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Differential characteristics of the production function represent elasticity measures and marginal rates of
production technologies; in particular, marginal productivity (MP) plays an important role in economic theory
and applications. This study provides a theoretical foundation of directional marginal productivity (DMP)
supporting the meta-data envelopment analysis (meta-DEA) which measures the efficiency via marginal-profit-
maximized orientation. In addition, the segmented marginal rate of technical substitution is developed based on
DMP. In fact, DMP is developed to address finding the improving direction of the efficient firm on the frontier
towards the marginal profit maximization. This approach, which emphasizes ‘‘planning’’ over ‘‘efficiency
evaluation’’, forms the basis for transforming a typical ‘‘ex-post’’ DEA into an ‘‘ex-ante’’ DEA study. Two case
studies show that the DMP provides an explicit span of directions for productivity improvement via a trade-off
between these distinct directions.
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1. Introduction

This study provides a theoretical foundation of directional

marginal productivity (DMP) supporting the meta-data envel-

opment analysis (meta-DEA) which measures efficiency via

marginal-profit-maximized orientation (Lee, 2014). We illus-

trate the derivation of the DMP and propose the segmented

marginal rate of technical substitution (MRTS).

Differential characteristics of the production function gen-

erally can be calculated by the partial derivatives of the

production function, given a smooth efficient frontier. How-

ever, the partial derivative usually presents one-to-one map-

ping, i.e. how a change in single input contributes to single

output. In practice, one-to-many mapping, or how a change in

single input contributes to multiple outputs simultaneously, is

more meaningful. In fact, the microeconomic theory supports a

substitution between multiple products and a multi-objective

decision-making process is common. An expectable trade-off

between multiple products refers to multi-output marginal

productivity (MP) estimation. This study, a foundation of the

meta-DEA, uses directional distance function (DDF) to

develop the DMP theoretically.

Marginal rate plays an important role in economic theory

and applications. The primary purpose of the estimation of a

production function is to obtain estimates of the regression

coefficients. These coefficients refer to MPs, which

characterize how the dependent variable will be affected by

changing one extra unit of independent variables. In a DEA

framework, the dual multiplier linear program to the primal

envelopment model represents the MP and it also refers to

shadow price. Economists use the term ‘‘elasticity’’ to

measure the percentage of how changing one variable affects

the others.1 Applications of MP or elasticity in the literature

include Banker and Thrall (1992) and Førsund and Hjal-

marsson (2004), who developed a range of scale elasticity to

explicitly support the decision-maker since DEA may not

have a unique shadow price. Cooper et al (2000) addressed

marginal rates and elasticities of substitution using the slacks

in an additive DEA model. The optimal slack values can be

positive or negative to achieve the efficient frontier. More-

over, Lee et al (2002) and Mekaroonreung and Johnson

(2012) estimated the shadow prices of SO2 and NOx, i.e. the

undesirable outputs (pollution) generated from the production

process via DEA and convex nonparametric least squares

(CNLS) (Kuosmanen, 2008; Kuosmanen and Johnson, 2010;

Lee et al, 2013).

From an engineering perspective, the estimation of MP also

contributes to capacity planning and resource allocation.

Capacity is the maximal output level of a production process.

The output is a result of the total productive capability of a

firm’s resources including workforce, machinery, and utilities.
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Capacity adjustment is the ability to adjust output levels to

response uncertainty by controlling variable resources in the

short run. In production theory, capacity adjustment can be

interpreted as the MP of the production function, i.e. the extra

output generated by one more unit of an input. Johansen’s

(1968) definition of physical capacity is the maximum amount

that can be produced with existing fixed inputs (e.g. plant and

equipment), given an unlimited availability of variable factors.

Johansen’s definition distinguishes between a short-run pro-

duction function describing the production possibilities keep-

ing capacity variables (e.g. capital equipment) fixed, and a

long-run production function characterizing all inputs is

variable inputs contributing to capacity measures. Färe et al

(1989b) employed a nonparametric approach to obtain the

capacity measure with a cross-sectional data set. Lee and

Johnson (2014) proposed an ‘‘effectiveness’’ measure and

‘‘proactive DEA’’ approach, which benefit capacity adjustment

under demand fluctuation via MP estimation.

The developments of MP estimation are limited due to the

estimation difficulty at the edges of the frontier and anchor

points (see Krivonozhko et al, 2004; Hadjicostas and Soteriou,

2006; Bougnol and Dulá, 2009). Identifying anchor points

which define the transition from the Pareto–Koopmans efficient

frontier to the free disposability of the boundary is extremely

complicated. Thus, optimal solutions of dualmultipliers in DEA

are used to investigate the anchor points. However, using

nonparametric techniques of DEA results in nonunique solu-

tions, most of which present zero values. In addition, because

the production function cannot be observed easily in practice, a

piece-wise linear production function can be estimated using

DEA based on collected observations (Banker et al, 1984; Fried

et al, 2008). However, a piece-wise linear frontier forms a

polyhedral set representing production technologies and thus is

not differentiable. To overcome the problem of nondifferentia-

bility, Podinovski and Førsund (2010) gave an explicit defini-

tion of differential characteristics on a nondifferentiable

efficient frontier and proposed a directional-derivative

approach to calculate elasticity measures without any simpli-

fying assumptions. They applied differential characteristics to

the DEA frontier and addressed elasticity measures and

marginal rates of substitution (Asmild et al, 2006).

Several studies have addressed the performance evaluation

or productivity improvement of an inefficient firm based on

input-oriented measure, output-oriented measure, hyperbolic

measure (Färe et al, 2002; Kuosmanen, 2005), or directional

distance function (Chambers et al, 1996, 1998; Chung et al,

1997), yet only a few have discussed the productivity

improvement of an efficient firm on the frontier. Zofio and

Prieto (2006) suggested choosing the direction in the DDF to

move towards the allocatively efficient benchmarks. Extend-

ing their work, to the case of efficient firms, Lee (2014)

suggests that firms should select the direction via DMP to

move towards the direction of marginal profit maximization.

This study provides a theoretical foundation of meta-DEA.

