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The essence of data plays a critical role in decision making in supply chain management (SCM). When data
embedded in supply chains (SCs) are fuzzy, the associated equilibrium and performance measures also become
fuzzy. This paper investigates the effects of fuzzy data on decision making in a two-echelon SC with a supplier
and duopolistic retailers playing a Stackelberg strategic game in both intra- and inter-echelons. In contrast to
existing approaches, this paper devises an analysis method to provide a likely interval of the fuzzy maximal profit
with a known possibility level (degree of certainty) rather than a singleton (crisp value). The idea is based on the
extension principle to reformulate the two-level optimization problem as a pair of parametric quadratic programs
in order to calculate the lower and upper bounds of the leader’s fuzzy maximal profit at each possibility level of
the obtained information. The analytic results indicate that the higher the degree of uncertainty, the smaller
(larger) the lower (upper) bound of the maximum profit of each SC member. Moreover, the main results obtained
from eight scenarios show that when the degree of demand diversity between the two retailers is significantly
high, the Stackelberg leader is most likely to obtain lower profit and the marginal contribution of the primary
demand to the total profit of the duopolistic retailers will exceed that of the powerful supplier’s maximum profit.
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1. Introduction

Supply chain management (SCM), one of the most attractive

research areas in applied operational research (OR), has become

increasingly important in all types of organizations given the

current highly competitive and globalized business environment.

This subject involves directing and organizing activities

throughout the entire supply chain (SC) to maximize customer

value and achieve a sustainable competitive advantage (Simchi-

Levi et al, 2004, 2007). Classical research on this topic includes

works by Lee and Billington (1992), Lee et al (1997), Chen

(1999), Chen et al (2000), Graves and Willems (2005), Miles

and Snow (2007), Chick et al (2008), Gunasekaran et al (2008),

and Iida and Zipkin (2010). See Kouvelis et al (2006), Iida and

Zipkin (2010), and Farahani et al (2014) for comprehensive

reviews.

Considerable research has been conducted on the compet-

itiveness of SCs with different power structures to characterize

the competitive behaviors among the SC members existing in

real-world SCs. Such studies have focused on several games

such as Nash, Cournot, Collusion and Stackelberg games (e.g.,

Choi, 1996; Yang and Zhou, 2006; Xia, 2011; Wu et al, 2012;

Zhao et al, 2014; Modak et al, 2016). For example, Choi

(1991) developed manufacturer-Stackelberg, retailer-Stackel-

berg, and vertical Nash pricing models to investigate optimal

pricing decisions in a two-echelon SC with two competitive

manufactures selling partially substitutable products through a

common retailer. Choi (1996) studied a SC with two

competing manufacturers and two common retailers that

selling competing brands. Xia (2011) investigated the com-

petitive strategies between two sellers providing substi-

tutable goods in a multi-buyer marketplace. Yang and Zhou

(2006) studied the pricing and quantity decisions of a two-

echelon SC with one manufacturer and two retailers, where the

manufacturer is a Stackelberg leader and the competition

between retailers includes Cournot, Stackelberg and collusion

games. Wu et al (2012) investigated the equilibrium decisions

in a SC with one common supplier and two retailers and

considered six power structures of vertical and horizontal

competition. Zhao et al (2014) developed one centralized

pricing model and seven decentralized pricing models to

analyze the pricing decisions for substitutable products in a

two-echelon SC consisting of one common retailer and two

competitive manufacturers.

Note that among the different strategic games for describing

various power structures among members in real-world SCs,

several studies have focused on the Stackelberg game
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(recently, e.g., Xiao et al, 2014; Yang et al, 2015; Wang et al,

2016). This paper focuses on the case of SC members playing

a Stackelberg game in both intra- and inter-echelons because

such a power structure may appear in real-world situations.

Regarding vertical competition, as a real-world SC example,

Microsoft plays a more dominant role than downstream

members (Ertek and Griffin, 2002). With regard to horizontal

competition between two retailers, a practical example is that

the UK grocery retailer Tesco followed Walmart in entering

the India market (Domain-b.com, 2008; Ryan, 2008). Another

practical example is the competition in Taiwan’s fixed

network market. After the opening of this license in 2000,

three private companies [that is, Taiwan Fixed Network

(TFN), New Century InfoComm (NCIC), and Eastern Broad-

band Telecom (EBT)] followed the dominant leader

Chunghwa Telecom (the largest telecommunications company

in Taiwan) in entering the fixed network market in Taiwan.

Prior studies have also discussed the topic of two competitive

retailers playing games such as the Stackelberg game; for

example, Modak et al (2016) recently noted that ‘‘the

duopolistic retailers may compete with each other following

Stackelberg’’ and investigated the pricing decisions in a three-

echelon SC with one manufacturer and two retailers playing

Cournot, Stackelberg, and Collusion games.

Many sources of uncertainties exist in a SC, such as market

demand and lead times (Petrovic et al, 1998; Petrovic, 2001).

One of the pitfalls of SCM presented by Lee and Billington

(1992) is ‘‘ignoring the impact of uncertainties.’’ They noted

that ‘‘to reduce the impact of these uncertainties, supply chain

managers must first understand their sources and the magni-

tude of their impact.’’ In fact, many previous models have

dealt with uncertainties of SCM by assuming that these

uncertainties are stochastic (e.g., Lariviere, 1999; Kraiselburd

et al, 2004). However, because of the market turbulence

characterized by increasingly short product life cycles (PLCs)

(Krajewski et al, 2009), data on SCs are often either unreliable

or unavailable (e.g., a lack of historical data for the introduc-

tion of a new product). Specifically, it is difficult to precisely

estimate market demand over a short time period. Imprecise

input data of this type will clearly undermine the quality of

decisions that are made using conventional stochastic models.

That is, SCs in the real world are highly likely to be burdened

by uncertainties in the nonstochastic sense (Zimmermann,

2001; Wong and Lai, 2011; Giannoccaro et al, 2003).

Therefore, the effect of imprecise data on making an effective

SC pricing or quantity decisions must be carefully investigated

(Lee and Billington, 1992).

In practice, the forecast market demands are more appropri-

ately described by linguistic terms, such as being approxi-

mately equal to certain amounts that are subjectively estimated

based on the judgment and intuitions of decision makers. Fuzzy

set theory (Zadeh, 1965, 1978; Bellman and Zadeh, 1970)

provides an alternative approach to manage SC nonstochastic

uncertainties (Petrovic et al, 1999; Giannoccaro et al, 2003;

Peidro et al, 2009, 2010; Wang and Shu, 2005, 2007; Xie et al,

2006). In fact, fuzzy set theory has been successfully applied to

SCM problems, and several articles have demonstrated that

fuzzy SCM modeling is more suitable in practice than crisp

modeling (for example, Peidro et al, 2009). Peidro et al (2009)

and Wong and Lai (2011) provided comprehensive reviews of

the research related to this topic.

Relatively few studies have investigated the competitive SC

problem in fuzzy environments. For example, Zhou et al

(2008) discussed the pricing decisions for a single product in a

two-echelon SC with fuzzy demands and playing games. Zhao

et al (2012a) studied the pricing decisions for substi-

tutable products in a SC with one manufacturer and two

competitive retailers in fuzzy environments, and Zhao et al

(2012b) discussed the similar problem for a SC with two

competitive manufacturers and one common retailer. More-

over, fewer studies have addressed the SCM problem with

both horizontal and vertical competition in fuzzy environ-

ments. For example, Wei and Zhao (2016) discussed the

pricing problem of this type in a SC with two suppliers and one

common retailer. However, the decisions obtained from

existing models are typically crisp (single-valued numeric),

which could result in a loss of important information because

the performance measures or equilibrium of the SC could be

over- or underestimated. This is similar to the advantage of

using interval estimation over point estimation for stochastic

data analysis in practice. Therefore, the possible intervals

(effective lower and upper bounds) of equilibrium and

performance measures with degrees of uncertainty will clearly

provide more information and thus they deserve further

investigation. Furthermore, few studies have addressed the

effect of imprecise data on decision making in SCs.

This paper investigates the effect of imprecise data on the

pricing strategy in two-echelon SCs with price-sensitive

demand and Stackelberg strategic games played in vertical

and horizontal competitions. The analysis method is based on

fuzzy set theory and optimization theory. Specially, it follows

Zadeh’s extension principle, which is one of the most important

concepts in fuzzy set theory (Zadeh, 1978; Yager, 1986).

