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This paper considers ranked voting systems to determine the rank order of candidates who compete for a limited
number of positions. We show that the preferential voting problems based on the data envelopment analysis
(DEA) (Wang et al, 2007) can be solved using the extreme points of constraints on rank position importance
incorporated in the formulation. This is basically due to the fact that the so-called inverse positive property of the
constraints makes it possible to easily find their extreme points. Further, we emphasize that this finding is not
restricted to Wang et al’s two linear models, but is also applicable to other DEA-based preferential voting
problems, which include the constraints accounting for different relative gaps between rank positions.
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1. Introduction

Decision-making involves choosing the best alternative

(course of action, project, candidate, option, or system) or

constructing a total or partial order over a multitude of

alternatives. In almost all decision-making problems, there

are multiple bases (criteria, attributes, objectives, scenarios,

or voters) on which to judge the alternatives. Ranking

methods can be placed into two basic categories: cardinal and

ordinal. Cardinal methods require a decision-maker to

express his/her degree of preference for one alternative over

another for each criterion. Ordinal methods, on the other

hand, require that only the rank order of the alternatives be

known for each criterion. Many ordinal ranking methods

have been presented during the past two centuries, and they

fall into one of several categories, including positional

voting, mathematical programming, outranking techniques,

and fuzzy ranking (Lansdowne, 1996).

The data envelopment analysis (DEA)-based preferential

voting models pioneered by Cook and Kress (1990) have

attracted much attention because of their innovative and

practical approach. A key concern common to ordinal

approaches, however, is how to discriminate between rank

positions. With regard to this, we find that various forms of

constraints on rank position importance are incorporated in

DEA models for the purpose of obtaining a clear ranking of

candidates (Hashimoto, 1997; Noguchi et al, 2002; Wang

et al, 2007).

The purpose of this paper is to derive the extreme points of

those constraints and then to solve the DEA-based linear

programming (LP) problems proposed by Wang et al (2007),

using the identified extreme points. This naturally extends to

the DEA-based preferential voting problems, which include

other types of constraints that account for the relative gaps

between rank positions. Finally, we emphasize that the

proposed method can be used to derive the extreme points of

incomplete criteria weights frequently found in the multi-

criteria decision-making (MCDM) field.

2. Ranking candidates with constraints on rank position
importance

Cook and Kress (1990) developed a DEA-based model to

aggregate votes into an overall index in a way that allows

each candidate to be assessed in a fair manner. In their

research framework, multiple voters select m candidates

from a set of n n�mð Þ candidates by ranking them from first

to the mth place. Briefly, the problem is to determine an

ordering of all n candidates by computing a total aggregated

score Zi ¼
Pm

j¼1 yijuj for each candidate i ¼ 1; . . .; n where yij

is the number of the jth place votes received by the ith

candidate and uj the weights given to the jth place (i.e., rank

position). The resulting DEA-based mathematical model

appears as
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Maximize
Xm

j¼1

yijuj

s:t:
Xm

j¼1

yijuj � 1; j ¼ 1; . . .; n

ð1aÞ

uj � ujþ1 � d j; �ð Þ; j ¼ 1; . . .;m� 1

um � d m; �ð Þ
ð1bÞ

where d j; �ð Þ is a positive function implying the minimum gap

between successively ranked weights, the so-called discrim-

ination intensity function.

As can be seen in the model (1), the discrimination intensity

function d j; �ð Þ plays an important role in determining the final

ranking of candidates and, in due course, dissimilar rankings

are induced by different forms of the function. Hashimoto

(1997) introduced a DEA/AR exclusion model where the

constraints (2a) and (2a) are incorporated for the purpose of

restricting the weight space:

uj � ujþ1 � �; j ¼ 1; . . .;m� 1; um � � ð2aÞ

uj � ujþ1 � ujþ1 � ujþ2; j ¼ 1; . . .;m� 2: ð2bÞ

Here we note that if � ¼ 0 in (2a), only (2b) affects the ranking

of candidates since (2a) is rendered redundant. When we

denote qj ¼ uj � ujþ1 in (2b), a set of constraints (2b) simply

becomes qj � qjþ1 � 0 j ¼ 1; . . .;m� 2, implying qj � 0 and

qjþ1 � 0 as in (2a). Noguchi et al (2002) employed a strong

ordering that emphasizes the complete categorization of

ranking by imposing the following strict ordinal relations:

u1 � 2u2 � � � � �mum; um � � ¼ 2

Nm mþ 1ð Þ

where N is the number of voters. Wang et al (2007) proposed

three new models for preference voting and aggregation; two

are linear models, partially based on Noguchi et al’s model,

and one is a nonlinear model.

