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Maritime search and rescue (SAR) operations, conducted for rendering aid to the victims in need of help at sea,
play a crucial role in dropping the number of causalities. Therefore, it is of high importance to organize SAR
operations properly. In this paper, we compose a hybrid methodology which combines optimization and
simulation to allocate SAR helicopters. First, we build an integer linear programming (ILP) model to provide an
effective deployment plan and use it as an input to a simulation model which includes constraints that the ILP
model cannot tackle. Next, using a rule-based algorithm, we generate alternative solutions and seek better plans
that exist in the vicinity of the ILP model solution. We perform our methodology on the historical incident data in
the Aegean Sea region. Results show that the hybrid methodology we adopted leads to a more effective utilization
of resources than the optimization model alone.
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1. Introduction

Coastal countries construct maritime search and rescue (SAR)

organizations, generally coast guards, to respond incidents

occurring in their own SAR responsible region. SAR heli-

copters constitute the most important resource of these

organizations in the sense that they are the most effective

vehicles to respond incidents at sea and/or transport the

critically sick or injured to medical centers. Some of their

advantages are as follows: the capability of air search for lost

victims, the ability of shuttling rescue personnel, equipment,

or supplies to the victim quickly; the reduction in patients’

transport time to a medical center; the specialized equipment

capability to respond incidents such as a fire; the reliable and

durable operation capability (compared to SAR boats) in

hostile environments (Grissom et al, 2006; Varol and Gunal,

2015). Due to those aforementioned advantages, helicopter

requests to respond distress calls for SAR operations occur

frequently, which in most cases aims to reach victims at sea

quickly and transport them to the nearest treatment centers.

Disclaimer The views and conclusions contained herein are

those of the authors and should not be interpreted as

necessarily representing the official policies or endorsements,

either expressed or implied, of any affiliated organization or

government.

Thus, the leading factor in determining the allocation plan of

SAR helicopters is proximity to the potential incident regions.

Besides, these organizations need to determine the number and

type of resources, station allocations, equipment and staff

capabilities. In that case, determining where to locate SAR

helicopter resources is undoubtedly a facility location/resource

allocation problem.

The problem of how to locate facilities is that of a strategic

one and popularly seen in private and public firms. Deploy-

ment of a new construction is costly and needs to take a

number of factors into consideration such as the distance to

potential customers, any kind of changes and the necessity of

relocation in the long term. It is of high importance to conduct

an analytic study due to the remarkable cost of changing

decisions on facility locations. Along with the allocation of

warehouses in private firms, that of emergency response

systems, such as fire-fighting, ambulance and SAR operations

in public sector, is the main application area of resource

allocation problem. In the literature, a considerable number of

studies have been held to deal with this challenge. These

studies mainly consider distances between servers and cus-

tomers, coverage level and economic issues. In addition,

reaction time to distress calls in emergency response systems

is also a common performance metric in most studies.

However, optimization models developed to solve the

resource allocation problems involving ‘‘server-to-customer’’

type operations, such as fire-fighting, emergency incident

response, first aid (ambulance services) and SAR at sea, do not

account for effects of unexpected equipment breakdown and
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weather condition issues to the performance of optimal

solution. In most real life situations, the performance is

affected due to unexpected delays or unavailability of scarce

resources. In this paper, we present an optimization study to

allocate SAR helicopters to stations in the area of interest.

Beyond conventional formulations for mathematical modeling,

we adopted a hybrid methodology to tackle the abovemen-

tioned challenges. Considering the tactical aspects of the

emergency response operations, we developed a three stage

methodology which includes: (1) an Integer Linear Program-

ming (ILP) p-median location analysis model to determine a

base SAR helicopter allocation plan with the objective of

minimizing total response time to incidents (distress calls).

This optimization model incorporates multiple facility types,

i.e., different SAR helicopters, and also considers the business

rules of the SAR organization. (2) A discrete event simulation

(DES) model which tests the performance of the analytic

solution under more realistic settings. The DES model consid-

ers realistic weather conditions and equipment breakdowns

which are tricky to handle in the ILP model. (3) An alternative

resource allocation plan generating and testing practice to

evaluate better plans that exist in the vicinity of the ILP model

solution. In specific, this practice includes a simple rule-based

algorithm to generate other feasible nearby allocation plans

which can be tailored by the decision maker in accordance with

his/her preferences. We then use our DES model to assess the

performance of generated alternative solutions.

Hybrid modeling approaches in OR are popular due to the fact

that ‘‘Union is strength.’’ We mean that the advantage of one sole

modeling approach can further be amplified by working with

another modeling approach in order to solve problems in OR. In

our case, we merged the power of ILP modeling with that of

simulation. The former is famous for obtaining exact solutions,

e.g., p-MP, while the latter is known as a flexible modeling

method to cope with complexity. Simulation also serves well as a

communication medium between the modelers, who have a solid

grasp of the methods, and the decision makers, who know the

domain area thoroughly. The main reason why we have chosen

the ‘‘hybrid approach’’ is that; the simulation model is used as a

communication medium between us and the decision makers in

TurCG. A secondary reason is that future requirements that may

arise in this problem domain, such as creating a decision support

system, can be handled in a better way using simulation

modeling.

This paper is structured as follows: the literature review of

optimization and DES models in resource allocation problems

in emergency response systems is presented in Section 2, and

our methodology is explained in Section 3. In Section 4, we

experiment and demonstrate the impact of our approach with

respect to the Aegean Sea. Finally, we conclude our work in

Section 5.

We expect this study to guide planners of SAR operations

for effective utilization of resources and help relieve distress of

humans in need of help at sea, particularly due to migrant

crises at the Aegean Sea.