This paper is organized as follows. In Section 2, the

mathematical modeling of the two-echelon SC with both

horizontal and vertical competition playing Stackelberg games

in fuzzy environments is introduced. Next, a membership

function approach based on Zadeh’s extension principle is

adopted to derive the membership functions of SC perfor-

mance measures. In this approach, a pair of two-level

mathematical programs is initially developed and subsequently

transformed into a pair of quadratic programs in order to

calculate the a-cuts of the Stackelberg-leader’s fuzzy maxi-

mum profit. By enumerating different values of a, the

membership function of the fuzzy maximum profit is

constructed, and the corresponding optimal pricing and

quantity decisions are derived. Section 4 presents the solutions

to eight scenarios within an example application inspired by
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previous studies. Most important, the managerial implications

are discussed in Section 5. Finally, Section 6 concludes this

paper.

2. Fuzzy Competitive SCs

Consider a two-echelon SC with a monopolistic supplier

(manufacturer/seller) and two duopolistic retailers (buyers)

facing both vertical and horizontal competitions. The vertical

competition structure between two echelons is supplier-Stack-

elberg (von Stackelberg, 1952); the supplier acts as a leader and

determines a unit wholesale price w for the two retailers, and

these two retailers (acting as followers) then independently

determine the unit sale prices, pi; i ¼ 1; 2; charged to cus-

tomers. Normally, the unit wholesale price is smaller than the

unit sale prices, i.e., w\ pi; i ¼ 1; 2: In addition, the horizontal

competition structure between these two retailers, which

represents the retailers’ competitive behavior, is also Stackel-

berg. Most important, forecast market demands faced by SC

members are described by linguistic terms, which are subjec-

tively estimated based on the judgment and intuitions of

decision makers. The problem is to determine an optimal price

that maximizes the profit for each SC member.

The proposed model is constructed under the following key

assumptions, which are similar to those made by Ingene and

Parry (1995):

1. Each decision maker pursues profit maximization.

2. No resale of products between retailers is allowed.

3. No backorders are allowed.

4. The demand functions encountered by the two retailers are

price sensitive with the following downward sloping forms

(McGuire and Staelin, 1983; Ingene and Parry, 1995):

Qiðpi; pjÞ ¼ ~Di � aipi þ hpj; i ¼ 1; 2; j ¼ 3� i; ð1Þ

where ~Di [ 0, 0� h\ai, i ¼ 1; 2: The intercept term ~Di is

the fuzzy market base (also called the primary demand),

denoting a measure of the demand confronting the ith

retailer if prices are zero. The price parameter ai is a

measure of the sensitivity of the ith retailer’s sales to

changes in its price, and the cross-price parameter h is a

measure of the sensitivity of the ith retailer’s sales to

changes in the jth retailer’s price. The ratio h=ai is the

degree of substitutability between the retailers. The

condition of h=ai\1, or 0� h\ai, indicating that changes

in pi affect the ith retailer’s own demand more than

changes in its rival’s price pj, is typically required to

ensure the proper behavior of the demand function. In

practice, the demand function is usually estimated using

consumer surveys (interviews, questionnaires, or focus

groups), market experiments, or econometric techniques,

such as regression analysis, which may be the most

frequently used technique (Berndt, 1991; Dean, 1980;

Thomas and Maurice, 2007).

First, consider the horizontal competition structure in the

downstream market. One of the two duopolistic retailers acts

as a Stackelberg leader, and the other acts as a Stackelberg

follower. Without a loss of generality, assume that the first

retailer is the leader in the horizontal competition. Because the

leader knows the follower’s pricing decision and sets the unit

sale price p1 to maximize his profit, retailer 1 knows retailer

2’s optimal reaction function, which can be derived by

maximizing retailer 2’s profit. For a pre-specified market base

d2, as well as a unit wholesale price w and a unit sale price p1,

as announced by the supplier and retailer 1, respectively, the

profit function of retailer 2, which equals the total revenue less

the total purchasing cost, is as follows:

Pr2ðp2 w; p1j Þ ¼ ðp2 � wÞQ2 ¼ ðp2 � wÞðd2 � a2p2 þ hp1Þ:
ð2Þ

Under the constraints of p2 [w and Q2ðp1; p2Þ ¼
d2 � a2p2 þ hp1 � 0, maximizing (2) can derive retailer 2’s

optimal reaction function. Because it is clear that

Pr2ðp2 w; p1j Þ is concave with respect to p2, its global

maximum can be derived by taking the first-order partial

derivative of Pr2ðp2 w; p1j Þ with respect to p2 and setting it to

zero while treating w and p1 as parameters, which yields the

following optimal reaction function for retailer 2:

p�2 ¼
d2 þ a2wþ hp1

2a2
: ð3Þ

Substituting this function into retailer 1’s profit function, under

the conditions of p1 � w[ 0 and Q1ðp1; p2Þ ¼ d1 � a1p1 þ
hp2 � 0 given a pre-specified market base d1, for a pre-

specified unit wholesale price w announced by the supplier,

yields the following:

Pr1ðp1 wj Þ ¼ ðp1 � wÞQ1 ¼ ðp1 � wÞðd1 � a1p1 þ hp2Þ
¼ ðp1 � wÞð2a2d1 � 2a1a2p1 þ hd2 þ h2p1 þ a2hwÞ=2a2:

ð4Þ

Because h\ai; i ¼ 1; 2, it is clear that the profit function (4) is

concave with respect to p1. Similarly, taking the first-order

partial derivative of Pr1ðp1 wj Þ with respect to p1 and setting to
zero yield the following:

p�1 ¼
2a2d1 þ hd2 þ ð2a1a2 þ a2h� h2Þw

2ð2a2a1 � h2Þ
: ð5Þ

Note that Eq. (5) is parameterized by w. Because Q1 ¼
ð2a2d1 � 2a1a2p1 þ hd2 þ h2p1 þ a2hwÞ=2a2 � 0 is required

for Eq. (4) to be meaningful, we have

2a2d1 þ hd2 þ a2hw[ 2a1a2p1 � h2p1. Thus, we have

p�1 � w ¼ 2a2d1 þ hd2 þ ½hða2 þ hÞ � 2a1a2�w
2ð2a2a1 � h2Þ

[ 0:
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Therefore, if Q1ðp1; p2Þ ¼ d1 � a1p
�
1 þ hp�2 � 0, then p�1 is the

global maximum solution to Eq. (5), which is indeed retailer

1’s optimal reaction function.

In the vertical competition structure, the supplier is a

Stackelberg leader; therefore, it knows retailers’ optimal

reaction functions (3) and (5) and thus their pricing decisions

p�1 and p�2. Therefore, the supplier’s profit function can be

stated as follows:

PSðwÞ ¼ ðw� cÞðQ�
1 þ Q�

2Þ; ð6Þ

where c is the unit manufacturing cost and Q�
i ¼ di � aip

�
i þ

hp�j ; i; j ¼ 1; 2; i 6¼ j; as shown in (1), p�1 is listed in (5), and p�2
is listed in Eq. (3). Substituting p�1 into Eq. (3) yields the

following:

p�2 ¼
d2þa2wþhp�1

2a2

¼ 2a2hd1þ4a1a2d2�h2d2þð4a1a22þ2a1a2h�a2h
2�h3Þw

4a2ð2a1a2�h2Þ
ð7Þ

Specifically,

Q�
1 ¼

2a2d1 þ hd2 þ ðh2 þ a2h� 2a1a2Þw
4a2

; ð8aÞ

and

Q�
2 ¼

2a2hd1þ4a1a2d2�h2d2þð�4a1a
2
2þ2a1a2hþ3a2h

2�h3Þw
4ð2a1a2�h2Þ

:

ð8bÞ

Consequently, the supplier’s optimal unit wholesale price w�

can be determined by solving the following mathematical

program:

ZS ¼ max PSðwÞ ¼ ðw� cÞðQ�
1 þ Q�

2Þ
s:t: w� c� e[ 0;

Q�
1;Q

�
2 � 0;

ð9Þ

where e is a small non-Archimedean quantity.

Because PSðwÞ is a concave function with respect to w,

given that w[ c and Q�
i � 0; i ¼ 1; 2; the maximum solution

can be derived by setting its first-order derivative dPSðwÞ=dw
to zero, which yields the following:

w� ¼ c

2

þ 4a1a
2
2ðd1þd2Þþ2a2ða2d1þa1d2Þh�a2ð2d1þd2Þh2�d2h

3

2½4a1a22ða1þa2Þ�4a1a
2
2h�a2ð4a1þ3a2Þh2þ2a2h

3þh4�
:

ð10Þ

In sum, the optimal pricing process in the two-echelon SC

with an oligopolistic supplier and duopolistic retailers playing

a Stackelberg game is as follows: first, the supplier determines

the optimal wholesale price w� according to Model (9); then,

the Stackelberg-leader retailer, based on the information from

w�, determines his optimal sale price according to (5); finally,

the Stackelberg-follower retailer decides the optimal sale price

according to (3).

