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This paper develops a greedy heuristic for the capacitated minimum spanning tree problem (CMSTP), based on
the two widely known methods of Prim and of Esau–Williams. The proposed algorithm intertwines two-stages:
an enhanced combination of the Prim and Esau–Williams approaches via augmented and synthetic node selection
criteria, and an increase of the feasible solution space by perturbing the input data using the law of cosines.
Computational tests on benchmark problems show that the new heuristic provides extremely good performance
results for the CMSTP, justifying its effectiveness and robustness. Furthermore, excluding the feasible space
expansion, we show that we can still obtain good quality solutions in very short computational times.
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1. Introduction

The Capacitated Minimum Spanning Tree problem (CMSTP)

can be defined as the design of a minimum cost tree which

spans over all vertices of an undirected graph G, so that the

sum of demands of every main subtree does not exceed a given

capacity Q. The CMSTP plays an important role in the design

of backbone telecommunications networks, as well as in

distribution, transportation, and logistics. Gavish (1991),

formulated telecommunication network design problems as

CMSTPs. In addition a CMSTP solution provides a lower

bound on the capacitated vehicle routing problem (CVRP)

defined on G (Toth and Vigo, 1995).

The CMSTP can be divided into two categories based on

whether the weights of vertices are identical or not. The first is

the homogeneous CMSTP where all vertices have the same

weight. The second is the heterogeneous CMSTP where

different vertices have different weights. When the weights of

all vertices are equal to unity the problem reduces to finding a

minimum cost rooted spanning tree in which each subtree

contains at most Q (the capacity) vertices; this unit demand

case is usually referred to as the CMSTP in the literature

(Oncan and Altinel, 2009). The general homogeneous problem

can be transformed into a unity problem by dividing the

weights of the vertices and the capacity Q by the common

vertex weight. In our work, we propose an algorithm for the

CMSTP when the weights of all vertices are equal to unity.

The CMSTP is a difficult combinatorial optimization problem.

It has been shown to be NP-hard even in the case of unit demand

(Papadimitriou, 1978); thus, the solution of the CMSTP with

exact methods is very time consuming and even impossible even

for moderate size instances (Ruiz et al, 2015), and as a result

heuristics are widely used in practice. Due to the importance of

the problem, there is a vast literature that addressesmodelling and

solutions aspects of the CMSTP. Several mathematical formu-

lations and exact algorithms have been proposed for the CMSTP.

Exact algorithms are based on branch and bound and dynamic

programming methods. The existing exact algorithms only solve

small scale CMSTPs or find lower bounds on the optimal

solution—see e.g., Chandy and Russell (1972), Chandy and Lo

(1973), Gavish (1982),Gouveia and Paixao (1991),Malik andYu

(1993), Hall (1996), Han et al (2002), Gouveia and Martins

(2005), and Uchoa et al (2008).

Early heuristics based on the greedy paradigm are those of

Esau and Williams (1966)—the most widely known and the one

used as a benchmark in computational tests—and the unified

algorithm of Kershenbaum and Chou (1974). More sophisticated

heuristics have been developed byAmberg et al (1996), Sharaiha

et al (1997), Patterson et al (1999), Ahuja et al (2001, 2003) and

Souza et al (2003), that employ techniques such as local search.

The problem with these approaches is that in each iteration the

new solution does not always improve the objective function,

thus they are quite slow in converging to high quality trees. More

recent metaheuristics include: (a) the hybrid ant colony algorithm

of Raimann and Laumanns (2006) that solves the CVRP and

applies an implementation of Prim’s algorithm to obtain a

feasible CMST solution; (b) the work of Martins (2007) that

proposes an enhanced version of the second order (SO) algorithm
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originally described by Karnaugh (1976), one of the first

metaheuristics applied for the CMSTP; (c) the tabu search

heuristic of Rego et al (2010) introducing dual and primal–dual

RAMP algorithms, (d) the filter and fan algorithm by Rego and

Mathew (2011); and (e) the biased random—key genetic

algorithm (BRKGA) of Ruiz et al (2015).

The enhancements of construction algorithms, play a great role

in producing very good solutions to complex classical combina-

torial problems such as the VRP and the CMSTP. Altinel and

Oncan (2005) reported that to improve the accuracy of the Clarke

and Wright (1964) heuristic for the VRP problem without

harming its speed and simplicity is an interesting question and

proposed a new enhancement of the savings criterion; the new

method was both fast and very accurate. Bruno and Laporte

(2002) suggested a simple enhancement of the Esau–Williams

heuristic for the CMSTP removing the longest edge on the path

linking vertex j to the root against removing the first edge in the

path linking j to the root of the tree according to the Esau–

Williams heuristic. Oncan and Altinel (2009) proposed three

parametric enhancements of the Esau–Williams heuristic for the

CMSTP: In the first enhancement they parametrized the classical

saving criterion of Esau–Williams; in the second enhancement,

they added a term expressing the asymmetry between two

vertices with respect to the central vertex. In the third enhance-

ment the authors took into account the fact that CMSTP is a

combination of the minimum spanning tree and of the bin

packing problem; so they added a third term that included

demand information over the joining process.

Battara et al (2012) justified the popularity of the Esau–

Williams heuristic in practice and the motivation behind its

enhancements, recognizing the problem that the best meta-

heuristic implementations outperform classical heuristics but

they require long computational times and many are not very

easy to implement. Additionally, they claimed that the param-

eters involved in the Esau–Williams enhancements improve

their competition with the best metaheuristics and proposed a

genetic algorithm procedure to tune efficiently a three-param-

eter enhancement of the latter algorithm. The proposed evolu-

tionary approach produced high quality results without affecting

its simplicity in a limited amount of computing time.