An analytical expression of MP measures of multiple outputs

(i.e. DMP) is obtained by solving the dual multipliers of DDF;

in particular, one-to-many mapping is developed. This study

also alternatively addresses the most general class of measures,

including the mixed input and output bundles such as MRTS

and any types of elasticity measure. We also consider the

undesirable-output case.

This study is organized as follows. Section 2 introduces the

estimation of single-output MP. Section 3 introduces the DDF.

Section 4 develops the DMP estimation by DDF from one

specific input to multiple outputs and illustrates the segmented

MRTS. Section 5 presents a meta-DEA model. Section 6

introduces DMP for undesirable outputs. Section 7 gives two

numerical examples, and Section 8 concludes the study and

suggests future research.

2. Single-output marginal productivity

We first assess the single-output MP of a nondifferential

efficient frontier constructed by the DEA estimator based on a

directional-derivative technique proposed by Podinovski and

Førsund (2010). Let set I represent the inputs and index i 2 I.

Set J represents outputs and index j 2 J. Set K represents firm

and index k 2 K. Index r 2 K is used for one specific firm and

is an alias of k. Let observations Xik be the ith input level and

Yjk be the jth output level of firm k. Let kk be the decision

variable referring to the intensity weights representing the

convex combination between firms, and let yj be the decision

variable representing the maximum absolute level of output j.

When estimating DMP, based on the microeconomic theory,

some of the inputs are not controllable and considered as the

nondiscretionary inputs at their current values (Banker and

Morey, 1986). Thus, we estimate possible change in the

discretionary inputs and keep exogenously fixed inputs

constant. Model (1) determines the maximum absolute level

of one specific output j�, given the level of one specific

(discretionary) input i� of one specific firm r.

Max yj�

s:t:
X

k2K
kkXi�k �Xi�r

X

k2K
kkXik �Xir; 8i 6¼ i�

X

k2K
kkYj�k � yj�

X

k2K
kkYjk � Yjr; 8j 6¼ j�

X

k2K
kk ¼ 1

kk � 0; yj� is free

ð1Þ

Let vi, uj, and u0 be the decision variables representing the

dual multipliers of input constraint, output constraint, and

convex-combination constraint in model (1), respectively. We

can now construct the dual model of model (1) as model (2).
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Min
X

i2I
viXir �

X

j2J
j 6¼j�

ujYjr þ u0

s:t:
X

i2I
viXik �

X

j2J
ujYjk þ u0 � 0; 8k

uj� ¼ 1

vi; uj � 0; u0 is free

ð2Þ

Recalling that MP is a characteristic of the frontier, for one

specific efficient firm r, the following revised formulation

calculates the marginal rate bþDEA
i�j�r approaching from the right

side with respect to one particular input, i� and one output j�.

Since MP is defined on the efficient frontier, i.e. firm r is on

the frontier and yj� ¼ Yj�r in model (1), we can derive the

objective function
P

i viXir �
P

j 6¼j� ujYjr þ u0 ¼ Yj�r in model

(2), and the model (3) estimates the bþDEA
i�j�r (Podinovski and

Førsund, 2010).

bþDEA
i�j�r ¼ Min vi�

s:t:
P
i2I

viXir �
P
j2J

ujYjr þ u0 ¼ 0

P
i2I

viXik �
P
j2J

ujYjk þ u0 ¼ 0þ u0 � 0; 8k

uj� ¼ 1

vi; uj � 0; u0 is free

ð3Þ

To measure the marginal rate approaching from the left side,

we simply replace the objective function by the following

equation.

b�DEA
i�j�r ¼ Max vi� ð4Þ

Therefore, Figure 1 illustrates the single-input single-output

MP, bþDEA
i�j�r or b�DEA

i�j�r , in terms of output expansion or

contraction.2 Note that we do not define the MP for inefficient

firms operating inside of the production frontier.

3. Directional distance function

The directional distance function (DDF) estimates efficiency

by expanding outputs and reducing inputs at the same time

(Luenberger, 1992; Chambers et al, 1996, 1998; Chung

et al, 1997). Let g ¼ gX; gYð Þ be the predetermined direc-

tional vector for inputs and outputs, where gX 2 < Ij j
þ and

gY 2 < Jj j
þ . Given direction vector gX; gYð Þ, we define the

directional distance function as shown in model (5), where g
is the decision variable for efficiency estimate. If g = 0, then

a firm r is efficient; otherwise g[ 0 represents the inefficient

case.

Max g

s:t:
X

k2K
kkXi�k �Xir � ggXi ; 8i

X

k2K
kkYj�k �Yjr þ ggYj ; 8j

X

k2K
kk ¼ 1

kk � 0; g is free

ð5Þ

To estimate the MP by DDF we develop model (6) to

estimate the maximum absolute level of one specific output.

Let gXi� and gYj� be the given elements in directional vector g

of one specific input i� and one specific output j�. Model (6)

determines the maximum absolute level. Note that it is a

variant of model (5), where Yj�r is a constant describing output

level of j� for a firm r and won’t affect the optimization result

but for solely calculating the absolute level in objective

function.

Max Yj�r þ ggYj�

s:t:
X

k2K
kkXi�k �Xi�r � ggXi�

X

k2K
kkXik �Xir; 8i 6¼ i�

X

k2K
kkYj�k �Yj�r þ ggYj�

X

k2K
kkYjk � Yjr; 8j 6¼ j�

X

k2K
kk ¼ 1

kk � 0; g is free

ð6Þ

We derive model (7) as the dual model of model (6) using dual

variables mentioned above.

Produc�on Func�on

ExpansionContrac�on

Figure 1 MP regarding output expansion or contraction.

2In fact, an equivalence of single-output MP estimation between DEA

and sign-constrained CNLS (Kuosmanen and Johnson, 2010) is demon-

strated in Appendix 1.
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Min Yj�r þ
X

i2I
viXir �

X

j2J
ujYjr þ u0

s:t:
X

i2I
viXik �

X

j2J
ujYjk þ u0 � 0; 8k

vi�g
Xi� þ uj�g

Yj� ¼ gYj�

vi; uj � 0; u0 is free

ð7Þ

Proposition 1 Given gXi� ; gYj�ð Þ ¼ 0; 1ð Þ if firm r is on the

efficient frontier, then the objection function value of

model (1) is equivalent to that of model (6), and the

objection function value of model (2) is equivalent to that

of model (7).