Note that the corresponding maximum profit will also be a

fuzzy set when some of the uncertainties in the SC are non-

stochastic and are appropriately modeled using fuzzy sets. In

brief, a fuzzy set is a generalization of the classical (or crisp)

set. Mathematically, a fuzzy set ~B can be described by

~B ¼ fðx; l ~BðxÞÞjx 2 Xg, where l ~BðxÞ is the membership func-

tion describing the membership grades of the elements in this

set, x is a member or element of the set, and X denotes the

universe of discourse (or the universal set) (Zimmermann,

2001).

Without a loss of generality, suppose that the market bases

of the retailers are approximately known and can be

represented by fuzzy numbers. Note that a fuzzy number ~F

in its universal set Y is a convex and normal fuzzy set, that is,

l ~Fðby1 þ ð1� bÞy2Þ�minfl ~Fðy1Þ; l ~Fðy2Þg, y1; y2 2 Y ;

b 2 ½0; 1�, and its largest membership grade is 1 (Zimmer-

mann, 2001). Because historical data are unavailable or

unreliable owing to market turbulence, the market base of

retailer i is subjectively described as a fuzzy number ~Di ¼
ðdi; l ~Di

ðdiÞjdi 2 Sð ~DiÞ
� �

described by a general membership

function l ~Di
:

l ~Di
ðdiÞ ¼

LiðdiÞ; li � di �mi;
1; mi � di � ni;
RiðdiÞ; ni � di � ui;

8
<

:
ð11Þ

where Sð ~DiÞ is the support of the fuzzy number ~Di, which

denotes the crisp set of all di such that l ~Di
ðdiÞ[ 0, li [ 0, and

LiðdiÞ and RiðdiÞ are the left- and right-shape functions,

respectively, of the fuzzy number ~Di. Note that LiðdiÞ and

RiðdiÞ are determined according to the decision maker’s

subjective judgement, intuitions and experience (Zimmer-

mann, 2001). In fact, the topic of determining the left- and

right-shape functions is critical and has been investigated in

other studies (for example, Bilgiç and Türkşen, 2000; Türkşen,

1991).

Each different di in Eq. (11) has a different membership

grade described by the membership function l ~Di
. Based on

Zadeh’s extension principle, if any of the parameters in Model

(9) are fuzzy, then the objective value of this model also

becomes fuzzy. Thus, the conventional optimization model for

finding the optimal wholesale price w� becomes the following:

~ZS ¼ max ðw� cÞð ~Q�
1 þ ~Q�

2Þ
s:t: w� cþ e;

~Q�
1;

~Q�
2 � 0;

ð12Þ

where

~Q�
1 ¼

2a2 ~D1 þ h ~D2 þ ðh2 þ a2h� 2a1a2Þw
4a2

; ð13aÞ
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~Q�
2

¼ 2a2h ~D1þ4a1a2 ~D2�h2 ~D2þð�4a1a
2
2þ2a1a2hþ3a2h

2�h3Þw
4ð2a1a2�h2Þ

:

ð13bÞ

Model (12) is essentially a parametric quadratic program with

fuzzy parameters in the objective and a bounded variable. Note

that the maximal objective value ~ZS in Model (12) is fuzzy

rather than crisp because different values of ~D1 and ~D2

produce different maximum profits. To precisely measure the

impact of vague information on the decision in SC, the

fuzziness of input data and output information should be

carefully conserved. Specifically, the membership function of

~ZS, denoted by l ~ZS
, should be derived.

3. Reformulation Based on the Extension Principle

The approach adopted here is based on a combination of the a-
cut concept, Zadeh’s extension principle, two-level mathe-

matical programming, and parametric programming. The

results derived using this approach conserve the fuzziness of

the pricing decision problem in the SC with one supplier and

duopolistic retailers playing a Stackelberg game.

On the basis of Zadeh’s extension principle, ~ZS is also a

fuzzy number. According to the nested structure property of

the membership function of a fuzzy number, the membership

function l ~ZS
can be constructed by deriving its a-cuts

(Zimmermann, 2001). Using a-cuts, ~Di can be represented

by different levels of confidence intervals. The a-cut of ~Di is a

crisp interval that can be expressed in another form as follows:

ðDiÞa ¼ inf
di2Sð ~DiÞ

fdijl ~Di
ðdiÞ� ag; sup

di2Sð ~DiÞ
fdijl ~Di

ðdiÞ� ag
" #

¼ ðDiÞLa ; ðDiÞUa
h i

:

ð14Þ

This interval indicates where the values of di lie for a given

possibility level a.
By Zadeh’s extension principle (e.g., Zadeh, 1978; Zim-

mermann, 2001), the membership function l ~ZS
is defined as

follows:

l ~ZS
ðzÞ ¼ sup

d1;d22Rþ
min l ~D1

ðd1Þ; l ~D2
ðd2Þ z ¼j ZSðd1; d2Þ

� �
; ð15Þ

where ZSðd1; d2Þ is defined in Model (9) with parameters d1
and d2. It is clear that the membership function l ~ZS

defined in

(15) is parameterized by a. According to (14), the a-cut of ~ZS
can be expressed as an interval indicating where the values for

the supplier’s maximum profit lie for a given possibility level

a. Thus, we can use the a-cuts of ~ZS to construct its

membership function. In (19), l ~ZS
is the minimum of two

other membership functions l ~D1
ðd1Þ and l ~D2

ðd2Þ, which

complicates the situation. To satisfy l ~ZS
ðzÞ ¼ a requires

l ~D1
ðd1Þ ¼ a and l ~D2

ðd2Þ� a, or l ~D1
ðd1Þ� a and

l ~D2
ðd2Þ ¼ a, such that z ¼ ZSðd1; d2Þ. The basic idea of this

paper is that the membership function l ~ZS
can be defined by

determining the left-shape function and the right-shape

function of l ~ZS
, which is equivalent to finding the lower

bound ðZSÞLa and the upper bound ðZSÞUa of the a-cut of ~ZS:

ðZSÞLa ¼minfZðd1;d2ÞjðD1ÞLa�d1�ðD1ÞUa ;ðD2ÞLa�d2�ðD2ÞUa g;
ð16aÞ

ðZSÞUa ¼maxfZðd1;d2ÞjðD1ÞLa�d1�ðD1ÞUa ;ðD2ÞLa�d2�ðD2ÞUa g;
ð16bÞ

which can be, respectively, reformulated as this pair of two-

level quadratic programs following (12):

ðZSÞLa ¼ min

ðD1ÞLa � d1 �ðD1ÞUa
ðD2ÞLa � d2 �ðD2ÞUa

max ðw� cÞðQ�
1 þ Q�

2Þ
s:t: w� cþ e;

Q�
1;Q

�
2 � 0;

8
<

:
ð17aÞ

ðZSÞUa ¼ max

ðD1ÞLa � d1 �ðD1ÞUa
ðD2ÞLa � d2 �ðD2ÞUa

max ðw� cÞðQ�
1 þ Q�

2Þ
s:t: w� cþ e;

Q�
1;Q

�
2 � 0;

8
<

:
ð17bÞ

where Q�
1 and Q

�
2 are given by Eqs. (8a) and (8b), respectively.

The operation of this pair of two two-level quadratic

programs is as follows. The second-level (inner) program

calculates the supplier’s maximum profit for each d1 or d2
specified by the first-level (outer) program, whereas the first-

level program determines the value of d1 or d2 that generates

the smallest or largest values for this profit.

Solving Model (17a) is less straightforward because its first-

and second-level programs have different directions for

optimization. A transformation is required to make an optimal

solution obtainable. Consider the second-level problem in

which d1 and d2 could be treated as constants such that it is a

convex program with a concave objective and a bounded

variable. Based on classical optimization theory (Bazaraa et al,

2006), the necessary and sufficient conditions for a given w� to

be a maximum to the second-level problem of Model (17a) are

that there exists ki � 0; i ¼ 1; 2; 3; such that the Karush–

Kuhn–Tucker (KKT) conditions are satisfied.