In our work we proposed a two-stage algorithm for the

CMSTP: First, motivated by the results of Oncan and Altinel

(2009), we develop a new greedy function that measures the cost

of linking vertex j to the partial -under construction- capacitated

minimum spanning tree. This composite greedy function com-

bines the effects of several metrics and the heuristic follows

Prim’s optimization framework. Then we increase the space of

feasible solutions by perturbing the input data using the law of

cosines, in order to explore multiple and possibly not easily

reachable solutions by applying the previous framework. Com-

putational tests on benchmark problems from the literature show

that the new heuristic provides extremely good performance

results for the CMSTP. Furthermore, excluding the feasible space

expansion,we show thatwe can still obtain good quality solutions

in very short computational times.

The remainder of the paper is organized as follows:

Section 2 provides an overview of the steps embedded within

the proposed heuristic, the selection criteria, and the cosine-

based engine for the expansion of the feasible solution space.

Section 3 offers the computational results while the conclu-

sions are summarized in Section 4.

2. The heuristic and the feasible solution space
expansion mechanism

Let G = (V, E) be an undirected graph, where V = {0, 1, 2,…,

n} is the vertex set, with 0 as the root vertex, and E = {(i, j): i,

j e V, i = j} is the edge set. A nonnegative weight or demand qi
is associated with each vertex i[V-{0}, and a length or cost cij is
associated with each edge {i, j}. Given a spanning tree, any

subtree linked to the root by a single edge is called a main

subtree. Given a vertex i[V-{0} the main subtree containing j is

called the subtree of j. We refer to the first vertex in the subtree

of j as the gate vertex g(j) of the subtree of j.

Our work is based on the pioneering algorithms of Prim (1957)

and Esau–Williams (1966). Prim’s algorithm starts only with the

root vertex in the spanning tree and at each iteration, the vertex

whose distance or cost to any vertex already in the tree isminimal

is brought into the tree. Esau–Williams’s algorithm, on the other

hand, starts with each vertex and the root vertex in separate

components; then they define a tradeoff function Cij (different

from cij) as the minimum cost of connecting the component

containing vertex i to the root vertexminus the cost of connecting

vertices i and j. Thus, at each stage, the algorithm finds

Ci*j* = max(Cij) and brings in line (i*,j*), forming a new

component without exceeding the capacity constraint.

The algorithm we propose requires the definition of the

‘‘shortest point’’ for a vertex i, i.e., the root vertex or a vertex

in the tree that has the minimum direct distance with i and the

linking is feasible (does not violate the capacity constraint);

we denote the shortest point for vertex i by s(i). Furthermore,

let Cs(i)
i be the value of the composite selection criterion that is

associated with the selection of vertex i; Cs(i)
i will be properly

defined later in this section.

Given all the previous definitions and notation, the steps of

the new heuristic are as follows:

PEW Heuristic

Step 0 Initialization. Read n, cij, Q V i, j = 0, …, n

Step 1 Select the vertex nearest to the root to start the

spanning tree

Step 2 Find the feasible vertex j that minimizes the

composite criterion Cs(j)
j :

Step 2a Select the shortest point s(j) and calculate

Cs(j)
j

Step 2b Repeat step 2a for all vertices not linked to

the spanning tree

Step 2c Select vertex j with the minimum Cs(j)
j
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Step 3 Link the selected vertex j to its shortest point on the

current spanning tree and update the spanning tree;

set vertex j as a tree vertex

Step 4 If there are vertices remaining to be linked to the

spanning tree, return to Step 2; otherwise proceed to

Step 5

Step 5 Terminate; get sequence of vertices in each subtree

and total distance

The overall loop is performed until all vertices have been

assigned to the spanning tree. The solution procedure is

straightforward adopting a very simple execution mechanism.

However, it is based on new criteria for vertex selection and

linking, which are motivated by the minimization function of

the new enhancement heuristics for the CMSTP.

2.1. Selection criteria

To form our new composite selection function, we combine

six metrics through a weighted linear relationship.

The first metric is Cs(j)j
1 defined as the direct distance of

vertex j to the subtree s(j) (the shortest point of vertex j),

namely cs(j)j.

The second metric is Cs(j)j
2 defined as the direct distance of

vertex j to the gate node (or vertex) of s(j), that is cjg(s(j)).

The third metric is Cij
3 i.e., the distance of the shortest point

s(j) to the gate vertex of s(j), named cg(s(j))s(i).

The fourth metric is Cij
4 defined as the inverse of the

following parameterized saving expression (Oncan and

Altinel, 2009), adjusted for the component case with one

vertex inside: Cs(j)j
4 = (cdj - a9cs(j)j)

-1, where d is the root

vertex and a is the positive tree shape parameter. This formula

is the inverse of the parameterized extension of the savings

formula of the Esau–Williams heuristic because our composite

vertex selection criterion ensures that a vertex j selected for

subtree connection will minimize the selection criterion.

The fifth metric is motivated by Paessens (1988) who

introduced a new term to the savings expression of the Vehicle

Routing Problem solution algorithm, that was the asymmetry

between customers i and j with respect to their distances to the

depot. Oncan and Altinel (2009) used the same term to extent

the first enhancement of the Esau–Williams heuristic for the

CMSTP. The inverse of the asymmetry is included in our

selection criterion by the metric: Cij
5 = |cds(j) - cdj|

-1 where

d is again the root vertex.

