a Bonferroni correction was used due

to multiple testing). As the AUC values in Table 4 are point

estimates and do not represent samples, here simply the three

highest values are underlined for each evaluation time and data

set. In Table 7 the three values that lie closest to the mean

future value per loan are underlined. Table 8 summarizes the

results of all preceding tables by giving the average ranks of

the models for all evaluation methods.

In Table 4 we note that the sample size is of real importance

to get better receiver operating characteristics curves, as AUC

values are generally larger for data sets with more

Table 7 Analyzing model performance using financial metrics

Mean EFV per loan DS 1 DS 2 DS 3 DS 4 DS 5 DS 6 DS 7 DS 8 DS 9 DS 10
Loan term (months) 36 48 60 12 24 36 48 60 37 60
Sample size 11517 11453 16901 2705 2424 1249 985 824 8339 947

AFT Weibull 8180.1 14,213.5 19,585.4 1020.8 2119.1 4067.2 15,793.6 21,021.2 9686.8 21,972.0
AFT exponential 8159.9 14,186.5 19,566.7 1016.9 2111.9 4063.7 15,772.6 21,017.0 9655.7 21,935.4
AFT log-logistic 8179.5 14,210.9 19,580.4 1020.7 2118.8 4065.9 15,792.2 21,018.5 9681.2 21,969.9
Cox PH 8183.9 14,222.2 19,596.5 1019.8 2115.7 4068.6 15,796.6 21,025.3 9677.8 21,971.9
Cox PH nat. splines 8175.6 14,182.3 19,515.8 1019.7 2115.7 4062.8 15,805.7 20,990.2 9695.9 21,967.7
Cox PH penal. splines 8182.2 14,214.9 19,590.6 1019.8 2117.7 4062.5 15,804.7 21,025.5 9697.0 21,966.1
Mixt. cure 8099.1 14,004.2 19,120.2 1018.2 2101.3 4007.3 15,708.1 20,803.8 9633.0 21,779.4
Multi-event mixt. cure 8185.0 14,217.4 19,588.4 1020.3 2115.8 4070.3 15,794.5 21,011.6 9693.7 21,951.2
Mean FV per loan 8164.3 14,173.2 19,339.2 1012.2 2096.5 3966.0 15,590.8 20,137.1 9649.7 21,563.7

Mean expected future loan values of the uncensored cases (first definition) of the test set. The three best values are underlined
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observations. Another factor that seems important is the length

of the loan duration. Comparing the AUC results of data set 3

with data set 2, and data set 8 with data set 7, AUC values

seem to go down when moving from a shorter loan term to a

longer one, though data come from the same bank and has

bigger sample size. This might be expected as it is known that

making predictions becomes harder when moving to longer

time frames. Looking at the overall result in Table 4, however,

it is hard to draw conclusions regarding the preferred survival

method when looking at the AUC alone, as the values are very

close to each other (we note that ties in Table 4 are due to

rounding). This can also be seen in Table 8, as average

rankings regarding AIC range from 2.8 to 5.6. A Cox PH

method with penalized splines shows to be the preferred

method each time. A log-logistic AFT model seems to be a

good alternative when considering the average ranking,

although only appearing 10 out of 30 times among the top

three in Table 4.

Next we consider mean squared differences (MSE) and

mean absolute differences (MAE) from the observed default

time (see Table 5). Although many performance measures are

not significantly different from the top performance at the 5%

level, a general trend for these evaluation measures is that the

non-AFT models clearly outperform the AFT models. An

interesting observation occurs when looking at the respective

sample sizes of the evaluated sets. As depicted in Figure 3,

only the actual defaults are evaluated in Table 5. Where most

data sets here are quite small (166 cases and less), four sets are

still considerable in size: those for data sets 1, 2, 3 and 8. For

these data sets, more models can be excluded as their results

(for MSE) are significantly worse (in bold). Additionally, we

observe for these data sets that the Cox PH is very dominant

here, being the best model in seven out of eight cases

(considering both MSE and MAE for all four data sets).

Considering all ten data sets, especially the exponential AFT

model seems to have default time predictions that are

significantly far off the true default times. With average

rankings having a bigger range compared to ROC (from 1.8 to

8), it seems that the default time prediction measure clearly

favors the plain Cox PH model when the sample size is

considerable. When less cases were evaluated, the Cox PH

with natural splines and the mixture cure model seem to be

good alternatives.