2. Related work

Allocation of emergency systems is a subproblem of the

facility location/resource allocation problem. In this section,

we summarize studies that handle emergency response

systems using optimization and simulation methodology,

stochastic modeling, followed by studies on SAR resource

allocations.

In the literature, there are many types of methodology to

deal with the resource allocation problem. Church and ReVelle

(1976), Owen and Daskin (1998), Schilling et al (1993),

Brotcorne et al (2003) and Hale and Moberg (2003) are some

of the studies that have utilized traditional models for

allocation problems in the last few decades. These works

point out covering, center and median models. Coverage

problems are comprised of two basic subproblems; namely,

set-covering problems (SCP) and maximal covering location

problems (MCLP). While SCP seeks the minimum number of

facilities required to meet the desired coverage level, MCLP is

rendered to maximize coverage level with a given number of

facilities (Li et al, 2011). In addition to coverage level, travel

distance to facilities is a measure of effectiveness in a number

of problems, especially for allocating public buildings such as

schools, hospitals and train stations. In P-center problem, the

objective is to minimize the maximum distance between each

demand point and facility, also known as the minimax

problem. Differently, in P-median problems (p-MP) the

decision maker aims to allocate p facilities in such a way

that total distance traveled between demand points and

facilities is minimized. Dantrakul et al (2014) apply median

and center model to allocate waste system facilities in Chiang

Mai city and 5 provinces of Northern Thailand. As emergency

systems facility location problem applications, Jia et al (2007)

utilize both covering, center and median models for allocating

medical supply storage to distribute antibiotics, vaccines and

drugs rapidly under a possible chemical, biological, radiolog-

ical and nuclear (CBRN) terrorist attack in LA. These

traditional models are efficient methods in accordance with

the objective of decision makers. However, emergency

systems such as fire-fighting, ambulance and SAR respond

to distress calls if there is an idle resource available.

Otherwise, waiting or delay happens and this is an undesired

situation for a person in need of help. The hypercube model,

introduced by Larson (1974), is a widely used methodology

which comprises Markov Chain and queuing theory to allocate

server-to-customer systems. Despite not being an optimization

model, it gives an acceptable structure of facilities. Studies of

Takeda et al (2007), Galvão and Morabito (2008), Iannoni

et al (2009) and Toro-Diaz et al (2013) are appropriate

applications of hypercube model to find out more.

Along with the analytical models, computer simulation is a

particular approach for problems with stochastic parameters.

Mould (2001) studies the effectiveness of evacuation plans for

off-shore oil drilling stations solely by using DES, which is

due to the stochastic nature of the problem domain. The author
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estimates the probability of evacuation within N hours.

Simpson and Hancock (2009) review the last 50 years of OR

in terms of emergency response and discuss the impact of OR

applications including simulation on managing emergency

organizations. They conclude that OR has enormous potential

for the better management of emergency responses. In another

review, Aboueljinane et al (2013) figure out that computer

simulation models are utilized to improve the efficiency of

emergency medical services, a prevalent server-to-customer

system. They classify studies in accordance with the main

steps of a model such as inputs, formulation, model architec-

ture and outputs. DES is a widely used simulation method to

consider systems that have state changes at discrete time

intervals (Goldsman and Goldsman, 2015). Simulation opti-

mization with DES is a preferred methodology to deal with

problems that are complex and costly to evaluate. As an

example of simulation optimization application on emergency

response systems, Zhen et al (2014) apply DES optimization

for deployment and relocating ambulances in Shangai. Their

simulation model seeks to evaluate the efficiency of allocation

plans in stochastic scene. Another accepted utilization tech-

nique of DES is to evaluate the performance and dynamic

behavior of existing systems, those of emergency response in

particular. System success criterion is to respond distress calls

as quickly as possible; however, a number of matters such as

heavy traffic, unexpected failures and lack of idle resource

cause delay and affect the survival rates in possible catas-

trophic cases. Aboueljinane et al (2012) utilize DES to analyze

seven scenarios, which comprises dynamic changes in existing

Val-de-Marne department’s emergency medical service with

the aim of improving response time and compare results with

the original organization. In a different study, Aboueljinane

et al (2014) apply DES to improve the process of the same

system, which aims to respond calls in 20 min, with five

different strategies. Similarly, Nogueira et al (2016) devote

their efforts to minimize response times of emergency medical

service (EMS) with DES. Similar to previous studies, they

formulate a multi-objective optimization model to allocate

ambulances and then use allocation plan of the optimization

model as initial allocation in simulation model. They perform

DES model to EMS of Belo Horizonte, Brazil, with dynamic

changes in the number of ambulances, bases and hospitals in

six different scenarios. In their study, Onggo and Karatas

(2015) and Onggo and Karatas (2016) use simulation to

measure the performance of maritime search operations.

Considering different maritime search problems, the authors

develop a test-driven simulation modeling which utilizes

analytic formulas to verify and validate their model.

In our review of the literature pertaining to the allocation of

resources in a stochastic environment, we encountered a

number of studies which were generally concerned with

optimal locations in cases where demands, distances or costs

were random. In an early study, Ermoliev and Leonardi (1982)

explore the stochastic nature of facility location problems and

introduce the concept of random demand and trip pattern of

the customers. They propose numerical stochastic optimization

techniques and demonstrate their performances over a few

cases of simple problems. Louveaux (1986) considers a

stochastic p-MP model for the simple plant location problem

and develop a two-stage stochastic program. In the stochastic

version, the author assumes locations and facility sizes as the

first-stage decisions, while assuming the allocation of avail-

able resources as those of the second stage. Similarly, in a

more recent study, Louveaux and Peeters (1992) consider a

two-stage stochastic problem formulation for a facility loca-

tion problem where the demand, selling prices and costs of

production and transportation are uncertain. In their proposed

heuristic approach, the authors evaluate location decisions in

the first stage and the assignment of demand in the second one.