In this paper, we present an easy method for solving the

two linear models proposed by Wang et al (2007) and extend

these models by incorporating other constraints on rank

position importance. First, we denote a strict ordering with

the sum-to-unity constraint as SW in (3a) and a strict ordering

without the sum-to-unity constraint as SWO in (3b),

respectively:

SW ¼ u1 � 2u2 � � � � �mum � 0;
Xm

j¼1

uj ¼ 1

( )

ð3aÞ

SWO ¼ 1� u1 � 2u2 � � � � �mum � 0f g: ð3bÞ

Then, we attempt to find a set of extreme points H of SWO

and K of SW in sequence. Rewriting SWO in terms of matrix

notation yields

Au� 0; u� 0

where

A ¼

1

0

..

.

0

0

�2

2

..

.

0

0

0

�3

..

.

0

0

� � �
� � �
..
.

m� 1
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0
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@

1

C
C
C
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and uT ¼ u1; . . .; umð Þ:

The lemma below provides a theoretical background for

finding the extreme points of two types of constraints on rank

position importance, SWO and SW.

Lemma The nonsingular matrix Am�m is an M-matrix, a

class of inverse-positive matrices, of which the inverse

matrix A�1 yields the extreme directions of the set SWO

and their normalized vectors result in the extreme points

of the set SW.

Proof The inverse matrix of A, denoted below in (4) as

H ¼ A�1, is surely inverse-positive where all elements

are nonnegative. A closed convex cone C, defined by

C ¼ u 2 Rm : Au� 0; u� 0f g, is a simplicial cone with

exactly m extremal rays since A is a nonsingular matrix

of order m. Then, it follows that ARm
þ

� ��¼ A�1
� �T

Rm
þ,

based on the dual of C, defined by C� ¼ y 2 Rm :f s 2
C ! s � y� 0g where s � y denotes the inner product

(Berman and Plemmons, 1994). Therefore, a set of

extreme vectors of C is composed of hi, i ¼ 1; . . .;m,

where hi is the ith column vector of A�1 as shown below:

H ¼ h1; h2; . . .; hmð Þ ¼

1 1 1 � � � 1

0 1
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1
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� � � 1
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. ..
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ð4Þ

A set of extreme points K of SW can be determined by

dividing each column vector hi by its column sum hT
i � 1

to satisfy the sum-to-unity constraint as shown below:

K ¼ k1; k2; . . .; kmð Þ

¼

1 2
3

6
11

� � � 1
Pm

j¼1
1
j

.

0 1
3

3
11
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.
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ð5Þ
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Other approaches to find the extreme points of SW have also

been presented (Carrizosa et al, 1995; Mármol et al, 1998;

Puerto et al, 2000; Mármol et al, 2002; Ahn, 2015).

In what follows, we present how to solve the two DEA-based

LP models, so-called LP-1 and LP-2 to aggregate preferential

votes and thus to rank candidates (Wang et al, 2007).

LP-1:

Maximize a

s:t: Zi ¼
Pm

j¼1

yijuj � a; i ¼ 1; . . .; n

u1 � 2u2 � � � � �mum � 0
Pm

j¼1

uj ¼ 1

Theorem 1 The optimal solution to LP-1 is obtained by

a�¼max1�j�m½aj�, aj¼min1�i�n½yT
i �kj�, yT

i ¼ðyi1;...;yimÞ,
kj2K and u�¼kj for fjja�¼max1�j�m½aj�g.