The sixth metric involves the notion of a ‘‘moving vertex’’

m, i.e., a vertex that is second, third, fourth, etc. in distance

from the root vertex; this is to capture additional information

about the spatial distribution of vertices in a space expanding

mechanism logic embedded within the selection criteria. In the

first iteration of the metric calculations, the moving vertex is

the second in distance vertex nearest to the root; in the next

iteration, m is the third in distance and so on so forth.

Consequently, the calculation of this new metric involves an

iterative scheme based on the moving vertex m. The criterion

is defined as Cs(j)j
6 = |cj,f - b9cj,m|, where b is a tuning

parameter taking values between 0 and 1, f is the nearest to the

root vertex, and the final value of Cs(j)j
6 is the minimal one

along all possible m’s examined.

To summarize, we can state the following:

• Criteria C1, C2 and C3 are simple distance-based functions

we define to link vertex j to other points of the network.

• Criterion C4 is the inverse of the parametrized extension of

the saving formula of Esau–Williams proposed by Oncan

and Altinel (2009).

• Criterion C5 is the inverse of the third term within the

second enhancement of the saving formula of Esau–

Williams proposed by Oncan and Altinel (2009).

• Criterion C6 is a new composite criterion we propose for

the first time.

Now we can define the overall vertex selection criterion

which accounts for all previously defined metrics. We use a

simple linear relationship to merge the effects of the six

metrics. The greedy function that measures the cost of

connecting vertex j to its shortest point s(j) in the minimum

spanning tree under construction is denoted as Cs(j)
j . This

composite greedy function is defined as follows:

C
j

sðjÞ ¼ b1C
1
sðjÞj þ b2C

2
sðjÞj þ b3C

3
sðjÞj þ b4C

4
sðjÞj þ b5C

5
sðjÞj

þ b6C
6
sðjÞj ð1Þ

In (1) b1, b2, b3, b4, b5, b6 C 0. Note that the weights b1, b2,

b3, b4, b5, b6 define the relative importance of the associated

metric in the selection of vertex j. It is important to note that a

Figure 1 The low of cosines embedded in the heuristic (LCP).

Figure 2 The PEW-PLC heuristic.
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determinant factor for the effective deployment of the

proposed greedy heuristic is the selection of appropriate

weights and the metrics’ parameters embedded in the

composite greedy function. The tuning of these parameters

requires statistical experimentation. We discuss the determi-

nation of the intervals of weights and parameters of the metrics

in the computational results section.

The composite greedy function allows for the exploration of

a large solution space, and thus, we expect the criterion by

itself to lead an unsophisticated method to solutions of high

quality; such expectations are proven by the application of the

proposed heuristic to literature benchmarks. Furthermore, the

diversity of the individual selection metrics can capture the

specific and the unique characteristics of each problem

instance, thus leading a simple greedy approach to evolve in

a manner similar to that of meta-heuristics.

2.2. Mechanism for feasible solution space expansion

Hart and Shogan (1987) suggested the perturbation of the

problem’s data and the reapplication of the relevant algorithm

as one way to improve the performance of a heuristic. Thus,

instead of applying a heuristic only to the original data, they

claimed that improvements can be achieved when several

minor perturbations of the data are used as starting points for

the algorithm’s execution. The best of the solutions obtained

can then be implemented using the original data.

Based on this observation, to improve the performance of

any proposed greedy heuristic for the CMSTP, we can proceed

to data perturbation by altering the distance between the root

vertex and the second in distance vertex nearest to the root. We

opt to move this particular vertex because it is included in the

selection criterion of our algorithm (Cs(j)j
6 ); furthermore,

Table 1 Comparison of the results for benchmark instances te40 with n = 40 vertices

Sets Q Best PEW Iterations PEW CPU PEW % deviations EW3 % deviations EW3 CPU

te40-1 3 1190 1201 (8) 44820 13 0.924 0.558 59 –
te40-2 3 1103 1109 (35) 222524 63 0.543 0.544 60 *
te40-3 3 1115 1117 (7) 36789 11 0.179 0.897 59 *
te40-4 3 1134 1139 (6) 31527 9 0.440 0.176 61 –
te40-5 3 1115 1112 (7) 38654 11 0.000 0.000 57 *
te40-1 5 830 841 (12) 71900 21 1.325 3.614 52 *
te40-2 5 792 806 (8) 42485 13 1.767 1.894 51 *
te40-3 5 797 807 (14) 84256 25 1.254 2.509 56 *
te40-4 5 814 838 (12) 70837 20 2.948 1.843 52 –
te40-5 5 784 810 (7) 35195 11 3.316 1.403 54 –
te40-1 10 596 598 (3) 12832 4 0.335 5.705 49 *
te40-2 10 573 590 (5) 22603 7 2.966 6.108 47 *
te40-3 10 568 572 (15) 90727 28 0.704 3.697 50 *
te40-4 10 596 598 (3) 11680 4 0.335 0.671 46 *
te40-5 10 572 584 (3) 8924 3 2.097 2.797 46 *
Average 16.2 1.275 2.163 53.3
Improvements 69.60% 41.05%

Table 2 Comparison of the results for benchmark instances tc40 with n = 40 vertices