Proof See Appendices 1 and 2.

Proposition 1 is important and shows that DDF is a

generalized estimator, since it not only estimates efficiency

by either one-input orientation or one-output orientation, but

also achieves frontier by multi-orientation simultaneously.

That is, DDF provides a hint to develop the DMP estimation of

multi-product orientation by fine-tuning the given direction in

DDF.

4. Directional marginal productivity via directional
distance function

This section describes a proposed multi-output MP model (i.e.

DMP). Based on the DDF, we develop a model to describe

how the change of single input Xi� affects the multiple outputs.

Let set j� , J be the outputs set whose MP will be

investigated. We estimate DMP by model (8) given the

direction vector gXi� ; gYjð Þ as parameters, where gXi� ¼ 0 andP
j2J� g

Yj ¼ 1 for unit simplex (Färe et al, 2013).3 We then

define the DDF as follows.

Max g

s:t:
X

k2K
kkXi�k �Xi�r

X

k2K
kkXik �Xir; 8i 6¼ i�

X

k2K
kkYjk � Yjr þ ggYj ; 8j 6¼ J�

X

k2K
kkYjk � Yjr; 8j 2 JnJ�

X

k2K
kk ¼ 1

kk � 0; g is free

ð8Þ

The firm r is on the frontier since MP is one of the differential

characteristics on the frontier, i.e. g ¼ 0 ¼
P

i2I viXir �

P
j2J ujYjr þ u0: Thus, we use a variant of dual model (9) to

estimate the DMP of Yj, j 2 j�, with respect to Xi� (Shapiro,

1979).

Min vi�

s:t:
P
i2I

viXir �
P
j2J

ujYjr þ u0 ¼ 0

P
i2I

viXik �
P
j2J

ujYjk þ u0 � 0; 8k
P
j2J�

ujg
Yj ¼ 1

vi; uj � 0; u0 is free

ð9Þ

Note that the direction gYj can be regarded as the ‘‘weight-

ings’’ between investigated outputs. The larger the weight, the

closer the DMP towards the output with the higher weight. For

example, if gYj1 ; gYj2ð Þ ¼ 0; 1ð Þ, then the DMP estimated by

model (9) is the same as the single-output MP estimated by

model (3) with respect to the second output.

To illustrate the ‘‘weights’’ (i.e. direction) among multi-

output substitutability, we eliminate the unit of each factor for

normalization. Let XMax
i ¼ max Xikf g and YMax

j ¼ max Yjk
� �

and propose model (10).

a ¼ Min
vi�

XMax
i�

s:t:
P
i

vi
Xir

XMax
i

�
P
j

uj
Yjr

YMax
j

þ u0 ¼ 0

P
i

vi
Xik

XMax
i

�
P
j

uj
Yjk

YMax
j

þ u0 � 0; 8k
P
j2J�

ujg
Yj ¼ 1

vi; uj � 0; u0 is free

ð10Þ

The reason for introducing unit simplex and eliminating the

measurement units of inputs and outputs is to normalize the

weight which presents a trade-off among outputs. Take an

example of two outputs. If we would like to estimate the MP

passing the middle of two outputs, the weight gYj1 ; gYj2ð Þ ¼
0:5; 0:5ð Þ should be assigned intuitively for calculating DMP

since eliminating the measurement units makes units-invariant,

i.e. the results are independent of the units of the inputs and

outputs. Therefore, increasing one extra unit of Xi� of firm r

means that the vector of the DMP with respect to output Yj is
oYjr
oXi�r

¼ a� gYjYMax
j

� �
; 8j 2 J�.

In addition, it is invalid to estimate the MP on the portion

of free disposability with respect to the inputs. First,

intuitively, the free disposable portion shows the direction

that can reduce its input level while still maintaining the

same outputs, i.e. this direction cannot truly reflect marginal

productivity. Second, based on Proposition 2 below, MP

estimates on the portion of free disposability with respect to

inputs are equal to zero by model (10), even though MP in

fact may not be zero.

Definition 1 Directional marginal productivity (DMP) is the

MP characterizing how one extra unit of an input affects
3The unit of measurement problem that may occur is trivially corrected

by introducing appropriate weights, in particular, to ensure compactness.

Chia-Yen Lee—Directional marginal productivity: a foundation of meta-data envelopment analysis 547



multiple outputs, i.e.
oYjr
oXi�r

¼ a� gYjYMax
j

� �
; 8j 2 J�, gen-

erated from model (10).

Proposition 2 If the direction for MP estimation used in

model (10) projects to the portion of free disposability

with respect to inputs, then the MP estimate will be equal

to 0.

Proof See Appendices 1 and 2.

We also provide an alternative way to calculate the marginal

rate of technical substitution (MRTS) of outputs based on

DMP. The frontier in DEA is not smoothing; thus, in most

cases, the estimation of the MP for a specific firm r is not a

fixed value, but a range with minimal value and maximal

value, i.e. [min, max], though it is possible that in some cases,

i.e., the minimal value (min) is equal to the maximal value

(max). To address the issue, we need to consider two-sided

MP. Let DMP+ be the DMP approaching from the right side

which we obtain from model (10) with objective function

a ¼ Min vi�
XMax
i�

; DMP- be the DMP approaching from the left

side we obtain from model (10) with objective function

a ¼ Max vi�
XMax
i�

. Thus, DMP+ and DMP- may form a range [min,

max]. On the nonsmooth DEA frontier, MRTS should be

calculated from both sides (see Podinovski and Førsund,

2010). For simplicity, we only illustrate MRTS+, which is

generated by DMP+. The other case MRTS- can be derived

similarly.