Berman et al (1987) develop two heuristic approaches for

locating p mobile services on a network in the presence of a

queuing-like congestion. Assuming stochastic service time,

they aim to find locations which minimize the total expected

response time. In their study, Schütz et al (2008) study a

stochastic facility location problem in which demand and costs

are uncertain and the objective is to minimize the expected

total cost of locating facilities. Unlike previous studies, this

work assumes that facility costs are nonlinear. The authors

formulate the problem as a two-stage stochastic programming

model and propose a solution method based on Lagrangean

relaxation. Tadei et al (2009) consider a stochastic p-MP

where the cost for siting a facility is a stochastic variable with

an unknown probability distribution and the goal is to

minimize the expected total cost. Modifying from the original

stochastic p-MP formulation, the authors develop a determin-

istic integer nonlinear problem to determine the optimal value

of location variables. Interested readers may also refer to

Louveaux (1993) and Snyder (2005) for detailed reviews on

facility location in case of uncertainty.

As we narrow the scope of our review regarding SAR

problems, we confront with a number of studies that consider

the search theory. Abi-Zeid and Frost (2005) design a

geographical decision support tool that applies search theory

to determine the optimal search plan for the Canadian Forces

in case of missing aircrafts, while Wysokiński et al (2014)

develop a similar system that is concerned with the missing

person’s behavior for the Polish SAR teams. Breivik and Allen

(2008) present a stochastic trajectory model which concerns

motions of drifting objects and use it for the Norwegian Sea

and the North Sea. Although the above-mentioned tools and

systems support SAR operations in terms of maximizing

detection probability of missing objects, they are not appro-

priate for allocation of SAR resources. In another study, Van

der Meer et al (2005) use Data Envelopment Analysis (DEA)

and regression analysis to evaluate the performance of UK

Coast Guard centers.

However, studies on the allocation of maritime SAR

resources are limited in the literature. Losea (1976) deals with

the problem of determining USCG allocation plan from

political and social science sights; with that, he does not
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follow an analytic approach. Nguyen and Kevin (2000)

formulate a goal programming model which considers MCLP

and p-MP to evaluate the service level of Canadian SAR

operations. In addition, they utilize the simulation method with

queuing theory to examine the operational performance of

SAR aircrafts in accordance with the average time that

incidents spend in queue. Radovilsky and Koermer (2007)

develop an ILP model to allocate SAR boats into USCG

stations. In their model, they utilize boats as variables and try

to locate SAR boats optimally while minimizing the capacity

deviation at each station. Also, their model does not permit

assigning a boat for multiple demand points. Wagner and

Radovilsky (2012) improve Radovilsky and Koermer (2007)’s

work and develop a decision support tool with multi-objective

Mixed Integer Programming (MIP) model, namely the Boat

Allocation Tool (BAT) which results in an improvement on

USCG fleet performance. They try to minimize the following

three objectives: the deviation of supply from demand, the

number of boat types at a station and the total cost. Using the

historical data between 2007 and 2012, similarly, Razi and

Karatas (2016) develop the Incident-Based Boat Allocation

Model (IB-BAM) based on a multi-objective MIP model, and

use deterministic incident data to optimize SAR boat alloca-

tions in the western region of Turkey. Venäläinen (2014) tries

to evaluate emergency responses in the Gulf of Finland and

utilizes GIS methods with wind and wave impacts on

navigation. Wex et al (2014) develop a decision support tool

for allocating rescue units to respond emergency situations.

They formulate a binary quadratic optimization model with the

aim of minimizing total completion time of weighted

incidents. In addition, they call the problem as ‘‘Rescue Unit

Assignment and Scheduling Problem (RUASP)’’ and state that

the problem could also be designed as Multiple Traveling

Salesman Problem (mTSP) and the parallel-machine schedul-

ing problem with unrelated machines. In their study, Ai et al

(2015) develop an integrated nonlinear optimization model

which deals with location, allocation and configuration of

maritime emergency response bases and vessels. They also

generate a hybrid heuristic and genetic algorithm to solve the

problem. Pelot et al (2015) consider the problem of locating

Canadian Coast Guard (CCG) SAR boats optimally. In their

study, they try to locate different types of boats with individual

capabilities in accordance to historical incident data in Atlantic

Canada.

In Afshartous et al (2009), they demonstrate optimization

and simulation methodology to allocate the US Coast Guard

air stations with the objective of minimizing total travel cost

(distance). Firstly, they formulate the optimization model as p-

Uncapacitated Facility Location Problem (p-UFLP), a combi-

nation of p-MP and UFLP, and then utilize the simulation

method to analyze the robustness of solution coming from

optimization model. In their simulation model, distress calls

are generated from an inhomogeneous Poisson process.

Goerlandt et al (2013) define a model practically focusing

the sea rescue operations as a multi-server and multi-customer

queuing system. They conduct a DES model to assess the

performance of The Finnish Lifeboat Institution’s rescue

organization that is operated by volunteers. They seek to

allocate 29 boats to 11 different rescue stations along the Gulf

of Finland. More importantly, the study has a number of

contributions from the related works above. The model

generates 21 different types of incident, coming from histor-

ical data, and imports wave conditions, which affect boats’

operation capabilities, into the model with the objective of

representing real-world states.