Sets Q Best PEW Iterations PEW CPU PEW % deviations EW3 %
deviations

EW3 CPU

tc40-1 3 742 749 (3) 10218 3 0.943 0.809 29 *
tc40-2 3 717 721 (18) 107602 32 0.557 2.092 30 *
tc40-3 3 716 722 (7) 35171 11 0.837 1.257 27 *
tc40-4 3 775 783 (4) 15326 5 1.032 0.516 29
tc40-5 3 741 746 (5) 24156 7 0.674 0.135 28
tc40-1 5 586 590 (24) 146617 51 0.682 0.341 26
tc40-2 5 578 580 (14) 81908 27 0.346 1.730 25 *
tc40-3 5 577 579 (9) 48523 17 0.346 1.906 24 *
tc40-4 5 617 618 (12) 70810 25 0.162 1.135 27 *
tc40-5 5 600 604 (17) 10353 35 0.666 0.833 26
tc40-1 10 498 502 (7) 38734 12 0.803 0.000 24
tc40-2 10 490 490 (5) 25207 9 0.000 0.000 26 –
tc40-3 10 500 504 (3) 8914 4 0.800 1.600 25 *
tc40-4 10 512 520 (5) 22046 8 1.562 0.000 24
tc40-5 10 504 512 (5) 21958 8 1.587 0.000 26
Average 16.93 0.733 0.824 26.40
Improvements 35.87% 11.04%
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according to Kershenbaum and Chow (1974), the second

nearest feasible neighbor leads to significant benefits for the

overall solution.

To perturb the CMSTP data, we move the second in distance

nearest to the root vertex B cyclically by an angle h, while also
changing its distance from vertex O (which is the root vertex

0) as shown in Figure 1. Thus, first B moves to B0 and then B0

moves to D, and using the law of cosines we can calculate the

distance DE (where E is any random vertex) as follows:

EB2 ¼ OE2 þ OB2� 2 � OE � OB� cos\BOE ¼ [

cos\BOE ¼ OE2 þ OB2 � EB2
� �

= 2 � OE � OBð Þ

so the angle BOE is known. Because the angle BOD is known

by the cyclic move of vertex B, we conclude that

\DOE = \BOD - \BOE. The law of cosines also states:

DE2 ¼ OD2 þ OE2� 2 � OD� OE � cos\DOE

As a result, the distance between new location of B (which is

D now) and the random vertex E is known.

Table 3 Comparison of the results for benchmark instances te80 with n = 80 vertices

Sets Q Best PEW Iterations PEW CPU PEW % deviations EW3 %
deviations

EW3 CPU

te80-1 5 2544 2588 (18) 107329 212 1.729 0.825 766 –
te80-2 5 2551 2582 (8) 41650 82 1.215 1.568 780 *
te80-3 5 2612 2666 (49) 313666 623 2.067 1.914 740 –
te80-4 5 2558 2567 (36) 227626 451 0.351 1.368 759 *
te80-5 5 2469 2528 (49) 314649 680 2.389 0.486 794 –
te80-1 10 1631 1713 (20) 124145 279 5.027 4.598 748 –
te80-2 10 1639 1673 (4) 19079 43 2.074 2.807 760 *
te80-3 10 1687 1743 (31) 196308 401 3.319 2.964 763 –
te80-4 10 1629 1669 (4) 18324 38 2.455 2.824 741 –
te80-5 10 1603 1668 (7) 35207 73 4.054 5.303 740 *
te80-1 20 1275 1312 (13) 77462 163 2.901 0.784 721 –
te80-2 20 1224 1242 (2) 5201 11 1.470 3.676 710 *
te80-3 20 1267 1288 (4) 18248 39 1.657 5.130 732 *
te80-4 20 1265 1294 (5) 24190 51 2.292 4.901 704 *
te80-5 20 1240 1247 (7) 37925 78 0.564 0.887 718 *
Average 114.93 2.237 2.670 745.10
Improvements 71.15% 16.22%

Table 4 Comparison of the results for benchmark instances tc80 with n = 80 vertices

Sets Q Best PEW Iterations PEW CPU PEW % deviations EW3 %
deviations

EW3 CPU

tc80-1 5 1099 1137 (18) 110096 256 3.457 4.732 423 *
tc80-2 5 1100 1142 (32) 201544 462 3.818 2.818 430
tc80-3 5 1073 1120 (24) 148931 332 4.380 3.728 419
tc80-4 5 1080 1134 (11) 63517 135 5.000 3.056 425
tc80-5 5 1287 1325 (30) 188180 421 2.952 3.263 421 *
tc80-1 10 888 902 (26) 159829 338 1.576 3.266 413 *
tc80-2 10 877 894 (9) 48208 102 1.938 2.281 428 *
tc80-3 10 878 898 (19) 116089 244 2.277 2.506 409 *
tc80-4 10 868 878 (15) 90565 186 1.152 3.571 411 *
tc80-5 10 1002 1023 (11) 65087 134 2.095 4.691 420 *
tc80-1 20 834 840 (6) 30832 66 0.719 0.959 399 *
tc80-2 20 820 824 (3) 12526 27 0.487 0.732 405 *
tc80-3 20 828 832 (3) 8950 19 0.483 0.483 395 –
tc80-4 20 820 824 (2) 5309 12 0.487 0.488 412 *
tc80-5 20 916 938 (2) 2203 5 1.528 3.275 404 *
Average 124.53 2.156 2.657 414.27
Improvements 55.92% 18.85%

Table 5 Average PEW improvements on EW3’s solutions

Data set Solution improvement (%) Fraction of CPU time (%)

te-40 41.05 30.40
tc-40 11.05 64.13
te-80 16.22 28.85
tc-80 18.85 44.08
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Our mechanism of feasible solution space expanding

calculates all the new distances between the vertices of the

graph and the new location of the second nearest to the root

vertex. Our proposed greedy algorithm implemented to new

distance matrix producing a new spanning tree under the

capacity restriction. Then, we can recalculate the cost of the

solution using the real distance matrix. The final results should

lead to improvements in the objective function value for data

sets, as per the claim of Hart and Shogan (1987).