Let X be the set of stationary points for the second-level

problem of Model (17a). Consequently, Model (17a) can be

reformulated as the following traditional one-level quadratic

program:

ðZSÞLa
¼ min

w2X
ðw� cÞðQ�

1 þ Q�
2Þ

s:t: ðD1ÞLa � d1 �ðD1ÞUa ;
ðD2ÞLa � d2 �ðD2ÞUa ;
Q�

1;Q
�
2 � 0:

ð18Þ
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Note that according to Zadeh’s extension principle listed in

Eq. (15), at least one of d1 or d2 must contact the boundary of

their a-cuts to satisfy l ~ZS
ðzÞ ¼ a. Consider the following two

cases:

Case 1 d1 contacts the boundary of its a-cuts. In this case, a

binary variable y1 is employed to form the constraint

d1 ¼ y1ðD1ÞLa þ ð1� y1ÞðD1ÞUa . Thus, Model (18) can be

reformulated as

ðZSÞL1

a ¼ min
w2X

ðw� cÞðQ�
1 þ Q�

2Þ

s:t: d1 ¼ y1ðD1ÞLa þ ð1� y1ÞðD1ÞUa ;
ðD2ÞLa � d2 �ðD2ÞUa ;
Q�

1;Q
�
2 � 0;

y1 ¼ 0 or 1:

ð19aÞ

Case 2 d2 contacts the boundary of its a-cuts. Similarly, in

this case, Model (18) can be reformulated by employing

another binary variable y2 as follows:

ðZSÞL2

a ¼ min
w2X

ðw� cÞðQ�
1 þ Q�

2Þ

s:t: d2 ¼ y2ðD2ÞLa þ ð1� y2ÞðD2ÞUa ;
ðD1ÞLa � d1 �ðD1ÞUa ;
Q�

1;Q
�
2 � 0;

y2 ¼ 0 or 1:

ð19bÞ

Each of these two models is a conventional linearly

constrained quadratic program with a bounded variable and

one binary variable, which can be easily solved effectively and

efficiently using quadratic programming methods (Bazaraa

et al, 2006) and most commercial software. Consequently, the

lower bound of the fuzzy maximum profit of the supplier can

be set as ðZSÞLa ¼ minfðZSÞL1

a ; ðZSÞL2

a g.
To derive the upper bound of the objective value in Model

(17b), because both the first and second levels perform the

same maximization operation, Model (17b) can be rewritten as

a conventional one-level quadratic program:

ðZSÞUa ¼ max
w

ðw� cÞðQ�
1 þ Q�

2Þ
s:t: d1 ¼ ðD1ÞUa ;

ðD2ÞLa � d2 �ðD2ÞUa ;
w� cþ e3;
Q�

1;Q
�
2 � 0:

ð20Þ

Similar to the discussion in solving Model (17b), the following

two auxiliary quadratic programs are formulated as follows:

ðZSÞU1

a ¼ max
w

ðw� cÞðQ�
1 þ Q�

2Þ
s:t: d1 ¼ y3ðD1ÞLa þ ð1� y3ÞðD1ÞUa ;

ðD2ÞLa � d2 �ðD2ÞUa ;
w� cþ e3;
Q�

1;Q
�
2 � 0;

y3 ¼ 0 or 1:

ð21aÞ

and

ðZSÞU2

a ¼ max
w

ðw� cÞðQ�
1 þ Q�

2Þ
s:t: d2 ¼ y4ðD2ÞLa þ ð1� y4ÞðD2ÞUa ;

ðD1ÞLa � d1 �ðD1ÞUa ;
w� cþ e3;
Q�

1;Q
�
2 � 0;

y4 ¼ 0 or 1:

ð21bÞ

Models (21a) and (21b) are linearly constrained quadratic

programs with 0–1 variables, and therefore, they can be solved

by any quadratic programming solver. The upper bound of the

fuzzy maximum profit of the supplier is derived as

ðZSÞUa ¼ maxfðZSÞU1

a ; ðZSÞU2

a g.
For each possibility level a, the a-cut of ~ZS is constructed as

the crisp interval ½ðZSÞLa ; ðZSÞ
U
a �, and the membership function

of ~ZS can be constructed by enumerating different a values. An
attractive feature of the a-cut approach is that all a-cuts form a

nested structure with respect to a (Zimmermann, 2001). That

is, for two possibility levels a1 and a2, 0 B a2\ a1 B 1, we

have ½ðd1ÞLa1 ; ðd1Þ
U
a1
� � ½ðd1ÞLa2 ; ðd1Þ

U
a2
� and ½ðd2ÞLa1 ; ðd2Þ

U
a1
� �

½ðd2ÞLa2 ; ðd2Þ
U
a2
�. The feasible regions defined by a1 in Models

(18) and (20) are smaller than those defined by a2. Thus,

ðZSÞLa1 �ðZSÞLa2 and ðZSÞUa1 �ðZSÞUa2 ; that is, ðZSÞLa is non-

decreasing with respect to a, and ðZSÞUa is non-increasing with

respect to a. Consequently, the membership function of ~ZS can

be approximately constructed from the solutions of Models

(19a), (19b), (21a) and (21b) by enumerating several different

values of a. Furthermore, after deriving the lower and upper

bounds of the fuzzy objective value, based on Eqs. (2) and (4),

we can use this information to construct the membership

functions of the fuzzy maximum profit of these two retailers in

the SC by deriving the lower and upper bounds of ~Zr1 and ~Zr2 ,

denoted as ½ðZr1Þ
L
a ; ðZr1Þ

U
a � and ½ðZr2Þ

L
a ; ðZr2Þ

U
a �, at different a

values.

Note that the supplier’s maximum profit in the SC derived

through the proposed approach is expressed by using a

membership function rather than a crisp value; that is, it is a

fuzzy performance measure. The benefit of such a fuzzy

performance measure is that it maintains the fuzziness of the

market data; thus, it is able to more accurately represent a

vague SC.

The value of a also can be explained as the degree of

uncertainty of the obtained information. A larger a value

indicates the higher level of possibility and the lower the

degree of uncertainty. Because ðZSÞLa (or ðZr1Þ
L
a and ðZr2Þ

L
a ) is

non-decreasing and ðZSÞUa (or ðZr1Þ
U
a and ðZr2Þ

U
a ) is non-

increasing with respect to a, the higher the degree of

uncertainty of the obtained information, the smaller (larger)

the lower (upper) bound of the maximum profit of each SC

member.
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3.1. Extension

The proposed analysis method is also applicable to the case

with more fuzzy parameters. For example, without a loss of

generality, assume that parameter h is also a fuzzy number

with membership function l ~HðhÞ. Then, Model (18) becomes

ðZSÞLa ¼ min
w2X
s:t:

ðw� cÞðQ�
1 þ Q�

2Þ
ðD1ÞLa � d1 �ðD1ÞUa ;
ðD2ÞLa � d2 �ðD2ÞUa ;
hLa � h� hUa ;

Q�
1;Q

�
2 � 0;

where hLa and hUa are the lower and upper bounds of the a-cut
of l ~HðhÞ. According to Zadeh’s extension principle listed in

Eq. (15), at least one of d1, d2, or h must contact the boundary

of their a-cuts to satisfy l ~HðhÞ ¼ a. The following three cases

are discussed:

Case 1 l ~D1
ðd1Þ ¼ a, l ~D2

ðd2Þ� a, and l ~HðhÞ� a. Similar to

Model (19a) except that adding a new constraint

hLa � h� hUa , an auxiliary model can be constructed and

solved to find ðZSÞL1

a .

Case 2 l ~D2
ðd2Þ ¼ a, l ~D1

ðd1Þ� a, and l ~HðhÞ� a. Similar to

Model (19b) except that adding the constraint

hLa � h� hUa , an auxiliary model can be constructed and

solved to find ðZSÞL2

a .

Case 3 l ~HðhÞ ¼ a, l ~D1
ðd1Þ� a, and l ~D2

ðd2Þ� a. In this case,

a binary integer is employed to construct the following

auxiliary model:

ðZSÞL3

a ¼ min
w2X

ðw� cÞðQ�
1 þ Q�

2Þ
s:t: h ¼ thLa þ ð1� tÞhUa ;

ðD1ÞLa � d1 �ðD1ÞUa ;
ðD2ÞLa � d2 �ðD2ÞUa ;
Q�

1;Q
�
2 � 0;

t ¼ 0 or 1:

Consequently, the lower bound of the fuzzymaximumprofit of

the supplier can be set as ðZSÞLa ¼ minfðZSÞL1

a ; ðZSÞL2

a ; ðZSÞL3

a g.
The cases for finding the upper bound ðZSÞUa can be discussed in

the similar manner [as shown in Models (21a) and (21b)].

4. Analysis

To illustrate the validity of the modeling and solution

approach, the general case with several scenarios is investi-

gated. In a crisp environment, several studies have investigated

a two-echelon SC with one supplier and two retailers based on

the assumption that market demands are deterministic (e.g.,

Yang and Zhou, 2006). Here, we analyze the SC with

competition in a fuzzy environment that is more suitable for

practical situations.

4.1. Parameter Setting

The settings for the manufacturing cost c = 2 and a moderate

degree of competition between two retailers h ¼ 0:5 are

adopted for the eight scenarios considered. The parameter

settings are summarized in the third to sixth columns of

Table 1. Several studies noted that it is rather complicated to

show analytical results of this type of SC. Moreover, because

the analysis in a fuzzy environment is much more complicated

than that in a crisp environment, the results are shown

numerically in this paper.

Eight scenarios are investigated and their parameter settings

are listed in Table 1. Scenarios 1 and 2 are two special cases with

~D1 ¼ ~D2 ¼ ~D and a1 = a2, which can be intuitively explained

as the market being constrained by the government. Because the

market is constrained by government regulations, the retailers

confront the same market demand even if they have different

levels of sensitivity of sales to price changes (Brabant, 1991).