Earlier studies perform under pre-defined scenarios to

evaluate the performance of systems in terms of criterion

such as coverage, operation capacity, travel distance and

response time. However, models in most of these studies do

not contain real factors which cause waiting and delays in

systems. In our work, we aimed contributing to this end and

filling the gap by importing external factors which cause

delays such as weather conditions and unscheduled failures in

SAR vehicles. Handling these factors is difficult in analytical

models, and therefore we added them in a simulation model

which works with a robust optimization model.

3. Methodology

Rapid response to a victim at sea with appropriate resources is

the main purpose of a SAR operation. In order to improve the

success rate of those operations, decision makers should

consider the key factors below while planning SAR resource

allocations (Razi and Karatas, 2016):

• Historical incident data in the area of interest,

• Types and requirements of incidents,

• Resource availability,

• Environmental conditions,

• Station capabilities,

• Business rules of the organization.

In this study, we adopted a hybrid methodology as described

in Figure 1. Our methodology aims to generate an effective

SAR helicopter allocation plan while considering all key

factors mentioned above.

The methodology includes three modules: In module 1,

using an ILP model, we determine a base plan for the

allocation of SAR resources. This plan is optimal in the sense

that it ensures the minimum total travel distance. In particular,

we seek answers to the following questions: Which stations

among the candidates should be activated? What type and

number of helicopters should be allocated to those stations? In

the model, we group our decision variables as hard and easy

(in order to facilitate generating alternative plans in module 3),

hard being the station activation decisions and easy as the

helicopter assignment decisions. We call activation decisions

as ‘‘hard’’ in the sense that the problem becomes significantly

easier to solve whether those variables are fixed or
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predetermined. Also the decision of activating a station is far

costlier than assigning helicopters to those stations.

Module 2 tests the performance of a given allocation plan

via a DES model for stochastic incident data. It also considers

environmental and equipmental factors, i.e., weather condi-

tions, breakdowns, to create a more realistic scenario setting.

We first test the effectiveness of the base allocation plan

determined in the analytic model in module 1 with respect to a

number of predetermined performance metrics.

In module 3, alternative plan generation (APG), we create

alternative SAR resource allocation plans derived from the

base allocation plan. The module creates plans by changing

easy variables with respect to a number of criteria and rules,

which will be explained later, while keeping hard variables

fixed. In other words, utilizing the same stations as in the

analytic result, we change types and numbers of helicopters at

stations. While designing our alternative plans, we follow

simple rules, based on the incident-dense areas, weather

conditions and equipment breakdowns. Next, we measure the

performance of alternative plans in module 2 and compare

them with the base plan. In this step, our main ambition is to

find out whether there are other solutions which are adjacent to

the base plan and perform better under realistic scenario

settings.

3.1. Optimization model

We formulate an ILP p-MP model for allocating helicopter

resources to candidate stations. Our optimization model

determines the stations to be activated as well as the number

and type of helicopters to be deployed at each station. After

discussions with the aviation and SAR experts in the Turkish

CG, we decided to concentrate on the most common three

types of incidents (operations): evacuation, search and fire.

Although we implemented only two basic business rules,

additional constraints can also be added to the model to

implement other business rules. In the model, we also assumed

that the demand is satisfied by a single resource and not spread

over other resources, except for the case where fire incidents

are responded by both fire and evacuation helicopters.

Regarding very large scaled problems, it is quite possible

that ILP fails to provide a solution within a reasonable period

of CPU time. However, we believe that ILP is an applicable

and effective technique for solving maritime SAR resource

allocation problems since the expected problem sizes are small

enough for that technique. The studies Afshartous et al (2009)

and Wagner and Radovilsky (2012) conducted for the USCG,

the world’s largest SAR operating fleet, also used ILP for

optimal allocation planning.

MODULE-1
Optimization

Model
(GAMS©)

MODULE-2
Simulation Model

(Micro Saint 
Sharp©)

• Resource data
−Helicopter types, numbers, 

ranges and capabilities
−Station locations and 

capacities
• Deterministic historical 

incident data
– Locations
– Number
– Types
– Demand

• Business rules

• (Stochastic incident data) 
Probability distributions of 
incident
– Locations
– Number
– Types
– Demand

• Probability distributions of
– Weather conditions 

(thunderstorm, heavy 
precipitation and fog)

– Helicopter failure rates

Performance 
comparisons of 
base and 
alternative plans

MODULE-3
Alternative Plan 

Generation
(MATLAB)

Base plan

Alternative 
plans

• Hard and easy variables

Figure 1 Flowchart of methodology.
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Our model is formulated with sets, indices, parameters,

variables, objective function and constraints as explained

below.

3.1.1. Sets and indices

h 2 H Set of helicopter types

s 2 S Set of candidate stations

t 2 T Set of incident types {evacuation, search, fire}

i 2 I Set of incidents (historical incidents data)

It � I Set of incidents of type t

Ht � H Set of helicopter types that are appropriate for

incident type t

3.1.2. Parameters

dsi Distance between station s and incident i (nm)

rh Max range of helicopter of type h (nm)

vh Operation speed of helicopter type h (kts)

ui Demand of incident i (h)

AOh Annual operation capacity of helicopter type h (h)

Cs Maximum helicopter capacity of station s (unit)

Nh Total available number of helicopters of type h (unit)

K Maximum number of stations that can be activated out

of |S| available stations. (K B |S|)

cmin Multiplier to provide the minimum total task time

allowed on a yearly basis for a helicopter

3.1.3. Decision variables

xhs ¼ Number of helicopters of typehallocated to stations:

ðintegerÞ

ys ¼
1; if station s is activated

0; otherwise

�

3.1.4. Objective function

min z ¼
X
h2H

X
s2S

X
i2I

dsi

vh
khsi ð1Þ

The objective function attempts to minimize total response

time to incidents in the region. The response time is simply

computed by dividing the distance between station s and

incident i with the operation speed of helicopter type

h. However, having sums in the objective function creates

the risk of having long individual responses, while the

aggregate is the shortest. Although long response times are

undesirable in cases of emergency response, with the objective

function of this type, the risk is unavoidable. On the other

hand, we believe that we reduce that risk by the segmentation

of incident and helicopter types. Furthermore, the results of the

optimization model introduced here are not the finalized

answers to the problem since they are reevaluated using

different techniques in later stages of our proposed

methodology.