The sequential steps of this expanded procedure, denoted as

PEW-PLC heuristic, are shown in Figure 2. Note that PLC

refers to the recalculation of distances after the perturbation

via the angle rotation.

3. Computational results

The proposed heuristic in both its versions (PEW and PEW-

PLC) has been implemented in FORTRAN 90, using the

Fortran PowerStation 4.0 compiler. The computational exper-

iments have been performed on a PC with an Intel Core i5

processor. The heuristics were tested on the classical unit

demand data sets from the OR-Library (http://people.brunel.

Table 6 PEW vs other heuristics on existing best solutions

Instance set EWBF3 (2008) EW3 (2009) PEW

Dev. (%) Time (s) Dev. (%) Time (s) Dev. (%) Time (s)

tc40 1.14 371.22 0.82 396.00 0.73 253.95
te40 2.91 372.42 2.16 799.00 1.27 243.00
tc80 2.67 3102.33 2.65 6214.00 2.16 1867.95
te80 5.01 3180.34 2.67 11176.00 2.24 1723.95
Average 2.93 1756.58 2.07 4646.25 1.60 1022.21
Total 7026.31 18585.00 4088.85

Table 7 Comparison between heuristics on EW solutions

Instance set EWBF3 (2008) EWR (2012) MEW (2002) EW3 (2009) PEW

Imp. (%) Time (s) Imp. (%) Time (s) Imp. (%) Time (s) Imp. (%) Time (s) Imp. (%) Time (s)

tc40 1.87 371.22 2.13 12.72 0.96 2.7 2.47 396.00 2.56 253.95
te40 2.86 372.42 3.22 12.81 0.69 2.7 2.39 799.00 3.22 243.00
tc80 3.76 3102.33 3.95 104.81 0.90 6.00 2.16 6214.00 2.58 1867.95
te80 2.55 3180.34 2.75 101.91 0.31 10.20 2.44 11176.00 2.85 1723.95
Average 2.76 1756.58 3.01 232.25 0.72 5.4 2.36 4646.25 2.80 1022.21
Total 7026.31 58.06 21.6 18585 4088.85

Table 8 Solution quality for PEW-PLC on te40 test problem

Sets Q BEST EW EW3% DEV PEW-PLC PEW-PLC % DEV PEW-PLC %IMP

te40-1 3 1190 1215 0.588 1194 0.336 1.728 –
te40-2 3 1103 1134 0.544 1104 0.090 2.646 *
te40-3 3 1115 1146 0.897 1115 0.000 2.705 *
te40-4 3 1134 1153 0.176 1139 0.440 1.214 –
te40-5 3 1110 (1115) 1147 0.000 1110 0.000 3.226 **
te40-1 5 830 857 3.614 839 1.084 2.100 *
te40-2 5 792 839 1.894 806 1.767 3.933 *
te40-3 5 797 820 2.509 807 1.254 1.585 *
te40-4 5 814 854 1.843 829 1.843 2.927 *
te40-5 5 784 816 1.403 801 2.169 1.838 –
te40-1 10 596 658 5.705 598 0.335 9.118 *
te40-2 10 573 632 6.108 589 2.792 6.804 *
te40-3 10 568 596 3.697 572 0.704 4.027 *
te40-4 10 596 638 0.671 598 0.335 6.270 *
te40-5 10 572 597 2.797 582 1.748 2.513 *
Average 2.163 0.993 3.509
Improvement 54.09%
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ac.uk/*mastjjb/jeb/info.html). The tc instances in this library

have the central vertex in a central position with respect to the

other ones. The te instances have the central vertex in a corner

with respect to the other ones. The problems include ten

instances with fully connected graphs of 40-vertices with arc

capacities 3, 5 and 10, and ten instances with fully connected

graphs of 80-vertices with arc capacities 5, 10 and 20. Thus, a

total of 60 problem instances are examined solved.

One requirement in our approach is the determination of the

intervals of weights b1, b2, b3, b4, b5, and b6 in the selection

formula, as well as the setting of parameters a and b in the

metrics of the cost function. In our experiments, the weights

b1, b2, b3, b4, b5, and b6 are chosen within the interval [0.0,

1.0] in an incremental manner with increment set to 0.5.

Parameters a and b are set in the same manner.

The experimental results of the proposed greedy heuristic

PEW are reported in Tables 1, 2, 3 and 4. The test problems

reference in OR Library and its capacity are shown in columns

one and two of each table. The optimal known (literature)

solutions for each instance or the relevant lower bound if the

optimal is not reached are listed in the third column, while the

best solutions produced by PEW are reported in the fourth

column (distance of the capacitated minimum spanning tree

and moving vertex in parenthesis). In the fifth column, we

provide the number of capacitated spanning trees produced up

to point when the best solution is obtained. The sixth column

of each table offers the CPU time in seconds that PEW

requires to find the best solution.