For a two-output case, we define a typical MRTS+ which

can be calculated by two single-output MPs on a frontier

hyperplane, where all inputs are fixed at some levels and all

other output than Yj1 and Yj2 are fixed at some levels. That is,

MRTS+ with the arbitrary two outputs Yj1 and Yj2 is calculated

by MRTSþ ¼ �MPþ
j1

MPþ
j2

¼ �a1YMax
j1

a2YMax
j2

, where j1; j2 2 J�; a1 is calcu-

lated by model (10), given the direction gYj1 ; gYj2ð Þ ¼ 1; 0ð Þ,
and a2 is calculated by gYj1 ; gYj2ð Þ ¼ 0; 1ð Þ, which indicates a

single-output MP (SOMP), respectively. Note, however, that

because an estimated DEA piece-wise frontier in high

dimensions forms a polyhedral set with multiple facets, a

simple calculation of MRTS often provides a lower resolution.

Figure 2 shows that each line segment (solid line) on the DEA

frontier presents a different MRTS; the dashed line shows a

rough but typical MRTS estimation by two single-output MPs.

To resolve this issue, we develop a definition of ‘‘segmented

MRTS (s-MRTS)’’ between any two DMPs by calculating the

marginal difference of each output as follows (Section 7.1

describes an example illustration). For other approach to

estimate s-MRTS, see Olesen and Petersen (1996, 2003).

Definition 2 Segmented marginal rate of technical substitu-

tion (s-MRTS) can be calculated by investigating two

specific outputs and defined as s-MRTSþ ¼

DMPj1
DMPj2

¼
a1g

Yj1
1

YMax
j1

�a2g
Yj1
2

YMax
j1

� �

a1g
Yj2
1

YMax
j2

�a2g
Yj2
2

YMax
j2

� �, in particular, DMPþ1 ¼

a1g
Yj1
1 YMax

j1
; a1g

Yj2
1 YMax

j2

� �
and DMPþ2 ¼ a2g

Yj1
2 YMax

j1
;

�

a2g
Yj2
2 YMax

j2
Þ are the two DMPs used for s-MRTS

estimation.

In fact, the one-sided MRTS+ of transformation of output j1
with respect to output j2 can be calculated by model (9) with

the objective function Max �uj2 and the given direction

gYj1 ; gYj2ð Þ ¼ 1; 0ð Þ.

5. Meta-DEA: direction towards marginal profit
maximization

This section introduces meta-DEA to find a direction for an

efficient firm to move towards its allocatively efficient

benchmark based on maximization of the firm’s marginal

profits (Lee, 2014). We know that different directions (i.e.

weighting vector) may generate different DMPs, i.e. these

(a) (b)

0

DEA
Fron�er

typical
MRTS

0

DEA
Fron�er

s-MRTS1
s-MRTS2

s-MRTS3

s-MRTS4

s-MRTS5

SOMP1

SOMP2
DMP1

DMP2

Figure 2 MRTS and segmented MRTS: a two single-output MPs are used to calculate MRTS as dash line; b two DMPs are used to
calculate s-MRTS as one piece-wise line segment on frontier.
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DMPs can make a span like a frontier. However, this frontier is

associated with MP rather than the levels of inputs or outputs.

We term this a ‘‘meta-frontier’’, i.e. frontier-about-frontier,

because the DMPs are generated by DEA technique. Figure 3

gives an illustration, where P(x) is an output space referring to

the production possibility set, given the level of one specific

input. Note that DEA forms a ‘‘production possibility set’’ in

the level of x, whereas meta-DEA forms a ‘‘marginal

production possibility set’’ towards the level of

x ? Dx based on estimated MPs. Therefore, given input price

and output price, we can find the direction for marginal profit

maximization with one extra unit of input.

Given an input and output price vector (Pi, Pj), there is a

way to find the marginal-profit-maximized direction. We can

generate the DMPs manually, given random-picked directions,

and then calculate the allocative efficiency with respect to the

meta-DEA frontier based on these discrete directions (i.e.

vectors of DMPs). Let g
Yj
w be a ‘‘decision variable’’ represent-

ing wth direction satisfying
P

j2J� g
Yj
w ¼ 1 and 0� g

Yj
w � 1,

8j 2 J�. A direction vector g
Yj
w identified for marginal profit

maximization is defined in mathematical formulation as the

following equation.

g
Yj�
w ¼ argmax

X

j2J�
Pjawg

Yj
wY

Max
j

(

�Pi� jmodel 10ð Þ with price vector Pi;Pj

� �
; 8w

)

ð11Þ

Note that, for changing one specific input, the marginal profit

maximization is equivalent to the marginal revenue

maximization due to a fixed marginal cost representing one

extra unit of single input. See Lee (2014) for the benefits of

meta-DEA and how it complements the profit-efficiency

analysis (Nerlove, 1965).

So far, we have discussed a capacity expansion case. In

estimating the marginal rate approaching from the right side,

all of the elements gYj in a given direction are nonnegative.

However, since some cases show capacity contraction

towards marginal profit maximization, e.g. undesirable out-

puts such as pollution or waste, it is also helpful to estimate

the marginal rate approaching from the left side via a

negative direction. The next section discusses undesirable

outputs in detail.

6. Directional marginal productivity for desirable
and undesirable outputs

To estimate the marginal rate approaching from the left side,

intuitively we can use a negative direction of gYj . For a single-

output case, we use models (3) and (4) to estimate bþDEA
i�j�r and

b�DEA
i�j�r ; similarly, we can use model (10) with the objective

function Min vi�
XMax
i�

¼ a to estimate a for a DMP approaching

from the right side and model (10) with the objective function

Max vi�
XMax
i�

¼ a for a DMP approaching from the left side. This

gives rise to Proposition 3.

Proposition 3 The MP estimated by model (10) with the

objective function Max vi�
XMax
i�

¼ a is equivalent to the MP

estimated, given a negative direction.

Proof See Appendices 1 and 2.

Recall that the DEA estimator, in particular BCC model

(Banker et al, 1984), assumes free disposability of undesir-

able outputs, which implies that a finite amount of input can

produce an infinite amount of undesirable output. The

assumption is physically unreasonable (Färe et al, 1989a;

Färe and Grosskopf, 2003; Kuosmanen and Podinovski,

2009). Intuitively, we can reduce the level of the good

output which in turn will result in a proportionate reduction

of the undesirable outputs. This property is termed weak

disposability (Shephard, 1974). The relationship between

good output and undesirable output is nulljoint, and the

undesirable output is a by-product of good output (Färe

et al, 2007).