Proof Let us denote the preference voting data by

Y ¼ yij
� �

; i ¼ 1; . . .; n, j ¼ 1; . . .;m. Then, LP-1 can be

equivalently written by

Maximize a
s:t: Y � u�a

u 2 K; aT ¼ a; . . .; að Þ

Note that Zi ¼ yT
i � u represents the ith candidate’s

aggregated score evaluated by u. For a given extreme

weighting vector u ¼ kj 2 K, we can always find a feasible

aj [ 0 such that Y � kj � aj, aj ¼ min1� i� n aij
� �

, aij ¼
yT
i � kj. Therefore, the optimal objective value is achieved at

max1� j�m½aj� when evaluated by every extreme weighting

vector, thus yielding a� ¼ max1� j�m½aj�. Accordingly,

the optimal weighting vector is given by u� ¼ kj for

fjja� ¼ maxj½aj�g.

According to Theorem 1, the final rank order of candidates

can be obtained by arranging the elements of Y � u� in

descending order. In addition to LP-1, Wang et al (2007)

introduced a second DEA-based LP, so-called LP-2 as follows1:

LP-2:

Maximize a

s:t: a�Zi ¼
Pm

j¼1

yijuj � 1; i ¼ 1; . . .; n

1� u1 � 2u2 � � � � �mum � 0

Theorem 2 The optimal solution to LP-2 is obtained by a� ¼

min 1
b

� �
Y � hm

h i
and the optimal weighting vector u� ¼

1
b

� �
hm where b ¼ max½Y � hm�.

Proof It is obvious that yT
i � hm [ yT

i � hj, i ¼ 1; . . .; n, j ¼
1; . . .;m� 1 when evaluating each candidate Zi ¼ yT

i � u
in terms of the extreme point of SWO (thus we only have to

focus on the extreme weighting vector hm). Furthermore,

we obtain the following feasible set of constraints by

dividing each yT
i � hm by b ¼ max Y � hm½ �[ 1:

1
b

� �
yT
k � hm ¼ 1 for some kjmaxk yT

k � hm
� �� 	

1
b

� �
yT
j � hm\1; j 6¼ k

8
><

>:

Then, the optimal objective value is given by a� ¼

min 1
b

� �
Y � hm

h i
[min 1

b

� �
Y � hj

h i
for j 6¼ m, which is

the maximum that a can attain and accordingly, the

optimal weighting vector is u� ¼ 1
b

� �
hm.

Example

We illustrate the proposed method with an example adopted

from Cook and Kress (1990) where 20 voters are involved in

selecting four among six candidates via ranking. The detailed

preference votes are recorded in Table 1.

First, we attempt to determine the rank order of candidates

by solving LP-1 with the preferential voting data in Table 1.

The product of Y �K results in the aggregated preference

scores evaluated by the extreme points of SW where K is given

by

K ¼

1 2
3

6
11

12
25

0 1
3

3
11

6
25

0 0 2
11

4
25

0 0 0 3
25

0

B
B
B
@

1

C
C
C
A
:

The optimal objective value is determined by a� ¼
max 0; 4

3
; 18

11
; 48

25

� �
¼ 48

25
and u�T ¼ kT

4 ¼ 12
25
; 6

25
; 4

25
; 3

25

� �
according

to Theorem 1. Thus, the resulting rank order of candidates is

D 4:4ð Þ 	 B 4:16ð Þ 	 C 4:08ð Þ 	 A 3:16ð Þ 	 F 2:28ð Þ
	 E 1:92ð Þ:

Table 1 Preference votes received by six candidates

Candidate First
place

Second
place

Third
place

Fourth
place

A 3 3 4 3
B 4 5 5 2
C 6 2 3 2
D 6 2 2 6
E 0 4 3 4
F 1 4 3 3

1Even though u1 � 1f g was not designated in the original LP-2 model, it

is legitimate to consider it such a way because of Zi ¼
Pm

j¼1 yijuj � 1.
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To solve LP-2, on the other hand, we use a set of extreme

points H as shown below instead of K in LP-1:

H ¼

1 1 1 1

0 1
2

1
2

1
2

0 0 1
3

1
3

0 0 0 1
4

0

B
B
B
@

1

C
C
C
A
:

Based on Theorem 2, we obtain a� ¼ min 1
b

� �
Y � hm

h i
¼

48
110

where b¼max Y �h4½ �¼max 79
12
;104

12
;102

12
;110

12
;48

12
;57

12

� �
¼110

12
.