This situation can often be observed in industries that produce

goods using resources constrained by planned economy

governments. Here, we set ~D1 ¼ ~D2 ¼ ~D and a1 = a2, where

~D ¼ ½15; 18; 22; 25�, a1 = 2 and a2 = 1 in Scenario 1, and

a1 = 1 and a2 = 2 in Scenario 2. In Scenarios 3–7, we

investigate the general duopolistic market case with ~D1 6¼ ~D2

and a1 = a2, which can be explained as the two retailers

confronting various primarymarket demand and different levels

of sensitivity of sales to price changes observed in industries in a

market economy (Cowen and Tabarrok, 2015). The total market

demand, ~T ¼ ½30; 36; 44; 50�, is fixed to the double of ~D: In

Scenarios 3 and 4, let ~D1 ¼ 0:75 ~T ¼ ½22:5; 27; 33; 37:5� and
~D2 ¼ 0:25 ~T ¼ ½7:5; 9; 11; 12:5�; that is, the leader has three

times as many primary demands as the follower. An opposite

setting is adopted in Scenarios 5 and 6. The difference among

Scenarios 3 and 4 is the level of sensitivity of sales to price

changes between these two retailers. Scenarios 3 and 4

correspond to cases in which the leader faces moderately larger

(a1/a2 = 2.3) and slightly smaller (a1/a2 = 1/1.2 % 0.83)

sensitivity of sales to price changes with respect to those faced

by the follower, respectively. Scenarios 7 and 8, which are

extended from Scenarios 1 and 2, are special cases with high-

diversity market demands confronted by these two retailers.

Scenarios 7 and 8, respectively, correspond to cases in which the

leader faces a significantly smaller (a1/a2 = 1/3 % 0.3333) or

larger (a1/a2 = 3) sensitivity of sales to price changes.

4.2. Results and Findings

Based on the solution procedure presented in Section 3, the

lower bound ðZSÞLa and the upper bound ðZSÞUa of the a-cut of
~ZS at the possibility level a can be obtained by solving a pair of
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quadratic programs according to Models (19a) and (19b). The

mathematical programming software package Lingo (LINDO

Systems Inc., 1999) is used to solve these problems. The lower

and upper bounds for the a-cuts of these two retailers’ fuzzy

maximum profits, ~Z�
r1

and ~Z�
r2
, can be solved similarly.

Tables 2 through 9 list the lower and upper bounds of the

optimal solutions to these eight scenarios at six values for a, 0,
0.2, 0.4, 0.6, 0.8, and 1.0, including the supplier’s and the two

retailers’ maximum profits (~Z�
S ,

~Z�
r1
, and ~Z�

r2
), as well as the

optimal pricing decisions of these SC members ( ~w�, ~P�
1, and

~P�
2). Note that even if both of the fuzzy input parameters (the

retailers’ market bases) are trapezoidal fuzzy numbers, the

membership functions of the objective values (the maximum

profits) are nonlinear, although they appear to be trapezoidal.

This can be evidenced by observing the figures listed in

Tables 2 through 9. The values of the lower (or upper) bound

of these fuzzy maximum profits and optimal pricing decisions

do not lie on a straight linear line. For example, consider the

Table 1 Data for eight scenarios of the two-stage SC playing a Stackelberg game

Scenarios Retailers’
market
description

~D1 (Stackelberg
leader)

~D2 (Stackelberg
follower)

a1 a2 ~D1/a1 ~D2/a2

1 Constrained by
government

½15; 18; 22; 25� ½15; 18; 22; 25� 2 1 ½7:5; 9; 11; 12:5� ½15; 18; 22; 25�
2 ½15; 18; 22; 25� ½15; 18; 22; 25� 1 2 ½15; 18; 22; 25� ½7:5; 9; 11; 12:5�
3 General

duopolistic
½22:5; 27; 33; 37:5� ½7:5; 9; 11; 12:5� 2.3 1 ½9:78; 11:74; 14:35; 16:30� ½7:5; 9; 11; 12:5�

4 ½22:5; 27; 33; 37:5� ½7:5; 9; 11; 12:5� 1 1.2 ½22:5; 27; 33; 37:5� ½6:25; 7:5; 9:17; 10:42�
5 ½7:5; 9; 11; 12:5� ½22:5; 27; 33; 37:5� 1.2 1 ½6:25; 7:5; 9:17; 10:42� ½22:5; 27; 33; 37:5�
6 ½7:5; 9; 11; 12:5� ½22:5; 27; 33; 37:5� 1 2.3 ½7:5; 9; 11; 12:5� ½9:78; 11:74; 14:35; 16:30�
7 Special case:

high-diversity
demands

½15; 18; 22; 25� ½15; 18; 22; 25� 1 3 ½15; 18; 22; 25� ½5; 6; 7:33; 8:33�
8 ½15; 18; 22; 25� ½15; 18; 22; 25� 3 1 ½5; 6; 7:33; 8:33� ½15; 18; 22; 25�

Table 2 Lower and upper bounds of the fuzzy maximum profits and optimal pricing decisions of Scenario 1 at six possibility levels a

~Z�
S

~Z�
r1

~Z�
r2

~Z�
r1
? ~Z�

r2
~w� ~P�

1
~P�
2

a ¼ 0 L 53.1915 2.7569 31.5629 34.3198 8.7402 9.9528 14.3583
U 165.8116 10.0039 92.2056 102.2094 13.9004 16.2102 23.5027

a ¼ 0:2 L 58.1904 3.0644 34.3062 37.3706 9.0498 10.3282 14.9070
U 157.2961 9.4417 87.6717 97.1134 13.5908 15.8348 22.9541

a ¼ 0:4 L 63.4138 3.3881 37.1637 40.5518 9.3594 10.7037 15.4556
U 149.0050 8.8958 83.2521 92.1479 13.2811 15.4593 22.4054

a ¼ 0:6 L 68.8616 3.7281 40.1355 43.8637 9.6690 11.0791 16.0043
U 140.9384 8.3662 78.9468 87.3130 12.9715 15.0839 21.8567

a ¼ 0:8 L 74.5339 4.0844 43.2217 47.3060 9.9786 11.4546 16.5530
U 133.0963 7.8528 74.7558 82.6086 12.6619 14.7084 21.3081

a ¼ 1:0 L 80.4306 4.4569 46.4221 50.8790 10.2883 11.8300 17.1016
U 125.4787 7.3557 70.6791 78.0348 12.3523 14.3330 20.7594

Table 3 Lower and upper bounds of the fuzzy maximum profits and optimal pricing decisions of Scenario 2 at six possibility levels a

~Z�
S

~Z�
r1

~Z�
r2

~Z�
r1
? ~Z�

r2
~w� ~P�

1
~P�
2

a ¼ 0 L 52.7593 31.7609 3.0052 34.7661 8.6714 14.4919 9.8972
U 164.6545 92.7269 10.7979 103.5248 13.7856 23.7309 16.1092

a ¼ 0:2 L 57.7243 34.5192 3.3368 37.8561 8.9782 15.0462 10.2699
U 156.1921 88.1693 10.1944 98.3637 13.4787 23.1765 15.7364

a ¼ 0:4 L 62.9126 37.3924 3.6858 41.0782 9.2851 15.6005 10.6426
U 147.9529 83.7266 9.6083 93.3349 13.1719 22.6222 15.3637

a ¼ 0:6 L 68.3241 40.3805 4.0521 44.4326 9.5919 16.1549 11.0153
U 139.9370 79.3987 9.0395 88.4382 12.8650 22.0679 14.9910

a ¼ 0:8 L 73.9588 43.4834 4.4358 47.9192 9.8988 16.7092 11.3880
U 132.1443 75.1857 8.4880 83.6737 12.5582 21.5135 14.6183

a ¼ 1:0 L 79.8168 46.7011 4.8369 51.5380 10.2056 17.2636 11.7608
U 124.5749 71.0875 7.9540 79.0415 12.2513 20.9592 14.2456
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lower bounds of ~Z�
S listed in Table 2. The lower bounds of ~Z�

S

are 53.1915, 58.1904, and 63.4138 at a ¼ 0; 0:2; and 0.4,

respectively, which do not exactly lie on a straight linear line.

The a-cut of ~Z�
S (or

~Z�
r1
and ~Z�

r2
) represents the possibility that

the maximum profit of the supplier (or retailers 1 and 2) will

reside within the associated range. Because the fuzzy maxi-

mum profit ~Z�
S (or ~Z�

r1
and ~Z�

r2
) lies in a range, different

a-cuts show different intervals and different uncertainty levels

of maximum profit. That is, with an increase in a, Tables 2
through 9 provide the least-to-most likely (or most-to-least

uncertain) intervals of maximum profits for each scenario.