We introduce the weak disposability by Kuosmanen’s

convex technology with undesirable outputs (Kuosmanen,

2005). Let Q be the set of undesirable output, Q* , Q be the

subset of undesirable output investigated for DMP, and gBq the

direction of undesirable output q. For unit simplexP
j2J� g

Yj þ
P

q2Q� gBq ¼ 1, the direction is a vector

gXi� ; gYj ; gBqð Þ, where gXi� ¼ 0, gYj � 0, and gBq � 0. Model

(12) defines the DDF with undesirable outputs as follows.

0

Price A

B

Marginal Profit
Max Direc�on

Meta-DEA
Fron�er on 

DEA
Fron�er

Figure 3 DEA frontier and meta-DEA frontier with two outputs.
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Max g

s:t:
X

k

kk þ lkð ÞXi�k �Xi�r

X

k

kk þ lkð ÞXik �Xir; 8i 6¼ i�

X

k

kkYjk �Yjr þ ggYj ; 8j 2 J�

X

k

kkYjk �Yjr; 8j 2 JnJ�

X

k

kkBqk ¼ Bqr � ggBq ; 8q 2 Q�

X

k

kkBqk ¼ Bqr; 8q 2 QnQ�

X

k

kk þ lkð Þ ¼ 1

kk; lk � 0; g is free

ð12Þ

Since the firm r is on the frontier,
P

i viXir�P
j ujYjr þ

P
q wqBqr þ u0 ¼ 0. Thus, let BMax

q ¼ max Bqk

� �
,

the dual model of model (12) estimates the DMP of Yj; j 2 J�

and Bq; q 2 Q� with respect to Xi� by eliminating the unit of

factors.

a ¼ Min
vi�

XMax
i�

s:t:
P
i

vi
Xir

XMax
i

�
X

j

uj
Yjr

YMax
j

þ
X

q

wq

Bqr

BMax
q

þ u0 ¼ 0

P
i

vi
Xik

XMax
i

�
X

j

uj
Yjk

YMax
j

þ
X

q

wq

Bqr

BMax
q

þ u0 � 0; 8k

P
i

vi
Xik

XMax
i

þ u0 � 0; 8k
P
j2J�

ujg
Yj þ

P
q2Q� wqg

Bq ¼ 1

vi; uj � 0; wq; u0 are free ð13Þ

Therefore, we calculate the DMP with undesirable outputs

by
o Yjr ;Bqrð Þ

oXi�r
¼ a� gYjYMax

j ;�gBqBMax
q

� �
, 8j 2 J�; 8q 2 Q�. In

this case, the firm would like to increase desirable outputs and

decrease undesirable outputs simultaneously by controlling

input level. The DMP provides a good insight into the best

direction for effective resource allocation, i.e. ‘‘Generate more

energy, but less pollution’’. Note that to estimate MP on the

portion of free disposability with respect to one investigated

input is invalid, which is similar to the issue discussed in

Section 4.

7. Numerical illustrations

Section 7.1 explains how to estimate a two-output MP case by

using the proposed model (10) described in Section 4.

Section 7.2 explains how to estimate a DMP case considering

one-undesirable output by using the model (13) described in

Section 6.

7.1. Two-output case

We return to the example in Podinovski and Førsund (2010),

which includes one input, two outputs, and three observa-

tions. However, we change the scale of the second output to

illustrate the benefit of unit elimination as model (10)

(Table 1).

For one specific unit A, given gY1 þ gY2 ¼ 1 for normaliza-

tion, we use the direction gX1 ; gY2 ; gY2ð Þ to generate model (14),

where gX1 ¼ 0.

a ¼ Min
v1

4

a ¼ Min
v1

4

s:t: v1
2

4
� u1

1

4
� u2

200

300
þ u0 ¼ 0

v1
4

4
� u1

2

4
� u2

300

300
þ u0 � 0

v1
1

4
� u1

4

4
� u2

100

300
þ u0 � 0

u1g
Y1 þ u2g

Y2 ¼ 1

v1; u1; u2 � 0; u0 is free

ð14Þ

When increasing one extra unit of X1 in unit A, the DMP of

Y1 and Y2 is
o Y1A;Y2Að Þ

oX1A
¼ a� 4gY1 ; 300gY2ð Þ. Given the output

price vector (P1, P2),
4 where P1[ 0 and P2[ 0, we observe

that the meta-DEA can identify the direction for marginal

profit maximization. Due to our two-output case, the optimal

direction is associated with output price ratio, i.e. P1/P2. We

investigate a resolution of 10 intervals (11 cases) between

gY1 ; gY2ð Þ ¼ 1; 0ð Þ and gY1 ; gY2ð Þ ¼ 0; 1ð Þ as shown in Table 2

and Figure 4.

Table 2 shows that the single-output MP of unit A is

consistent with the result shown in Podinovski and Førsund

(2010), i.e. the MP of Y1 is 4 using the direction

gY1 ; gY2ð Þ ¼ 1; 0ð Þ, and the MP of Y2 is 50 using the given

direction gY1 ; gY2ð Þ ¼ 0; 1ð Þ, respectively. Keeping in mind

that the DEA frontier includes a free disposable portion with

respect to outputs, and given that the same MP of Y2 is equal to

50, we can increase the MP of Y1 to obtain 0.44 by shifting the

direction from gY1 ; gY2ð Þ ¼ 0; 1ð Þ to (0.4, 0.6). When we

increase one extra unit of input, we prefer to choose the

Table 1 Data set for a two-output MP case

Unit Input (X1) Output 1 (Y1) Output 2 (Y2)

A 2 1 200
B 4 2 300
C 1 4 100

4Note that the marginal cost is fixed to represent one extra unit of single

input.
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direction gY1 ; gY2ð Þ ¼ 0:4; 0:6ð Þ, rather than (0, 1) to generate

more.