3.1.5. Constraints X
s2S

xhs �Nh; 8h 2 H ð2Þ

ys �
X
h2H

xhs �Csys; 8s 2 S ð3Þ

xhs �
X
i2I

khsi; 8h 2 H; s 2 S ð4Þ

X
h h2Htj

X
s2S

khsi ¼ 1; 8i 2 It; t 2 T ð5Þ

X
h h2Hevacuationj

X
s2S

khsi ¼ 1; 8i 2 Ifire ð6Þ

khsidsi � rh; 8h 2 H; s 2 S; i 2 I ð7Þ
X
i2I

k
hsi
ui �AOhxhs; 8h 2 H; s 2 S ð8Þ

X
i2I

k
hsi
ui � cminxhs; 8h 2 H; s 2 S ð9Þ

X
s2S

ys �K ð10Þ

xhs 2 0; 1; 2; . . .f g; 8h 2 H; s 2 S ð11Þ

ys; khsi 2 0; 1f g; 8h 2 H; s 2 S; i 2 I ð12Þ

Constraint (2) ensures that, for a given helicopter type h, the

number of allocated helicopters cannot exceed the total

number available. Constraint (3) defines the ys variable and

the respective station capacities. Constraint (4) prevents the

khsi ¼
1; if helicopter type h allocated in station s is assigned to incident i

0; otherwise

�
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allocation of unused helicopters. Constraint (5) makes sure that

each incident is intercepted by an appropriate type helicopter.

Constraint (6) is the business rule which dictates to assign an

additional evacuation helicopter to fire incidents. This busi-

ness is practiced by many SAR organizations for processing

crew evacuation and firefighting at the same time. Constraint

(7) provides that all incidents are responded by helicopters

within their operation range. Constraint (8) ensures that

demand supplied by a helicopter does not exceed its annual

operation capacity. Constraint (9) determines the minimum

allowable hours for each helicopter. Business rule for the

maximum number of stations that can be activated out of |S|

candidates is represented in constraint (10). Constraints (11)

and (12) declare variable types.

3.2. DES model

We identify maritime SAR processes as a customer-to-server

queuing system in which incidents (demands) are customers

and helicopters (resources) are servers. As we describe in

Figure 1, the model includes stochastic parameters which the

optimization model does not include. However, its main input

is the output of the optimization model: the base helicopter

allocation plan.

3.2.1. Inputs The simulation model consists of four sets of

inputs: (1) probability distributions of incident demand, (2)

weather conditions, (3) helicopter failures and (4) helipad

station locations and helicopter numbers (resources).

To determine incident probability distributions, we use

historical incident data of the area of interest. Although we

assume that incidents are distributed random uniformly in an

area, it is plausible to split the whole area into smaller and

rectangular grids, in order to capture lands and risky regions.

This ensures that each grid area has its individual incident

pattern. We then analyze historical data that fall into each grid

area to generate an incident inter-arrival time distribution. We

assume that incident creation is a Poisson process; thus, the

inter-incident time distribution for each incident type in a grid

follows an exponential distribution with a mean of (1 year)/

(number of incidents of that type).

We utilize historical weather and helicopter failure data to

determine probability distributions to be used as inputs to the

simulation model. To the best of our knowledge, these features

have not been included in a study before. Bad weather

conditions, such as thunderstorm, heavy precipitation and fog,

in vicinity of station, affect helicopters’ operability and

communication. Consequently, scheduled flights, and SAR

operations, could be canceled or delayed due to weather

conditions. Besides weather conditions, system failure in SAR

vehicles is a factor which could affect SAR operations.

Decision makers and surely helicopter crew could confront

with a failure in a season despite the scheduled maintenance.

During failure and maintenance times, SAR organization loses

effort and possible incidents could not be intercepted. Thus,

we import weather condition data and failure rates into the

model for better representation of the reality.

As for the resources, we run the simulation model with the

number of helipads and helicopters, and helicopter types, as in

the optimization model. In addition, we define the list of

operations that each type of helicopter/resource could intercept

and the model prevents intercepting incidents with incapable

helicopter/resources.

3.2.2. Process flow Maritime SAR operations start with a

distress call received by an operation center. Decision makers

in operation centers evaluate the situation and pass all

information of the incident to the nearest helipad in which

there is an idle helicopter. Helipad dispatches a capable

helicopter with respect to the incident type. For example,

decision makers must assign a helicopter which is equipped

with fire-fighting capabilities to a fire incident. Helicopter

conducts the operation until it is in need of refueling and then

turns back to the helipad for refueling. After that, it goes on

duty if required; otherwise, it stays in station for next duties.

In our work, we constructed the process flow shown in

Figure 2. A SAR process begins with a generated incident.

After an incident occurs, the model calculates distances from

incident to each helipad and sorts them. Since the objective in

our formulation is to minimize the total distance traveled, an

incident entity checks the helipads in an ascending order for an

idle resource. Through this process, if bad weather occurs or a

failure happens, alternative idle resources are sought. We

assume that weather conditions and failure affect only idle

helicopters and do not block the existing process. If there is no

idle capable helicopter, the incident enters the queue (FIFO) of

the nearest helipad. The model works with the cycle

mentioned above and collect all designated outputs.