Specifically, the a = 1 cut has the narrowest interval, indicat-

ing the range in which the maximum profit is most likely to

occur. At the other extreme, the a = 0 cut has the widest

interval showing the entire possible range of values; however,

this widest interval contains the most uncertain information.

Table 4 Lower and upper bounds of the fuzzy maximum profits and optimal pricing decisions of Scenario 3 at six possibility levels a

~Z�
S

~Z�
r1

~Z�
r2

~Z�
r1
? ~Z�

r2
~w� ~P�

1
~P�
2

a ¼ 0 L 40.7854 11.1234 5.8921 17.0155 7.5520 9.8135 9.9794
U 130.2053 35.9248 18.3700 54.2948 11.9200 15.9842 16.2061

a ¼ 0:2 L 44.7268 12.2129 6.4459 18.6588 7.8141 10.1837 10.3530
U 123.4163 34.0381 17.4265 51.4646 11.6579 15.6139 15.8325

a ¼ 0:4 L 48.8499 13.3532 7.0246 20.3779 8.0762 10.5540 10.7266
U 116.8091 32.2022 16.5079 48.7101 11.3959 15.2437 15.4589

a ¼ 0:6 L 53.1548 14.5445 7.6282 22.1727 8.3383 10.9242 11.1002
U 110.3836 30.4173 15.6141 46.0314 11.1338 14.8734 15.0853

a ¼ 0:8 L 57.6415 15.7866 8.2567 24.0433 8.6003 11.2944 11.4738
U 104.1399 28.6833 14.7452 43.4285 10.8717 14.5032 14.7117

a ¼ 1:0 L 62.3100 17.0796 8.9100 25.9896 8.8624 11.6647 11.8474
U 98.0779 27.0001 13.9012 40.9013 10.6096 14.1330 14.3381

Table 5 Lower and upper bounds of the fuzzy maximum profits and optimal pricing decisions of Scenario 4 at six possibility levels a

~Z�
S

~Z�
r1

~Z�
r2

~Z�
r1
? ~Z�

r2
~w� ~P�

1
~P�
2

a ¼ 0 L 101.6367 65.4735 1.0979 66.5714 13.5413 22.0904 14.4978
U 302.2331 188.0573 4.0570 192.1143 21.9021 36.3909 23.7408

a ¼ 0:2 L 110.6642 71.0460 1.2228 72.2688 14.0429 22.9484 15.0524
U 287.1890 178.9198 3.8268 182.7466 21.4005 35.5329 23.1863

a ¼ 0:4 L 120.0758 76.8461 1.3544 78.2005 14.5446 23.8064 15.6070
U 272.5289 170.0098 3.6033 173.6131 20.8988 34.6748 22.6317

a ¼ 0:6 L 129.8714 82.8737 1.4927 84.3664 15.0462 24.6645 16.1615
U 258.2529 161.3274 3.3865 164.7139 20.3972 33.8168 22.0771

a ¼ 0:8 L 140.0508 89.1289 1.6378 90.7666 15.5479 25.5225 16.7161
U 244.3609 152.8725 3.1765 156.0490 19.8955 32.9588 21.5225

a ¼ 1:0 L 150.6145 95.6116 1.7895 97.4011 16.0495 26.3805 17.2707
U 230.8530 144.6451 2.9732 147.6183 19.3939 32.1007 20.9679

Table 6 Lower and upper bounds of the fuzzy maximum profits and optimal pricing decisions of Scenario 5 at six possibility levels a

~Z�
S

~Z�
r1

~Z�
r2

~Z�
r1
? ~Z�

r2
~w� ~P�

1
~P�
2

a ¼ 0 L 104.6954 0.7385 64.3191 65.0576 13.7491 14.5780 21.7691
U 310.9596 2.8814 184.8826 187.7640 22.2486 23.8857 35.8457

a ¼ 0:2 L 113.9811 0.8274 69.7986 70.6260 14.2591 15.1364 22.6137
U 295.4937 2.7132 175.8944 178.6076 21.7386 23.3273 35.0011

a ¼ 0:4 L 123.6614 0.9214 75.5020 76.4234 14.7691 15.6949 23.4583
U 280.4222 2.5501 167.1302 169.6803 21.2286 22.7688 34.1565

a ¼ 0:6 L 133.7361 1.0205 81.4294 82.4499 15.2790 16.2534 24.3029
U 265.7452 2.3920 158.5900 160.9820 20.7187 22.2103 33.3119

a ¼ 0:8 L 144.2053 1.1246 87.5807 88.7054 15.7890 16.8118 25.1475
U 251.4627 2.2390 150.2737 152.5127 20.2087 21.6519 32.4673

a ¼ 1:0 L 155.0690 1.2338 93.9560 95.1898 16.2990 17.3703 25.9921
U 237.5746 2.0910 142.1814 144.2724 19.6987 21.0934 31.6227
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For example, in Scenario 1, although the supplier’s maximum

profit ~Z�
S is imprecise, its most likely value is within the interval

of [80.43062, 125.4787] with the lowest degree of uncertainty,

and its value cannot fall outside the interval of [53.1915,

165.8116] with the highest degree of uncertainty.

In observing the results presented in Tables 2 through 9, this

paper finds that in the downstream market under fuzzy

environments, the Stackelberg leader’s maximum profit is not

necessarily higher than its follower’s. This result may be

contrary to intuition. In fact, regardless of whether the retailer

is the Stackelberg leader, a retailer with a larger reservation (or

choke) price obtains absolutely more profit, where the ith

retailer’s reservation price is defined as RPi ¼ ðdi þ
hp3�iÞ=ai; i ¼ 1; 2: In Scenarios 1 and 5, the second retailer’s

reservation price is larger than that of the first retailer; thus,

~Z�
r1
\ ~Z�

r2
absolutely for each a, although the first retailer is the

Table 7 Lower and upper bounds of the fuzzy maximum profits and optimal pricing decisions of Scenario 6 at six possibility levels a

~Z�
S

~Z�
r1

~Z�
r2

~Z�
r1
? ~Z�

r2
~w� ~P�

1
~P�
2

a ¼ 0 L 41.1929 5.8325 11.2222 17.0547 7.5449 10.0284 9.7538
U 131.5290 18.1778 36.2320 54.4098 11.9082 16.2925 15.8772

a ¼ 0:2 L 45.1745 6.3805 12.3209 18.7014 7.8067 10.4042 10.1212
U 124.6703 17.2444 34.3295 51.5739 11.6464 15.9167 15.5098

a ¼ 0:4 L 49.3397 6.9531 13.4709 20.4240 8.0685 10.7801 10.4886
U 117.9952 16.3355 32.4784 48.8139 11.3846 15.5408 15.1424

a ¼ 0:6 L 53.6886 7.5503 14.6722 22.2225 8.3303 11.1559 10.8560
U 111.5037 15.4513 30.6785 46.1298 11.1228 15.1650 14.7750

a ¼ 0:8 L 58.2211 8.1721 15.9248 24.0970 8.5921 11.5318 11.2234
U 105.1959 14.5917 28.9299 43.5216 10.8610 14.7891 14.4076

a ¼ 1:0 L 62.9373 8.8185 17.2288 26.0473 8.8539 11.9076 11.5908
U 99.0717 13.7567 27.2327 40.9893 10.5992 14.4133 14.0402

Table 8 Lower and upper bounds of the fuzzy maximum profits and optimal pricing decisions of Scenario 7 at six possibility levels a

~Z�
S

~Z�
r1

~Z�
r2

~Z�
r1
? ~Z�

r2
~w� ~P�

1
~P�
2

a ¼ 0 L 30.3503 36.5540 0.5267 37.0807 6.2296 12.4056 6.6486
U 101.0064 106.4578 2.9900 109.4478 9.7160 20.2557 10.7126

a ¼ 0:2 L 33.4266 39.7190 0.6174 40.3364 6.4388 12.8766 6.8924
U 95.6040 101.2343 2.7763 104.0106 9.5068 19.7847 10.4688

a ¼ 0:4 L 36.6514 43.0154 0.7154 43.7308 6.6479 13.3476 7.1363
U 90.3501 96.1423 2.5799 98.7222 9.2976 19.3137 10.2249

a ¼ 0:6 L 40.0247 46.4432 0.8205 47.2637 6.8571 13.8186 7.3801
U 85.2446 91.1816 2.3907 93.5723 9.0884 18.8427 9.9811

a ¼ 0:8 L 43.5464 50.0023 0.9329 50.9352 7.0663 14.2896 7.6240
U 80.2876 86.3523 2.2086 88.5609 8.8792 18.3717 9.7373

a ¼ 1:0 L 47.2166 53.6929 1.0525 54.7454 7.2755 14.7606 7.8678
U 75.4791 81.6544 2.0338 83.6882 8.6700 17.9007 9.4934

Table 9 Lower and upper bounds of the fuzzy maximum profits and optimal pricing decisions of Scenario 8 at six possibility levels a