Table 6 lists the mean of the absolute differences between

the model expected future loan value estimates and the true

values. Note that these differences are bigger for loans with a

longer loan term, which makes sense, as here the loan amounts

are larger too. Consulting Table 6 along with 8, it becomes

clear that the Cox PH model with penalized splines is again

outperforming the other methods (although insignificantly),

followed by the Weibull AFT and the plain Cox PH model.

The table lists two clearly inferior methods, which are the

exponential AFT model and the multiple event mixture cure

model.

Regarding the financial metrics in Table 6, the mean

absolute differences can get to a substantial size (e.g., in data

set 3), but considering Table 7 we note that the mean expected

values per loan are close to the mean observed value of the

loans for all methods. The results in this table clearly highlight

the abilities of survival analysis in the credit risk context. It

should be noted that all estimates are very close to the

observed mean future value per loan. Where Table 8 high-

lights the exponential AFT model with an average ranking of

2.2, the mixture cure model performs better than all other

methods in five out of ten data sets (data sets 5–8 and 10),

whereas exponential AFT is ranked best in three out of ten.

Additionally, for Table 7, the mixture cure model tends to

outperform on smaller sample sizes, whereas the exponential

AFT performs better on bigger sample sizes.

Drawing a general conclusion from Table 8, the shortcom-

ings of AUC again become apparent. Having become a major

metric in the financial world to evaluate classification models,

this metric is currently often applied to survival analysis

models, but there are several issues. Firstly, it does not seem to

be able to discriminate one survival model from another one,

given small ranges of average rankings, and secondly, it

evaluates the models by looking at predictions on individual

case levels, in contrast with the default time or expected loan

value predictions. Considering these latter evaluation methods,

Cox PH models with and without splines and single event

mixture cure models seem to be consistently good performers.

The main advantage of the mixture cure model lies in the fact

Table 8 Average ranking of the methods used depending on the evaluation method

AUC 1/3 AUC 2/3 AUC 3/3 MSE MAE MAD from FV EFV versus FV

AFT Weibull 4.20 4.00 4.20 5.15 5.00 3.10 5.80
AFT exponential 4.70 5.30 5.50 8.00 8.00 6.60 2.20
AFT log-logistic 4.00 3.80 3.50 5.65 5.80 4.20 4.70
Cox PH 4.90 5.40 4.80 1.80 2.00 3.30 5.90
Cox PH nat. splines 4.30 4.40 4.90 4.70 4.80 4.85 3.55
Cox PH penal. splines 3.80 2.80 3.20 2.90 2.80 2.55 5.65
Mixt. cure 4.80 4.70 4.80 3.20 3.20 3.50 2.70
Multi-event mixt. cure 5.30 5.60 5.00 4.60 4.40 7.90 5.50

The three best values are underlined
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that one basic assumption of survival models, namely the fact

that a survival curve should go toward zero when time goes to

infinity, and which is often violated for the loan data, is not

needed at all when using the mixture cure model. All non-

mixture cure models (here wrongly) assume this condition on

the survival curve to hold.

The multiple event mixture cure model does not seem to live

up to the expectations. It is important to note, though, that for a

fair evaluation, one would have had to consider the results of

other methods when using these to predict early repayment as

well, not only default. Modeling default and early repayment

in one model, as the multiple event mixture cure model does,

as opposed to using two different survival models will likely

lead to a better overall result, but additional research needs to

be done to verify this.

6. Discussion

In this paper, we studied the performance of several survival

analysis techniques in the credit scoring context. Ten real-life

data sets were used, and we used three main evaluation

measures to assess model performance: AUC, default time

prediction differences and future loan value estimation. It is

shown that Cox PH-based models all work particularly well,

especially a Cox PH model in combination with penalized

splines for the continuous covariates. The Cox PH model

usually outperforms the multiple event mixture cure model, but

the mixture cure model does not perform significantly different

in most of the cases, and is among the top models using

economic evaluation. This model has the advantage of not

requiring the survival function to go to zero when time goes to

infinity, which often is most appropriate for credit scoring data.

Starting from these findings, it would be interesting to

further extend the mixture cure model and study the perfor-

mance of the resulting model in comparison with a Cox PH

model with penalized splines. This could be done by allowing

for splines in the continuous covariates or time-dependent

covariates for these models. Additionally, it would be

interesting to run all the models again over data that have

been coarse-classified, and compare its results with the results

in this study. In particular, it would be interesting to compare

the results of coarse classification to the spline-based methods

in this study, which can be seen as an alternative for handling

nonlinearity in the data. This study also points out that finding

an appropriate evaluation measure to compare survival

analysis remains an interesting challenge, as the AUC does

not seem to have the right properties to really distinguish one

method from another.
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