3.2.3. Outputs We developed the model using Micro Saint

Sharpª version 3.7 simulation software, to generate the

outputs listed in Table 1. Since the objective function in our

study is to minimize the total travel time, some of the outputs

listed below are derivatives of this amount, e.g., average total

response time to incidents and to incidents satisfied.

‘‘Demand’’ is the amount of time needed on a scene to

handle an incident. Other outputs include counts of incidents

generated, responded and satisfied. Note that these outputs

implicitly measure the effects of waiting times due to weather

conditions and failures.

3.3. Alternative plan generation (APG)

Although our analytic model provides an effective solution to

the problem, its performance may deteriorate in real-world

settings. Hence, it may be possible to find alternative allocation

plans that outperform the base plan under more realistic

assumptions. The APG methodology is developed for providing
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decision makers with a number of candidate plausible allocation

plans. This is achieved by making slight modifications to the

base plan with some simple rules. It allows searching only a

small fraction of the solution space that is focused on the region

around the base plan. Although the APG approach presented in

this study adopts simple steps and rules, it is possible to adapt

more complicated and customized procedures.

APG adopts the allocation plan obtained from the opti-

mization model. During the process, it is not allowed to change

the values of the hard variables, i.e., activated stations;

Figure 2 Flowchart of model.

Table 1 Simulation outputs

Output
ID

Model output Definition

O1 Average total response time to
incidents (h)

Sum of response times to all incidents averaged over all simulation runs

O2 Average response time to an
incident satisfied (h)

Ratio of ‘‘total response time to incidents’’ to the ‘‘total number of incidents satisfied’’
averaged over all simulation runs

O3 Average ratio of incidents
responded (%)

Ratio of the ‘‘number of incidents responded’’ to the ‘‘number of incidents generated’’
averaged over all simulation runs

O4 Average ratio of demand satisfied
(%)

Ratio of ‘‘total demand satisfied’’ to the ‘‘total demand generated’’ averaged over all
simulation runs

O5 Average ratio of incidents stand
in queue (%)

Ratio of incidents which cannot be responded due to helicopter unavailability, averaged
over all simulation runs. Such incidents enter the nearest stations’ queue

1342 Journal of the Operational Research Society Vol. 68, No. 11



however, modification in soft variables, i.e., helicopter allo-

cation plan, is allowed. Historical incident data are primarily

used to determine incident-dense regions in the area of

interest. Weather condition data, i.e., the number of days with

thunderstorm, heavy precipitation and fog observed, are

utilized to define the level of weather condition severity in

the vicinity of a station.

The procedure starts with ranking the stations according to

the severity of weather conditions observed at those

locations. Next, it defines incident-dense regions and deter-

mines the nearest stations to those regions. The algorithm

then starts shifting the faster and low-failure-rated heli-

copters located at severe stations to the ones with less severe

conditions but higher incident density. The helicopter

shifting step is repeated until all feasible plans are generated.

The inputs, steps, rules and output of the procedure are listed

below:

Inputs:

• Optimization model results (hard variables: activated

stations, soft variables: helicopter allocation plan)

• Historical incident data (incident locations)

• Weather condition data (probability of canceling a flight

with respect to weather conditions observed in a station.)

• Helicopter failure rates.

• Station capacities.

Plan generation steps:

• Step-1: Rank the activated stations (obtained from opti-

mization model results) with respect to the probability of

canceling a flight (obtained from weather data) due to

weather conditions. High ranks denote critical stations with

high cancelation probabilities.

• Step-2: Determine the most incident-dense regions and

their closest activated stations.

• Step-3: Initialize the set of alternative plans P, as P = ;
and set i = 1.

• Step-4: Generate alternative plan pi:

Withdraw helicopter from a high-ranked station and deploy

it to a lower-rank station by following the rules below:

• Rule-1: Among the lower-rank stations, give preference to

the ones close to dense incident regions.

• Rule-2: Among the helicopters withdrawn, give preference

to the ones with low failure rates and/or high operation

speed.

• Rule-3: While shifting helicopters between stations, con-

sider station capacities. (maintain feasibility)

• Rule-4: While shifting helicopters between stations, ensure

that at least one helicopter remains at each activated station

(maintain feasibility).

• Step-5: Set P = P [{pi} and i = i ? 1.

Outputs:

• Set of alternative helicopter allocation plans, P.

This algorithm is implemented for alternative plan gener-

ation module in Figure 1, and its task is to create the

simulation experimental space.

The APG approach we use is similar to meta-heuristic

algorithms in the sense that it disciplines the search direction

in the solution space. It enables decision makers to measure

the performance of neighbor solutions, improving the chance

of finding a better plan than that of base. However, it is

significantly different from those well-known heuristics in

terms of its (1) goal and (2) stopping criteria. With regard to

(1), APG does not aim to measure the performance of a

solution, but rather creates a set of candidate solutions.

Performance evaluation is left to the simulation model in step

3. As for (2), APG preprocesses the search space exhaustively

within the vicinity of the base plan and stores it for further use.

It finally stops when all neighbor solutions that satisfy the

rules of decision makers are compiled.

4. Case study

The Aegean Sea has the heaviest marine traffic around the

mainland of Turkey. As a result of its being the only way to

reach the Black Sea, commercial and cruise ship traffic, as

well as the leisure tourism, could be named as main reasons

for traffic density. Figure 3 displays the historical data

(obtained from Turkish Coast Guard (TurCG)) for the

number of incidents occurred in the Aegean Sea between

2009 and 2014. The data reveals 1933 incidents, 716 of

which were in 2014. This can be best explained by the

turmoil in the Middle East started in 2013. That caused the

Aegean Sea to become a preferred route for the immigrants to

reach Europe illegally (UNHCR Global Appeal, 2015). There

is no doubt that the increase in illegal border-crossing

activities is the first and foremost factor which causes a

remarkable rise in the total number of catastrophic cases.