~Z�
S

~Z�
r1

~Z�
r2

~Z�
r1
? ~Z�

r2
~w� ~P�

1
~P�
2

a ¼ 0 L 30.6490 0.4507 36.3622 36.8129 6.2755 6.6715 12.3056
U 101.8113 2.6732 105.9445 108.6177 9.7925 10.7568 20.0855

a ¼ 0:2 L 33.7491 0.5317 39.5122 40.0439 6.4865 6.9166 12.7724
U 96.3719 2.4875 100.7446 103.2321 9.5815 10.5117 19.6187

a ¼ 0:4 L 36.9984 0.6194 42.7931 43.4125 6.6976 7.1617 13.2392
U 91.0818 2.3085 95.6757 97.9842 9.3705 10.2666 19.1519

a ¼ 0:6 L 40.3971 0.7137 46.2049 46.9186 6.9086 7.4068 13.7060
U 85.9410 2.1361 90.7375 92.8736 9.1595 10.0215 18.6851

a ¼ 0:8 L 43.9452 0.8148 49.7474 50.5622 7.1196 7.6520 14.1728
U 80.9496 1.9705 85.9302 87.9007 8.9485 9.7763 18.2183

a ¼ 1:0 L 47.6425 0.9225 53.4208 54.3433 7.3306 7.8971 14.6396
U 76.1074 1.8115 81.2537 83.0652 8.7374 9.5312 17.7515
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Stackelberg leader. For example, consider the case of a ¼ 0 in

Scenario 1 (as shown in the second row of Table 2). The

optimal pricing decisions p�1 ¼ 9:9528 and p�2 ¼ 14:3583 occur

at d�1 ¼ d�2 ¼ 15: Therefore, we have RP2 ffi 19:9764ð¼ ð15þ
0:5	 9:9528ÞÞ[RP1 ffi 11:0896ð¼ ð15þ 0:5	 14:3583Þ=2Þ;
which results in ~Z�

r1
\ ~Z�

r2
. In contrast, in Scenarios 2 and 4, the

first retailer has a larger reservation price; thus, ~Z�
r1
[ ~Z�

r2

absolutely for each a. In particular, the results obtained from

Scenarios 7 and 8 confirm this finding. In Scenario 8, as shown

in the fourth and fifth columns of Table 9, although the

retailers confront the same market demand, for all possibility

levels a, the follower’s maximum profits are much larger than

the corresponding leader’s maximum profits because the

sensitivity of the leader’s sales to price changes is triple that

of the follower; that is, a1 ¼ 3 and a2 ¼ 1. As shown in the

fourth and fifth columns of Table 8, the opposite results are

obtained in Scenario 7, with a1 ¼ 1 and a2 ¼ 3.

Notably, the maximum profit of the more powerful supplier

is not always higher than the total maximum fuzzy profit of the

duopolistic retailers and is even smaller than that of the more

profitable retailer with a larger reservation price. For example,

consider the results for a ¼ 1 in Scenario 7 (as shown in the

third to sixth columns of Table 8). The lower bound of the

fuzzy maximum profit of the supplier is derived as

ð~Z�
S Þ

L
a¼1 ¼ 47:2166, which occurs at w� ¼ 7:2755. However,

the corresponding lower bounds of the two retailers are

ð~Z�
r1
ÞLa¼1 ¼ 53:6929 and ð~Z�

r2
ÞLa¼1 ¼ 1:0525, respectively.

Clearly, both the first retailer’s maximum profit ð~Z�
r1
ÞLa¼1 and

the total maximum fuzzy profit of the duopolistic retailers

(ð~Z�
r1
ÞLa¼1 þ ð~Z�

r2
ÞLa¼1 = 54.7454) are higher than the maximum

profit of the more powerful supplier. The reason for this is that

a2 (the sensitivity of the first retailer’s sales to changes in its

price) is as large as 3 (compared to a1 ¼ 1 and h ¼ 0:5) and
~D1 ¼ ~D2 such that the degree of demand diversity of these two

retailers is sufficiently large. Here, the degree of demand

diversity is defined as the absolute value of the difference

between two reservation prices of two retailers: DD ¼
RP1 � RP2j j. In this situation, the degree of demand diversity

calculated as DD ¼ RP1 � RP2j j ffi 21:9339� 8:4601j j ¼
13:4738 is sufficiently large such that the first retailer is

mainly responsible for the market demand ðQ�
1 ¼ 7:1733[

Q�
2 ¼ 1:7769Þ, even if his pricing is higher than his rival’s

(p�1 ¼ 14:7606[ p�2 ¼ 7:8678). Consequently, the maximum

profit of the first retailer, who has a much larger reservation

price, is higher than that of his rival and even the more

powerful supplier. Another worthwhile aspect is that the fuzzy

retailer’s profit associated with the smallest market base does

not need to be the lowest. The lower bound of ð~Z�
r1
ÞLa¼1 ¼

0:005780 occurs at d�1 ¼ 10:82 and d�2 ¼ 27; where d�1 ¼
10:82 2 ½9; 11� is not an extreme.

Tables 2 through 9 also show the impact of fuzzy

market demand on the pricing decisions ~w�, ~p�1 and ~p�2. For

example, the values listed in the last three columns of Table 6

(a) *w% (b) *
1P%

(c) *
2P%

14 16 18 20 22

0.2

0.4

0.6

0.8

1
possibility

16 18 20 22 24

0.2

0.4

0.6

0.8

1
possibility

22 24 26 28 30 32 34 36

0.2

0.4

0.6

0.8

1
possibility

Figure 1 Membership functions of the pricing decisions of SC members for Scenario 6.
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clearly show that the lower (or upper) bound of these three

pricing decisions is a linear function with respect to a, as
shown in Figure 1. This result can also be verified by

observing Eqs. (5), (7), and (10), which are linear functions

with respect to d1 and d2. Furthermore, the higher the degree

of uncertainty of the obtained information, the smaller (larger)

the lower (upper) bound of each of the SC member’s pricing

decision ( ~w�, ~P�
1, or

~P�
2).

5. Discussion

In practical SC operations, if the market bases are fuzzy

numbers, then the maximum profit of each member is also a

fuzzy number (i.e., it is a fuzzy performance measure). Note

that the maximum profit derived through the proposed

approach is expressed by using a membership function rather

than a crisp value. The benefit of this fuzzy performance

measure is that it completely maintains the fuzziness of the

parameters and is thus able to more accurately represent the

behavior of a vague SC than a crisp performance measure.

This result indicates that the proposed approach can provide

more realistic performance measures for the decision makers

in a SC when particular SC data are imprecise.

5.1. Effects of Variations in the Fuzzy Market Base

To examine the effect of variations in the fuzzy downstream

market bases, ~D1 and ~D2, on the maximum profits of chain

members of the SC system presented in the previous section

for each scenario, Table 10 lists the downstream market

variations and the corresponding variations in these three

members’ maximum profits at the possibility levels a ¼ 0 and

a ¼ 1. The downstream market variations are measured by the

ratio of the interval length over the sensitivity of the retailer’s

sales to price changes; that is, ½ð ~DU
i Þa � ð ~DL

i Þa�=ai; i ¼ 1; 2;

where the values of a1 and a2 in each scenario are the same as

those presented in Table 1. The variations of these three

members’ maximum profits are measured by ðZU
S Þa � ðZL

S Þa,
ðZU

r1
Þa � ðZL

r1
Þa, and ðZU

r2
Þa � ðZL

r2
Þa, respectively.