In addition, given the output price vector, the meta-DEA

shows the marginal profit maximization of the two outputs and

points out the direction for productivity improvement. For

instance, if the output price ratio is between 14.24 and 14:26�,

the meta-DEA suggests a direction gY1 ; gY2ð Þ ¼ 0:6; 0:4ð Þ. In
fact, it points out the allocatively efficient benchmarks on MP

frontier. We can also calculate the s-MRTS for unit A as

shown in Table 2. For example, we use the DMPs in case 1

and case 2 to calculate s-MRTS ¼ DMPj1
DMPj2

¼ 4�2:53ð Þ
0�21:05ð Þ ¼ �0:07.

N/A represents s-MRTS which cannot be calculated due to a

portion of free disposability of output Y1. Note that a typical

MRTS is MRTS ¼ �MP1
MP2

¼ a1YMax
1

a2YMax
2

¼ �1�4
0:167�300

¼ �0:08, where

a1 and a2 are calculated by gY1 ; gY2ð Þ ¼ 1; 0ð Þ and (0, 1),

respectively. However, this MRTS across a boundary (edge)

between two facets gives imprecise estimate of MRTS.

7.2. One-desirable-output and one-undesirable-output case

Returning again to Kuosmanen and Podinovski (2009), we

consider two observations (units D and E in Table 3) and

change the scale of the undesirable output.

We investigate a resolution of 10 intervals (11 cases)

between gY1 ; gB1ð Þ ¼ 1; 0ð Þ and gY1 ; gB1ð Þ ¼ 0; 1ð Þ as shown in

Table 4. The result shows that the MPs generated by cases 8,

9, and 10 will benefit unit D by decreasing its undesirable

output and slightly increasing its good output by moving

forward to unit E along the frontier. However, MPs estimated

from case 1 to case 7 are equal to zeros based on Proposition 2,

since the directions we assign project to the portion of free

disposability with respect to input. MP equal to zero does not

provide any useful information for productivity improvement

when adjusting the input level. In fact, the MP estimate of unit

D is not zero, given the direction projecting to the free

disposability portion of the input.

Table 2 DMP and meta-DEA of Y1 and Y2 in unit A

Case no. Direction (normalized) Objective function DMP s-MRTS Price ratio in meta-DEA

(gY1 , gY2 ) a o Y1A;Y2Að Þ
oX1A

P1

P2

Case 1 (1, 0) 1 (4, 0) [14.3198, ?)
Case 2 (0.9, 0.1) 0.70 (2.53, 21.05) -0.07 [14.26-, 14.3198)
Case 3 (0.8, 0.2) 0.54 (1.73, 32.43) -0.07 [14.26-, 14.26-)
Case 4 (0.7, 0.3) 0.44 (1.23, 39.56) -0.07 [14.26-, 14.26-)
Case 5 (0.6, 0.4) 0.37 (0.89, 44.44) -0.07 [14.24, 14.26-)a

Case 6 (0.5, 0.5) 0.32 (0.64, 48.00) -0.07 [10, 14.24)
Case 7 (0.4, 0.6) 0.28 (0.44, 50.00) -0.098 (0, 10)
Case 8 (0.3, 0.7) 0.24 (0.29, 50.00) N/A
Case 9 (0.2, 0.8) 0.21 (0.17, 50.00) N/A
Case 10 (0.1, 0.9) 0.19 (0.07, 50.00) N/A
Case 11 (0,1) 0.167 (0.00, 50.00) N/A

a We use 14.26- to present the decimal accuracy of two digits

Figure 4 DMP and meta-DEA of Y1 and Y2 in unit A (revised
from Podinovski and Førsund, 2010).

Table 3 Data set for an undesirable-output MP case

Unit Input
(X1)

Desirable output
(Y1)

Undesirable output
(B1)

D 1 3 400
E 4 5 100

Table 4 The DMP of Y1 and B1 in unit D

Case no. Direction
(normalized)

Objective
function

DMP

(gY1 , gB1Þ a o Y1D ;B1Dð Þ
oX1D

Case 1 – Case 7 (1, 0) – (0.4, 0.6) 0 (0, 0)
Case 8 (0.3, 0.7) 0.39 (0.59, -110.19)
Case 9 (0.2, 0.8) 0.42 (0.42, -133.33)
Case 10 (0.1, 0.9) 0.44 (0.22, -159.38)
Case 11 (0,1) 0.47 (0, -188.89)
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8. Conclusion

This study provides a theoretical foundation of DMP

supporting the meta-DEA which measures efficiency via

marginal-profit-maximized orientation. DMP investigates

the differential characteristics of nonsmooth piece-wise

linear frontier estimate by DEA, and we explicitly derived

the DMP by DDF. Since increasing one extra unit of input

can simultaneously contribute to multiple outputs, this study

fills the gap in the literatures and extends the Podinovski

and Førsund’s (2010) work to the DMP given the predeter-

mined directional vector. In practice, the DMP can be used

to build the span of MP frontier supporting the productivity

improvement via resource reallocation, e.g. a capacity

adjustment matching demand fluctuation. The managerial

implication of DMP enhances the decision quality on

marginal effects.

In addition, DMP can be also applied to the computation of

MRTS and we develop an alternative measure of s-MRTS to

compensate the typical MRTS measure via a segmentation

technique and calculation of each output’s marginal difference.

Typically, the MRTS can be estimated by the ratio of two

derivatives of DDF with respect to different outputs (Grosskopf

et al, 1995). However, these derivatives usually come from the

dual variables of output constraints in DEA formulation, and

thus, the nonunique dual solutions are common. The proposed

s-MRTS addresses the issue and also complements the approach

shown in Olesen and Petersen (2003).

For the future works, the synergistic effects of multiple

inputs and multiple outputs can be considered. Noting that the

estimation of the increase in output is conservative if two or

more inputs are expanded simultaneously, we suggest sepa-

rately estimating the marginal production of each inputs and

then taking the dot product of the marginal product vector.