The seventh column depicts the percentage deviation of

each instance with respect to the best known solution; they are

Table 9 Solution quality for PEW-PLC on te80 test problem

Sets Q BEST EW EW3% DEV PEW-PLC PEW-PLC %DEV PEW-PLC % IMP

te80-1 5 2544 2604 0.825 2588 1.730 0.614 –
te80-2 5 2551 2633 1.568 2576 0.980 2.165 *
te80-3 5 2612 2723 1.914 2663 1.953 2.203 –
te80-4 5 2558 2624 1.368 2551 0 2.782 **
te80-5 5 2469 2593 0.486 2505 1.458 3.394 –
te80-1 10 1631 1746 4.598 1708 4.721 2.176 –
te80-2 10 1639 1748 2.807 1670 1.891 4.462 *
te80-3 10 1687 1828 2.964 1735 2.891 5.088 *
te80-4 10 1629 1685 2.824 1644 0.921 2.433 *
te80-5 10 1603 1712 5.303 1666 3.930 2.687 *
te80-1 20 1275 1330 0.784 1312 2.902 1.353 –
te80-2 20 1224 1289 3.676 1242 1.471 3.646 *
te80-3 20 1267 1340 5.130 1288 1.657 3.881 *
te80-4 20 1265 1343 4.901 1294 2.292 3.649 *
te80-5 20 1240 1334 0.887 1247 0.565 6.521 *
Average 2.669 1.957 3.137
Improvement 26.68%

Table 10 Solution quality for PEW-PLC on tc40 test problem

Sets Q BEST EW EW3 % DEV PEW-
PLC

PEW-PLC % DEV PEW-PLC % IMP

tc40-1 3 742 774 0.809 747 0.673 3.488 *
tc40-2 3 717 749 2.092 720 0.418 3.872 *
tc40-3 3 716 728 1.275 722 0.838 0.824 *
tc40-4 3 775 804 0.516 781 0.774 2.861 –
tc40-5 3 741 760 0.135 746 0.674 1.842 –
tc40-1 5 586 595 0.341 590 0.682 0.840 –
tc40-2 5 578 588 1.730 580 0.346 1.361 *
tc40-3 5 577 602 1.906 579 0.346 3.821 *
tc40-4 5 617 645 1.135 617 0.000 4.341 *
tc40-5 5 600 615 0.833 604 0.667 1.789 *
tc40-1 10 498 516 0.000 500 0.402 3.101 –
tc40-2 10 490 505 0.000 490 0.000 2.970 *
tc40-3 10 500 517 1.600 504 0.800 2.515 *
tc40-4 10 512 524 0.000 518 1.172 1.145 –
tc40-5 10 504 540 0.000 506 0.396 6.296 –
Average 0.824 0.546 2.738
Improvement 33.74%
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calculated according to the formula 100 9 (z - z*)/z*, where

z is the objective value obtained by proposed heuristic and z*

is the best known value reported in the literature that is listed

in the third column. The eighth column entitled EW3 reports

the percentage deviation of the best enhancement of Esau–

Williams heuristic according to Oncan and Altinel (2009) from

the best-known solutions. The ninth column presents the CPU

times in seconds of the Oncan and Altinel (2009) heuristic.

Note that we cannot directly compare computational times

between our approach and that of Oncan and Altinel (2009)

since different processors were used and no scaling has been

applied. In the last column, we indicate instances for which our

heuristic outperforms (or is equal to) the best enhancement of

Esau–Williams with ‘*’. The solution derived by our heuristic

Table 11 Solution quality for PEW-PLC on tc80 test problem

Sets Q BEST EW EW3% DEV PEW-
PLC

PEW-PLC
%DEV

PEW-PLC % IMP

tc80-1 5 1099 1182 4.732 1134 3.185 4.061 *
tc80-2 5 1100 1170 2.818 1129 2.636 3.504 *
tc80-3 5 1073 1131 3.728 1115 3.914 1.415 –
tc80-4 5 1080 1151 3.056 1118 3.519 2.867 –
tc80-5 5 1287 1338 3.263 1325 2.953 0.972 *
tc80-1 10 888 920 3.266 900 1.351 2.174 *
tc80-2 10 877 917 2.281 894 1.938 2.508 *
tc80-3 10 878 916 2.506 892 1.595 2.620 *
tc80-4 10 868 915 3.571 878 1.152 4.044 *
tc80-5 10 1002 1069 4.691 1022 1.996 4.397 *
tc80-1 20 834 856 0.959 840 0.719 1.869 *
tc80-2 20 820 836 0.732 820 0.000 1.914 *
tc80-3 20 828 856 0.483 832 0.483 2.804 *
tc80-4 20 820 866 0.488 820 0.000 5.312 *
tc80-5 20 916 971 3.275 922 0.655 5.046 *
Average 2.657 1.740 3.034
Improvement 34.51%

Table 12 Aggregate comparison between literature best enhancements of EW heuristic and PEW/PEW-PLC

Set Q EW3 PEW PEW-PLC

tc40 3 0.962 0.809 0.675
5 1.189 0.440 0.408
10 0.320 0.950 0.554

tc80 5 3.519 3.921 3.241
10 3.263 1.808 1.606
20 1.187 0.741 0.371

te40 3 0.435 0.417 0.173
5 2.253 2.122 1.623
10 3.796 1.287 1.183

te80 5 1.232 1.550 1.224
10 3.699 3.386 2.871
20 3.076 1.777 1.777

Average 2.078 1.601 1.309

Table 13 Comparison between EW3 and PEW-PLC heuristics and optimal solutions

Instances Best/LB EW3 PEW-PLC

te40-1 (10) 596 (LB) 630 598 (New Best)
te40-5 (3) 1104 (LB) 1115* 1110 (New Best)
tc40-2 (10) 490 (LB, Best) 490 490 (LB, Best)
tc40-4 (5) 617(LB, Best) 624 617 (LB, Best)
te80-4 (5) 2558 (Best) 2593 2551 (New Best)
tc80-2 (20) 820 (LB, Best) 826 820 (LB, Best)
tc80-4 (20) 820 (LB, Best) 824 820 (LB, Best)

* Patterson et al (1999)
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is equal to or better than those of the best enhancement

heuristic in more than 50% of the data sets.