Besides, according to Miliou et al (2012)’s research, the

boosting number of ships carrying hazardous material and the

lack of designated shipping lanes are the other factors which

increase the risk in the region.

According to Turkish National SAR Plan, TurCG is

responsible for coordinating and conducting SAR operations

in its responsibility region in the Aegean Sea coastline of

Turkey. TurCG operates four different types of SAR heli-

copters in the region to respond distress signals from vessels in

danger and there are a total of nine candidate stations for those

helicopters. With the aim of enhancing the response time to

incidents, we apply our methodology to determine effective

locations for SAR helicopters in the western region of Turkey.
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4.1. Input data

TurCG uses four types of helicopters to conduct Aegean Sea

operations. Key parameter values of these helicopters, includ-

ing range, speed, capacity, are given in Table 2. Type-1, 2 and

3 can be used in evacuation and search operations, and for fire,

only Type-4 helicopters can be used. Weather conditions and

equipmental breakdowns are other important factors that affect

the performance of SAR operations in real world. Hence, our

simulation model incorporates historical weather data, i.e.,

days with thunderstorm, heavy precipitation and fog, as well as

failure rates for each helicopter type.

In specific, we count for the days when a helicopter is down

due to an equipmental breakdown. The failure rate is basically

used to determine the expected number of times a helicopter

fails in a year, whereas the maintenance time represents how

many days the helicopter will be inoperable. For confiden-

tiality purposes, in this study, we do not present actual failure

rate data of helicopters, but assume that failure rates and

maintenance period distributions are the same for all helicopter

types. Using Marlow and Novak (2013)’s results, we further

assume that the failure rate fits a log-normal distribution with

mean 3.1 and standard deviation 0.69, and the length of

maintenance period also fits a log-normal distribution with

mean 1.77 days and standard deviation 0.92 days. For each

four types of helicopter, the default annual operation capacity

AOh, measured in hours, is derived from the expected lifespan

of helicopters. For confidentiality purposes, we name heli-

copters as Type-1, Type-2, Type-3 and Type-4, and stations as

S1, S2, …, S9.

There are nine candidate stations in the region that can be

allocated with helicopters. However, five of those stations can

be activated at most due to budget constraints. Hence, in our

optimization model we set |S| = 9 and K = 5. Station

capacities are summarized in Table 3.

In order to account for the worst case scenario, we solve the

allocation problem by utilizing year 2014 data where the

demand reaches its peak value among previous five years.

However, for long-run planning purposes the model can easily

be updated by substituting the demand data with its forecast. In

cases where supply is severely constrained, one option for the

TurCG policy would be to enhance the capabilities of the fleet

in terms of flight crew number which would partially affect the

annual operation capacity of helicopters. Another option might

be to increase the number of stations that can be activated,

which would result in a higher management cost but decrease

the flight hour load on the fleet. Since these options are at a

strategic level rather than tactical, we will not address such

questions.

Locations, types and demands of all 716 incidents having

occurred in 2014 and candidate stations are displayed in

Figure 4 (left). After analyzing the incident data, we catego-

rized them into three types of operations, of which 637 are

evacuation, 43 are search and 36 are fire. To generate incidents

stochastically, we partitioned the responsibility are into

0.25 9 0.25 degree-sized grids as shown in Figure 4 (right).

It is clear that grids with more incidents represent high-risk

regions.

Total number of incidents in a grid is utilized to determine

inter-incident time distributions, and we assumed that inci-

dents are random uniformly distributed in each grid cell.

Table 3 Station capacities

Station S1 S2 S3 S4 S5 S6 S7 S8 S9

Capacity (Cs) 7 7 5 9 5 5 4 8 10

Table 2 Key parameters of helicopter types

Helicopter
type

Range
(nm)
(rh)

Speed
(kts)
(vh)

Minimum yearly
task time

(cmin)

Annual operation
capacity (h)

(AOh)

Failure
rate
mean/sd
(times/

year)

Maintenance time
(days)
mean/sd

Incident types that can
respond

Type-1 300 80 150 500 3.1/0.69 1.77/0.92 Evacuation, search
Type-2 400 120 150 400 3.1/0.69 1.77/0.92 Evacuation, search
Type-3 350 110 150 600 3.1/0.69 1.77/0.92 Evacuation, search
Type-4 750 90 100 800 3.1/0.69 1.77/0.92 Fire

Figure 3 Historical incident data of the Aegean Sea.
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Furthermore, after the incident data analysis, we agreed to use

geometric distributions for the time on scene (demand) with

mean values of 64.55, 8.46 and 25.92 h for fire, evacuation

and search incident types, respectively.

We used historical data provided by the Turkish State

Meteorological Service (TSMS) for weather conditions to

generate weather condition probability distributions. The data

include weather conditions observed at each station in last

10 years. We assumed that a flight is canceled if bad weather

conditions such as thunderstorm, heavy precipitation and fog

occur at the station for which the flight was planned. Figure 5

shows the probability of observing (a) fog, (b) thunderstorm

and (c) heavy precipitation in the vicinity of each station. The

figure reveals that fog is mostly observed at the vicinity of

station S2. Thunderstorms are particularly observed at the

vicinity of station S9, while heavy precipitation is mostly

observed at those of stations S2 and S7. After analyzing all

weather data, the probability of canceling a flight due to bad

weather conditions averaged over ten years is computed for

every month in each station s 2 S as in Table 4.