However, doing so will not capture any synergistic effects

between the different inputs. In addition, the DMP estimation

can support capacity adjustment, but moving along the

efficient frontier too far may be out of production possibility

set. To maintain feasibility, meaning that a firm remains

within its original production possibility set after taking

adjustment, we suggest a limited range of the resource

adjustments and recalculating the MP in each iterative short-

distance move to ensure that the firm remains within the

production possibility set due to the law of diminishing

marginal returns (Lee and Johnson, 2014).
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American Journal of Agricultural Economics 91(2):539–545.
Lee C-Y (2014). Meta-data envelopment analysis: finding a direction

towards marginal profit maximization. European Journal of

Operational Research 237(1):207–216.
Lee C-Y, Johnson AL, Moreno-Centeno E, Kuosmanen T (2013). A

more efficient algorithm for convex nonparametric least squares.

European Journal of Operational Research 227(2):391–400.
Lee C-Y, Johnson AL (2014). Proactive data envelopment analysis:

effective production and capacity expansion under stochastic

environment. European Journal of Operational Research

232(3):537–548.
Lee JD, Park JB, Kim TY (2002). Estimation of the shadow prices of

pollutants with production/environment inefficiency taken into

account: a nonparametric directional distance function approach.

Journal of Environmental Management 64(4):365–375.
Luenberger DG (1992). New optimality principle for economic

efficiency and equilibrium. Journal of Optimization Theory and

Applications 75(2):221–264.
Mekaroonreung M, Johnson AL (2012). Estimating the shadow prices

of SO2 and NOx for U.S. coal power plants: a convex nonpara-

metric least squares approach. Energy Economics 34(3):723–732.
Nerlove M (1965). Estimation and Identification of Cobb-Douglas

Production Functions. Chicago: Rand-McNally.

Olesen OB, Petersen NC (1996). Indicators of ill-conditioned data sets

and model misspecification in data envelopment analysis: An

extended facet approach. Management Science 42(2):205–219.
Olesen OB, Petersen NC (2003). Identification and use of efficient faces

and facets in DEA. Journal of Productivity Analysis 20(3):323–360.
Podinovski V, Førsund FR (2010). Differential Characteristics of

Efficient Frontiers in Data Envelopment Analysis. Operations

Research 58(6):1743–1754.
Shapiro JF (1979). Mathematical Programming: Structures and

Algorithms. John Wiley & Sons, New York.

Shephard RW (1974). Indirect production functions. Mathematical

Systems in Economics, 10.MeisenheimAmGlan: AntonHainVerlag.

Zofio JL, Prieto AM (2006). Return to dollar, generalized distance

function and the Fisher productivity index. Spanish Economic

Review 8(2):113–138.

Appendix 1: DEA as sign-constrained convex
nonparametric least squares

The convex nonparametric least squares (CNLS) technique

(Hildreth, 1954; Kuosmanen, 2008) describes the average

behaviour of observations. CNLS avoid the prior assumptions

regarding function form while maintaining the standard

regularity conditions for production functions, namely conti-

nuity, monotonicity, and concavity. Later, Kuosmanen and

Johnson (2010) demonstrated that inefficiency estimated by

the sign-constrained CNLS is equivalent to that estimated by

the additive output-oriented DEA. The coefficients associated

with the independent factors intuitively provide estimates of

the MP in a regression-based approach.

Now, we describe how to prove that bik
+DEA is consistent

with the bik
+CNLS estimated by the sign-constrained CNLS. Let

er be the inefficiency term of specific firm r. We obtain the

nonradial DEA inefficiency estimate er
DEA by solving the

following linear programming formulation. Note that the DEA

formulation (15) differs from the standard radial output-

oriented variable-return-to-scale (VRS) DEA.

eDEAr ¼ argmin er
s:t:

P
k

kkYk þ er ¼ Yr

P
k

kkXik �Xir; 8i
P
k

kk ¼ 1

kk � 0; 8k

ð15Þ

Next, we obtain the inefficiency estimate ek
CNLS of firm k by

solving the following sign-constrained CNLS. Let index h be

an alias of index k, ak be the intercept coefficient, and bik be
the slope coefficient of the ith input of kth firm.

eCNLSk ¼ argmin
X

k

e2k

s:t: ek � 0; 8k
Yk ¼ ak þ

P
i bikXik þ ek; 8k

ak þ
P
i

bikXik � ah þ
P
i

bihXik; 8k; 8h

bik � 0; 8i; k

ð16Þ

Both models (15) and (16) measure inefficiency relative to

the same DEA frontier; recall that Kuosmanen and Johnson

proved eDEAk ¼ eCNLSk . The firm is efficient if and only if its

inefficiency estimate equals zero; otherwise, values smaller

than zero represent measures of inefficiency. The result also

shows that the estimates bik can be interpreted as MP. Since

model (16) generates multiple solutions, the objective function

could be replaced by M
P

k e
2
k þ

P
i;k bik to acquire unique

solution, where M is a large enough number. This expansion to

estimate a unique solution keeps an identical piece-wise linear

frontier and obtains the right-side MP oYk
oXik

¼ bþCNLS
ik ¼ bik.

Vice versa, replacing the objective function with M
P

k e
2
k �P

i;k bik obtains the left-side MP oYk
oXik

¼ b�CNLS
ik ¼ bik as

Figure 1.

Since models (15) and (16) generate the same DEA frontier,

based on Theorem 3.1 in Kuosmanen and Johnson’s (2010)

we extend the proof with respect to MP by developing

Proposition 4.

Proposition 4 For all real-valued data, the MP estimated by

sign-constrained convex nonparametric least squares

model (16) with objective function M
P

k e
2
k þ

P
i;k bik is

equivalent to the MP estimated by DEA model (3); that is,

bþDEA
ik ¼ bþCNLS

ik ; the similar result can be applied to

b�DEA
ik ¼ b�CNLS

ik .
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Proposition 4 is interesting. It explicitly illustrates the MP

generated by DEA model (3) as the MP directly shown as the

coefficient of independent factors in the regression-based

CNLS model. Thus, it reveals that the MP can be generated by

the DDF as an implicit formulation of model (15). This also

gives rise to Proposition 5.

Proposition 5 The single-output MP estimation by additive

DEA, sign-constrained CNLS, and DDF with direction

vector gXi� ; gYj�ð Þ ¼ 0; 1ð Þ shows a consistent result.