From Tables 1, 2, 3 and 4, it is evident that PEW improves

upon classical heuristic approaches and provides results

that are comparable to the ones produced by more compu-

tationally expensing metaheuristics. Tables 5, 6 and 7 further

support this statement. Specifically, Table 5 shows the

average improvement in the solution quality for each set of

instances examined versus the fraction of the CPU time

required to reach this improvement – the effectiveness of

PEW is obvious.

In Table 6, we compare the PEW heuristic to the results

obtained by EWBF3 and EW3 reported by Battara et al (2008)

and Oncan and Altinel (2009) respectively. The EWBF3 is an

enhancement of the Esau–Williams heuristic towards a single-

stage genetic search procedure for finding the best parameter

values of the savings expression for the three-parameter EW

enhancement (EW3) of Oncan and Altinel (2009). Also,

Oncan and Altinel (2009) determine the best values of the

parameters using a brute force evaluation procedure within

given intervals. The overall average percentage deviation from

the best known solution values is 1.60% for our proposed PEW

(2016) heuristic compared to 2.39% for the EWBF3 (2008)

and to 2.07% for the EW3 (2009). Also, our approach reduces

the computational time considerably. For example, the total

time to find the best solution for all problems is 4088.85 s

against the 18585.00 s of EWBF3 and 7026.32 s of EW3

respectively.

In Table 7, we continue the comparison of PEW with

previously developed approaches. The ‘‘Imp (%)’’ columns

reports the average percentage improvement of a heuristic over

Esau–Williams for each data set. We summarize the results

obtained by consideration the following solution approaches

when applied to the same data sets: (a) the enhancement of

Battara et al (2008) EWBF3, (b) the new genetic enhancement

of Battara et al (2012) EWR, the new genetic enhancement

combined with local search and randomized prohibitions,

(c) the modified enhancement of Bruno and Laporte (2002),

MEW, (d) the third enhancement of Oncan and Altinel’ s

(2009) EW3, and (e) the suggested PEW. From the results of

Table 7, it is clear that PEW outperforms all approaches apart

from EWR, which is a more complex metaheuristic.

As an overall conclusion, we can state that PEW outper-

forms heuristics and is close to metaheuristics with respect to

solution quality since it examines a larger portion of the

solution space than simple heuristics. Note that the total

number of runs using one moving vertex without using the

expanding mechanism is 38 = 6561. The total number of runs

for the recent enhancement heuristic (Oncan and Altinel,

2009) is 7600 runs. Using all the 39 vertices (the nearest

Figure 3 Best CMST for te40-5(3).
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neighbor vertex not included), the number of capacitated

spanning trees produced is 6561 9 39 = 255879 for the

40-vertex instances, and 6561 9 79 = 518319 for the 80-ver-

tex instances. The total CPU time in seconds spent to perform

all iterations of our heuristic per instance is approximately 70 s

for the 40 vertex instances and 1000 s for the 80 vertex

instances.

The experimental results of the proposed PEW-PLC

heuristic are reported in Tables 8, 9, 10 and 11. The PEW-

PLC heuristic was compared to the results obtained by EW3.

Also, for each test set, the average percentage improvement

with respect to EW are reported. The test problems are shown

in columns one and two, the best known solution for each

instance is listed in the third column. The Esau–Williams

solutions are reported in the fourth column. The fifth column

depicts the average percentage deviations of the EW3. The

sixth column presents the best solution produced by the

proposed PEW-PLC heuristic. The seventh columns reports

the average percentage deviation of each instance from the

best solution. In the last column we present the average

percentage deviation of the PWE-PLC heuristic from the

Esau–Williams heuristic. The final column shows a ‘‘*’’

whenever our result is better than EW3 and a ‘‘**’’ whenever

our result is the best known to-date.

When we apply the PLC procedure, a crucial point is the

determination of the increments of the angle in the space [0,

3.14] and of the length of the change interval in the space [0.1,

2.2], both with an increment of 0.5. This means that we permit

the distance of the moving vertex m to vary between

0.1 9 cm,0 and 2.2 9 cm,0, where cm,0 is the actual distance

of the moving vertex m to the root vertex 0. As a result the

total number of iterations to cover all possible parameter

values is 35, while the number of CMST’s produced is

6561 9 35 = 229635.

When the increments reduce or/and the intervals increase

the required computational effort becomes excessive. On the

other hand, we often may obtain better solutions. Note that as

Figure 4 Best CMST for te80-4(5).

Table 14 Aggregate comparison of PEW-PLC with EWR

Data set EWR Imp % PEW-PLC Imp %

tc40 2.13 2.74 *
te40 3.22 3.51 *
tc80 3.95 3.03 –
tc80 2.75 3.14 *
Average 3.01 3.11
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moving vertex m, in our implementation of PLC, we use the

best according to PEW applied before.

In Table 12, we provide some aggregate comparison

between the results derived by PEW and PEW-PLC vis-à-vis

the best enhancements of the EW heuristic. Specifically, we

report the percentage deviation from the optimal solution or

lower bound of EW3, PEW and PEW-PLC heuristics aggre-

gated across the individual data sets with identical capacities.