Therefore, the optimal weighting vector becomes u�T ¼
1
b

� �
h4 ¼ 12

110
1;1

2
;1

3
;1

4

� �
¼ 12

110
; 6

110
; 4

110
; 3

110

� �
and the resulting rank

order of candidates is

D 1ð Þ 	 B 0:9455ð Þ 	 C 0:9273ð Þ 	 A 0:7182ð Þ 	 F 0:5182ð Þ
	 E 0:4364ð Þ:

Constraints other than (3a) and (3b) can be considered to

account for different relative gaps between rank positions.

Specifically, the constraints in (2a) and (2b) are good

candidates for that purpose and the proposed method can be

directly applied to solve the DEA-based preferential voting

problems. Aguayo et al (2014) presents a different approach

for finding these extreme points.

We illustrate the following sets of weights constraints,

which are the hybrids of (2b) and (3a), and (2b) and (3b):

QW ¼
(

1� u1 � u2 � 2ðu2 � u3Þ� � � � � ðm� 1Þ

ðum�1 � umÞ�mum � 0;
Xm

j¼1

uj ¼ 1

)

QWO ¼ f1� u1 � u2 � 2ðu2 � u3Þ� � � � � ðm� 1Þ
ðum�1 � umÞ�mum � 0g:

To solve LP-1 (or LP-2) constrained by QW (or QWO), we

attempt to find the extreme points of the constraints. Consider

QWO and denote qi ¼ ui � uiþ1, i ¼ 1; . . .;m� 1 to give

Q0
WO ¼ q1 � 2q2 � � � � � m� 1ð Þqm�1 �mqm � 0f g. A set of

extreme points of Q0
WO is given by H in (4) in terms of qi.

Thus, to derive the extreme points of QWO, we only have to

transform the extreme points in terms of qi into those in terms

of ui by solving the following set of equations:

qi ¼ ui � uiþ1; i ¼ 1; . . .;m� 1:

For example, for qT
1 ¼ 1; 0; 0; 0ð Þ, we solve a system of

equations u1 � u2 ¼ 1, u2 � u3 ¼ 0, u3 � u4 ¼ 0, u4 ¼ 0 to

derive uT
1 ¼ 1; 0; 0; 0ð Þ. Similarly, uT

2 ¼ 1; 1
3
; 0; 0

� �
is obtained

for qT
2 ¼ 1; 1

2
; 0; 0

� �
by solving u1 � u2 ¼ 1, u2 � u3 ¼ 1

2
,

u3 � u4 ¼ 0, u4 ¼ 0. Finally, uT
3 ¼ 1; 5

11
; 2

11
; 0

� �
and uT

4 ¼
1; 13

25
; 7

25
; 3

25

� �
correspond to qT

3 ¼ 1; 1
2
; 1

3
; 0

� �
and qT

4 ¼

1; 1
2
; 1

3
; 1

4

� �
, respectively. The extreme points of QW are

obtained by normalizing each ui, i ¼ 1; . . .; 4.

3. Concluding remarks

In the paper, we have shown that the two DEA-based LP

models proposed by Wang et al (2007) can be solved by

simple matrix computations when the extreme points of the

constraints used in the models are determined. The constraints

that account for the relative gaps between rank positions are

revealed to be inverse-positive, which consequently makes it

easier to find their extreme points. These findings can be

effectively used to identify the extreme points of other types of

incomplete criteria weights frequently found in the MCDM

field.

Furthermore, other types of constraints could represent the

decision-maker’s quantifying metrics for rank position. To this

end, we illustrated two sets of constraints and showed that the

proposed method can also be applied to rank candidates when

they are incorporated into the DEA-based preferential voting

problems.
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