Appendix 2: Proof of theorems

Proposition 1 Given gXi� ; gYj�ð Þ ¼ 0; 1ð Þ if firm r is on the

efficient frontier, then the objection function value of

model (1) is equivalent to that of model (6), and the

objection function value of model (2) is equivalent to that

of model (7).

Proof Since firm r is on the efficient frontier, model (6)

generates g = 0. In fact,
P

k kkYj�k �Yj�r þ ggYj� andP
k kkYj�k � yj� are equivalent. Let yj� ¼ Yj�r þ ggYj� , i.e.

ggYj� ¼ yj� � Yj�r , if gXi� ¼ 0 and gYj� ¼ 1, then

g ¼ yj� � Yj�r. The model is exactly the same as model (1)

when g ¼ 0. Thus, kk are the same in model (1) and model

(6). In addition, given gXi� ; gYj�ð Þ ¼ 0; 1ð Þ in model (7),

then uj� ¼ 1 and Yj�r is a constant, which allows us to

remove the terms Yj�r and uj�Yj�r from the objective

function of model (7). The objective function of model (7)

is the same as that of model (2). Thus, optimal solutions vi
and uj are the same. Model (2) is equivalent to model (7).

Proposition 2 If the direction for MP estimation used in model

(10) projects to the portion of free disposability with respect

to inputs, then the MP estimate will be equal to 0.

Proof To prove this proposition by model (10) is equivalent

to proving it by model (9), since model (10) is a nor-

malized version of model (9). If k0, kk, and g are dual

variables of each constraint in model (9), respectively, the

dual model of model (9) with
P

j2J� g
Yj ¼ 1 is as follows.

Max gP
k kkXi�k � 1� k0Xi�rP
k kkXik � � k0Xir; 8i 6¼ i�P
k kkYjk � � k0Yjr þ ggYj ; 8j 2 J�P
k kkYjk � � k0Yjr; 8j 2 JnJ�P
k kk ¼ �k0

kk � 0; g; k0 are free

Note that in the above model, if -k0 = 1, then the model is

almost equivalent to model (8) except that first constraintP
k kkXi�k � 1� k0Xi�r. When model (9) estimates the MP

projecting to the portion of free disposability with respect

to one specific input, the slack in input constraints

P
k kkXi�k � 1� k0Xi�r is positive. That is, its dual variables

vi� ¼ 0 in model (9). Thus, the objective function in model

(10) is vi�
XMax
i�

¼ a ¼ 0 and
oYjr
oXi�r

¼ a� gYjYMax
j

� �
will be a zero

vector.

Proposition 3 The MP estimated by model (10) with the

objective function Max vi�
XMax
i�

¼ a is equivalent to the MP

estimated, given a negative direction.

Proof Given gYj is negative, let
P

j2J� g
Yj ¼ �1 for normal-

ization. The objective function of model (8) will be

Maxg
P

j2J� g
Yj

� �
¼ Max� g. To obtain the same opti-

mal solution, we replace the objective function of model

(8) by Min g. Thus, the first constraint of model (9) will

be
P

iviXir -
P

jujYjr ? u0 = 0 and the objective

function of model (9) will be Maxvi� . Finally, the objec-

tive function will be Max vi�
XMax
i�

¼ a in model (10).

Proposition 4 For all real-valued data, the MP estimated by

sign-constrained convex nonparametric least squares

model (16) with objective function M
P

k e
2
k þ

P
i;k bik is

equivalent to the MP estimated by DEA model (3); that is,

bþDEA
ik ¼ bþCNLS

ik ; the similar result can be applied to

b�DEA
ik ¼ b�CNLS

ik .

Proof For the single-output case, we calculate MP using

model (3).

bþDEA
ir ¼ Min vi

s:t:
P
i

viXir � uYr þ u0 ¼ 0

P
i

viXik � uYk þ u0 � 0; 8k

u ¼ 1

vi; u� 0; u0 is free

Then, for one specific firm r, we need to solve the following

model k times.

bþDEA
ir ¼ Min vi

s:t: Yr ¼
P
i

viXir þ u0

Yk �
P
i

viXik þ u0; 8k

vi � 0; u0 is free

However, for all firm k, we only need to solve one time (i.e.

one-shot solution) by using the following formation.

bþDEA
ik ¼ argminu0;v

X

i;k

vik

s:t: Yh ¼
P

i vihXih þ u0h; 8h
Yk �

P
i

vihXik þ u0h; 8k; 8h

vik � 0; u0k is free
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Let u0k = ak ? ek, where ak represents the intercept and ek
represents the deviation of inefficiency. We know ek = 0

since all firms k are on the efficient frontier. Therefore,

we harmlessly impose the sign-constraint as an additional

constraint. Clearly, the inefficient firms (for which eh\ 0)

do not influence the shape of the DEA frontier, and

thus, we add the inefficiency components into the

constraint and write the formulation equivalently as

follows.

bþDEA
ik ¼ argminu0;v

X

i;k

vik

s:t: Yh ¼
P
i

vihXih þ ah þ eh; 8h
P
i

vikXik þ ak þ ek �
P
i

vihXik þ ah þ eh; 8k; 8h

vik � 0; ak is free; ek ¼ 0

The model is the same as the CNLS frontier characterized by

all efficient firms with ek = 0. We replace vik by bik. Finally,
we derive the sign-constrained CNLS formulation to estimate

the MP as follows.

bþCNLS
ik ¼ argmine;a;bM

X

k

e2k

þ
X

i;k

bik ¼ argmine;a;b

X

i;k

bik

s:t: ek ¼ 0; 8k
Yk ¼ ak þ

P
i

bikXik þ ek; 8k

ak þ
P
i

bikXik � ah þ
P
i

bihXik; 8k; 8h

bik � 0; 8i; k
Thus, bþDEA

ik ¼ bþCNLS
ik :

Proposition 5 The single-output MP estimation by additive

DEA, sign-constrained CNLS, and DDF with direction

vector gXi� ; gYj�ð Þ ¼ 0; 1ð Þ shows a consistent result.

Proof We can obtain the proof directly from Propositions 1

and 4.
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