From the results, it is obvious that PEW-PLC provides the best

solutions overall, followed by PEW and EW3. This result was

expected since Table 12 aggregates the results of Tables 1, 2,

3, 4, 8, 9, 10 and 11.

Subsequently, we compare the results of our approaches to

existing optimal solutions reported by Ruiz et al (2015) and

Osman and Atikson (2009).The comparison is provided in

Table 13. The optimal solutions or lower bounds are reported

in the second column from Ruiz et al (2015) for the data sets

mentioned in the first column. The solutions produced by

Osman and Atikson’s heuristic (2009) and PEW-PLC are

shown in the third and fourth column, respectively.

From Table 13, it is evident that PEW-PLC reaches the

optimal solution or provides a new best solution with respect

the cost of the spanning tree for all data sets examined.

Specifically, the results indicate that we produce a new best

literature solution for data sets te40-5(3) and te80-4(5); the

structure of the resulting minimum spanning trees is shown in

Figures 3 and 4, respectively.

Table 14 provides an aggregate comparison of the results

obtained using the metaheuristic EWR of Battara et al (2012)

and the ones reached by PEW-PLC. The results indicate that

our simple heuristic outperforms a metaheuristic in 3 of the 4

groups (indicated by an asterisk in the last column of Table 14)

as well as in the global average. This is an indication of the

unique strength of our approach.

Finally, in Tables 15 and 16 we have further explored the

contribution of each metric in the derivation of the best solution

obtained by our proposed heuristic PEW. They show the values

of the bi weights in the respective best solutions found.

By examining the percentage of instances in each data set

where the relevant weights were non-zero, and aggregating

instances with bi’s taking values of 0.5 and 1.0, it becomes

clear the our proposed metric (C6), together with the Essay-

Williams metric modified by Oncan and Altinel (C4) are the

two dominant metrics in terms of contribution to the objective

function value in the best solutions found. On the opposite side

(and quite expected we would add) are metrics C1 and C2,

which are simple distance-based criteria that could be

eliminated. Finally, although C3 is a distance-related metric,

it is associated with the shortest point and gate vertex that we

have introduced in our approach and provide significant value

to the solution quality.

4. Conclusions

In this paper we have developed a new heuristic with two

versions to solve the capacitated minimum spanning tree

problem. Our approach, which is based upon Prim’s (1957)

and Esau and Williams (1966) heuristics for the minimum

spanning tree and capacitated minimum spanning tree prob-

lems respectively, utilizes several metrics exploiting the

interrelationships between vertices introduced and dictates

the sequence in which the vertex linking takes place.

The second version of the new method allows the expansion

of the feasible solution space using the Law of Cosines

Procedure (LCP). This procedure allows the search to be

Table 15 Non-zero bi‘s from metrics C1–C6 in the best solution of PEW

Data Sets C1 C2 C3 C4 C5 C6

TE40(3) 29.8 12.4 28.8 63.8 11.0 83.8
TE40(5) 29.0 13.4 34.6 66.4 47.0 70.4
TE40(10) 18.4 8.8 39.6 39.4 12.6 58.6
TC40(3) 20.4 21.6 31.8 58.2 24.8 72.8
TC40(5) 21.6 16.2 33.2 66.0 22.8 68.8
TC40(10) 17.8 9.4 44.6 70.8 19.6 74.0
TE80(5) 23.0 9.0 50.0 65.8 37.6 61.8
TE80(10) 19.8 3.4 48.8 58.4 39.6 67.0
TE80(20) 19.2 9.4 58.0 62.0 20.6 77.6
TC80(5) 21.0 9.0 48.8 56.2 21.2 81.6
TC80(10) 13.8 2.8 54.8 57.6 24.4 75.6
TC80(20) 13.6 2.8 36.6 48.6 21.4 72.6
AVERAGE 20.6 9.8 42.4 59.4 25.2 72.0

Table 16 Aggregate ranking of criteria

Criteria Low (0.0) Middle to hight (0.5 or 1.0) Ranking

C1 79.4 20.6 5
C2 90.22 9.8 6
C3 57.6 42.4 3
C4 40.6 59.4 2
C5 74.8 25.2 4
C6 28.0 72.0 1
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displaced to other regions of the feasibility set, producing

additional spanning trees. The paper also emphasizes the

importance of a good choice of weights and parameters in the

cost function criterion.

The proposed algorithm is simple and easy to implement and

to apply to capacitated minimum spanning tree problems with

minimal computational effort. It performs very well on test

problems from the literature, providing high quality solutions

with respect to the cost of the capacitated minimum spanning

tree within short computational times. The new method

increases remarkably the accuracy of the classical heuristic of

Esau–Williams and its enhancements for the capacitated

minimum spanning tree problem, without increasing much the

complexity and the speed because the new search effort.

The results presented indicate that the heuristic provides

solutions that are competitive with the best solutions of

metaheuristics for a large number of literature problems.

Comparison with optimal solutions show that the new approach

reaches near optimal solutions for most problem instances. Our

purpose in developing the new method was not to compete with

metaheuristics but to produce a simple and powerful heuristic

that can match some metaheuristics in terms of solution quality.

In terms of further research we can state the following:

(a) better exploitation of information gathering during the

linking phase about the structure of the CMST problem; (b) the

placement of vertices; (c) the weights and the parameters of

the selection criteria in the heuristic; (d) the solution for

variants of the large scale CMST problems; and (e) the use

CMSTP approaches for vehicle routing; all are worth pursuing

research directions.
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