From Table 10, the fuzziness of the downstream market

base does indeed have an effect on the maximal profit of each

SC member for all scenarios; thus, it also has an effect on the

downstream echelon profit and the entire SC profit. As

expected, the variation of each SC member’s fuzzy maximal

profit increases as those of the downstream market bases

increase. Moreover, the majority of the variation in the

retailer’s maximal profit derives from the variation of his

market base rather than that of his rival. The most significant

examples include Scenarios 7 and 8. Considering the a ¼ 0 cut

of Scenario 7, the variations for the maximal profit of the

Stackelberg leader is 69.9038, which is much larger than that

of his rival (2.4633), as the variation in the follower’s market

base is triple that of the leader’s market base. However, as

shown in the a ¼ 0 cut of Scenario 8, the variation in the

maximal profit of the Stackelberg leader is 2.2225, which is

much smaller than that of his rival (69.5823). This circum-

stance also occurs for the pair of Scenarios 4 and 5. For the

a ¼ 1 cut of Scenario 4, the variation in the leader’s market

base is 3.6 times (ffi6/1.6667) that of the follower’s market

base, and the variation for the maximal profit of the leader is

41.4 times (ffi49.0335/1.1836) that of the follower. The results

of Scenarios 7 and 8 listed in Table 10 also show that the

variation of the total profit of the duopolistic retailers who act

Table 10 Effects of downstream market variations on the maximum profits of SC members

Scenarios Variation of the primary demand Variation of the SC member’s profit

Stackelberg
leader

[ð ~DU
1 Þa � ð ~DL

1 Þa]/
a1

Stackelberg
follower

[ð ~DU
2 Þa � ð ~DL

2 Þa]/
a2

Upstream

ðZU
S Þa � ðZL

S Þa
Downstream

ðZU
r1
Þa � ðZL

r1
Þa þ ðZU

r2
Þa � ðZL

r2
Þa

Stackelberg
leader

ðZU
r1
Þa � ðZL

r1
Þa

Stackelberg
follower

ðZU
r2
Þa � ðZL

r2
Þa

1 a ¼ 0 5 10 112.6201 67.8896 7.2470 60.6426
a ¼ 1 2 4 45.0481 27.1558 2.8988 24.2570

2 a ¼ 0 10 5 111.8952 68.7587 60.9660 7.7927
a ¼ 1 4 2 44.7581 27.5035 24.3864 3.1171

3 a ¼ 0 6.5217 5 89.4199 37.2793 24.8013 12.4779
a ¼ 1 2.6087 2 35.7680 14.9117 9.9205 4.9912

4 a ¼ 0 15 4.1667 200.5964 125.5429 122.5838 2.9591
a ¼ 1 6 1.6667 80.2385 50.2172 49.0335 1.1836

5 a ¼ 0 4.1667 15 206.2642 122.7064 2.1429 120.5635
a ¼ 1 1.6667 6 82.5056 49.0826 0.8572 48.2254

6 a ¼ 0 5 6.5217 90.3361 37.3551 12.3453 25.0098
a ¼ 1 2 2.6087 36.1344 14.9421 4.9381 10.0039

7 a ¼ 0 10 3.3333 70.6561 72.3671 69.9038 2.4633
a ¼ 1 4 1.3333 28.2625 28.9428 27.9615 0.9813

8 a ¼ 0 3.3333 10 71.1623 71.8048 2.2225 69.5823
a ¼ 1 1.3333 4 28.4649 28.7219 0.8890 27.8329
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as followers will exceed that of the more powerful supplier’s

profit only when the degree of diversity between the two

retailers’ market demands is sufficiently high.

Table 11 shows the marginal contributions of the primary

demand to the maximum profits of the SC members, where the

total variation of the primary demand is calculated by TVPD ¼
P2

i¼1 ½ð ~DU
i Þa¼0 � ð ~DL

i Þa¼0�=ai and the marginal contributions

of the primary demand to the maximum profits of upstream

and downstream markets are calculated by MVU ¼ ½ðZU
S Þa¼0

�ðZL
S Þa¼0�=TVPD and MVD¼½ðZU

r1
Þa¼0�ðZL

r1
Þa¼0þðZU

r2
Þa¼0�

ðZL
r2
Þa¼0�=TVPD, respectively (as shown in Table 9). Among

three SC members for Scenarios 1–6, the marginal contribu-

tions of the primary demand to the supplier’s maximum profit

are the largest. They range from approximately 7.4597 to

10.7616, which are larger than those of the total profit of the

downstream (retail) market, which range from approximately

3.2356 to 6.5501. However, this finding does not hold for the

special cases of Scenarios 7 and 8. For example, in Scenario 7,

the marginal contribution of the primary demand to the

supplier’s maximum profit is 5.2992, which is smaller than

that to the total profit of the downstream market (5.4275, as

shown in the second row of Table 11).

The last column of Table 11 shows the ratio of the marginal

contribution of the primary demand to the maximum profit of

the upstream market to that of the downstream market for each

scenario ðR ¼ MVU=MVDÞ. The values of this ratio range

from 0.9764 to 2.4183, where they are larger than 1 for general

cases. This result indicates that not only the maximum profit of

the upstream market is more sensitive to the imprecision of the

primary demands for general cases but also that it is possible

that the maximum profit of the downstream market is more

sensitive when facing high-diversity retailer markets.

5.2. Comparison with Stochastic Models

The results obtained from the proposed method are presented by

using membership functions rather than a crisp value (i.e., only

the point value); thus, the results obtained from the proposed

method based on fuzzy set theory conserve the fuzziness of the

input information. By contrast, when the data embedded in the

SC, such as the market bases, are only approximately known,

the expected values of these market bases are typically

employed in the stochastic model to find the optimal solutions.

The results obtained from stochastic methods are typically crisp

rather than fuzzy, indicating that the optimal total cost may be

overestimated or underestimated, as the optimal decision

variables would be. Such over- or underestimation not only

causes a loss of information (because only point values rather

than membership values are obtained) but also distorts the

results and undermines the quality of decision making in the SC.

Moreover, fuzzy approaches have certain advantages over

stochastic programming approaches, and it is often easier to

solve a fuzzy mathematical programming problem than a

stochastic programming problem (Inuiguchi and Ramik, 2000;

Chen and Ho, 2013). First, the uncertainties embedded in the

two-echelon SC investigated here are characterized by ambi-

guity or vagueness because of an increasingly short PLC and

market turbulence. These uncertainties are more suitably

described by using fuzzy terms than stochastic terms (Peidro

et al, 2009). Moreover, in practice, determining the explicit

forms of the probability distributions of market bases in SCs in

a short PLC is clearly a challenging or even impossible task.

Second, compared with the classic (stochastic) approach, the

proposed approach can more easily determine the optimal

solutions. For each case, this paper derives the optimal

solutions by solving two mathematical programs that are clear,

simple, and easy to use. By contrast, the solution procedure for

the classic (stochastic) approach typically requires several

integrations to be performed in order to find the expectation

for the market bases.

6. Conclusion

Today, SCM problems suffer from non-stochastic uncertain-

ties because of increasingly short PLCs. This paper devises an

analysis method based on the extension principle to provide

possible intervals of equilibrium and performance measures

Table 11 Marginal variations of the maximum profits of SC members

Scenarios Total variation of
the primary demand

ðTVPDÞ

Marginal contribution of the primary demand to the SC
member’s profit

Ratio of marginal variation of maximum
profit of the upstream to downstream

ðR ¼ MVU=MVDÞ
Upstream
ðMVUÞ

Downstream
ðMVDÞ

Stackelberg
leader

Stackelberg
follower

1 15 7.5080 4.5260 0.4831 4.0428 1.6589
2 15 7.4597 4.5839 4.0644 0.5195 1.6274
3 11.5217 7.7610 3.2356 2.1526 1.0830 2.3987
4 19.1667 10.4659 6.5501 6.3957 0.1544 1.5978
5 19.1667 10.7616 6.4021 0.1118 6.2903 1.6810
6 11.5217 7.8405 3.2422 1.0715 2.1707 2.4183
7 13.3333 5.2992 5.4275 5.2428 0.1847 0.9764
8 13.3333 5.3372 5.3854 0.1667 5.2187 0.9910
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with a known degree of uncertainty for decision making in a

two-echelon SC in which a Stackelberg game in both intra-

and inter-echelon is played, where market bases are fuzzy

rather than numeric or stochastic. A pair of two-level quadratic

programming models is developed to calculate the lower and

upper bounds of the fuzzy maximum profit at a certain

possibility level, and its membership function is then obtained

by enumerating the different possibility levels. Eight scenarios

that consider different types of downstream markets and

sensitivities of the retailer’s sales to changes in his opponent’s

price are successfully analyzed. Furthermore, the effects of the

variations in imprecise data on the variations of maximum

profits are also investigated to demonstrate the necessity of the

proposed modeling and analysis.

The analysis results show that the higher the degree of

uncertainty of the obtained information, the smaller (larger)

the lower (upper) bound of the maximum profit of each SC

member. In addition, the results obtained from eight scenarios

include (1) the higher the degree of uncertainty of the obtained

information, the smaller (larger) the lower (upper) bound of

the pricing of each SC member; (2) in the downstream market,

regardless of whether the retailer is the Stackelberg leader, the

retailer with a larger reservation price obtains absolutely more

profit. Moreover, this paper finds that, when the degree of

demand diversity between the two retailers is significantly

high, (3) the Stackelberg leader is most likely to obtain lower

profit; and (4) the marginal contribution of the primary

demand to the total profit of the duopolistic retailers will

exceed that of the powerful supplier’s maximum profit.

Although the discussion in this paper focuses on the case in

which the SC members play a Stackelberg game, it is clear that

the methodology can be extended to other game structures,

such as Cournot, Collusion, and Nash games. Moreover, in this

study, the membership function of each SC member’s fuzzy

maximum profit is derived numerically. Because of the high

levels of complexity and generality of this decision-making

problem focused on a SC playing a game in a fuzzy

environment, no analytical closed form is provided. Deriving

the analytical closed form of the membership function would

be a challenging but useful avenue for future research.
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