As expected, there is an evident relation among weather

conditions, region and season. Figures 6 and 7 depict this

relationship in detail. The data reveal that the probability of

canceling a flight due to severe weather conditions is much

higher in autumn and winter when compared to spring and

summer (see Figure 6). The most severe weather conditions

are particularly observed at the vicinity of S2 and S7 stations,

along with the most southern station S9, yielding an average

flight cancelation probability of 0.092, 0.128 and 0.069,

respectively. The probabilities remain steady between 0.024

and 0.039 for all other stations (see Figure 7).

4.2. Analytic solution

We solve our ILP model (for 716 incidents, nine candidate

stations and four helicopter types) in the General Algebraic

Modeling System (GAMSª) environment using CPLEX

12.2.0.2. The computational result shows that the branch-

and-cut search used by CPLEX finds the optimal solution

(with the optimality gap of 0%) within 79 CPU seconds on

a computer with the following configurations: Intel Core i5-

3330S CPU@2.70 Ghz with 6.00 GB memory and Micro-

soft Windows 8.1 64-Bit operating system. Table 5

S1 S2

S3

S4

S5

S6

S7

S8
S9

Evacua�on
Search
Fire

0 0 2 1 2 2 0 0 0 0 0 0 0 0 0

0 0 27 1 0 0 0 0 0 0 0 0 0 0 0

0 0 3 1 0 0 0 0 0 0 0 0 0 0 0

0 1 26 0 0 0 0 0 0 0 0 0 0 0 0

1 4 17 58 33 5 1 0 0 0 0 0 0 0 0

0 0 2 0 30 23 0 0 0 0 0 0 0 0 0

0 0 1 0 1 33 1 0 0 0 0 0 0 0 0

0 0 1 14 15 8 3 0 0 0 0 0 0 0 0

0 0 0 38 4 5 4 3 0 0 0 0 0 0 0

0 0 0 36 0 8 0 0 0 0 0 0 0 0 0

0 0 0 2 1 18 18 12 0 0 0 0 0 0 0

0 0 0 0 0 0 14 16 0 0 0 0 0 0 0

0 0 0 0 0 0 25 15 1 0 0 0 0 0 0

0 0 0 0 0 0 6 27 3 0 0 0 0 0 0

0 0 0 0 1 1 2 41 33 1 3 0 0 0 0

0 0 0 0 0 0 0 0 4 3 6 11 0 7 9

0 0 0 0 1 0 0 0 4 1 2 5 0 2 4

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 4 (Left) Incidents and candidate stations. The size of a marker is proportional to the amount of demand, i.e., small markers for
demands B24 h, medium markers for 24 h\ demands B 72 h, and large markers for demands[72 h. (Right) Grid structure and number
of incidents.
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summarizes the results (the activated stations and optimal

(base) allocation plan of helicopters) with respect to the

input data explained in Section 4.1. Results show that the

optimization model recommends activating stations so that

they are more or less evenly spaced along the coastline.

Another important observation is that helicopters with

higher speed (Type-2 and Type-3) are deployed at stations

(S3, S4 and S7) near high-incident-density regions. This is

an expected outcome since the objective is to minimize the

total travel time. Note that we call this solution ‘‘base plan’’

in the simulation model.

Figure 8 summarizes both the breakdown of various inci-

dents responded and the demand satisfied from activated

stations with each helicopter type. The results show that

helicopters are almost fully utilized in accordance with their

annual operation capacities. 73% of total demand (h) and 89%

of incidents are satisfied by high-speed Type-2 and Type-3

helicopters. Therefore, stations (S3, S4 and S7) in the mid-

region of the area of interest end up being the busiest stations

with an overall demand satisfaction ratio of 78%.

4.3. APG and simulation results

Using the input data and the optimization model results, we

generated alternative plans by following the rules summarized
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Figure 5 Probability of (a) fog, (b) thunderstorm, and (c) heavy precipitation in the vicinity of each station. Black disks and the solid
line represent monthly and yearly averaged probability, respectively.

Table 4 Probability of canceling a flight on a day due to weather conditions

Station Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Ave.

1 0.039 0.057 0.023 0.02 0.04 0.027 0.006 0 0.003 0.032 0.017 0.026 0.024
2 0.184 0.218 0.148 0.073 0.023 0.03 0.026 0.026 0.03 0.055 0.147 0.139 0.092
3 0.052 0.039 0.029 0.027 0.013 0.003 0.013 0.003 0.027 0.026 0.023 0.039 0.025
4 0.077 0.1 0.065 0.047 0.047 0.017 0.006 0.006 0.037 0.013 0.027 0.029 0.039
5 0.077 0.1 0.065 0.047 0.047 0.01 0.006 0.006 0.037 0.013 0.027 0.029 0.039
6 0.042 0.029 0.013 0.02 0.03 0.013 0.01 0.01 0.027 0.029 0.023 0.042 0.024
7 0.348 0.254 0.148 0.09 0.053 0.027 0.035 0.026 0.053 0.129 0.143 0.235 0.128
8 0.061 0.075 0.032 0.017 0.017 0.017 0.006 0.003 0.013 0.039 0.03 0.013 0.027
9 0.132 0.15 0.081 0.053 0.08 0.037 0.006 0.003 0.043 0.09 0.07 0.081 0.069
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in Section 3.3. In specific, among the activated stations, S7 has

the most severe weather conditions in its vicinity. Stations S3

and S4 are located near incident-dense regions. Hence, the

APG procedure recommends withdrawing helicopters (Type-3

is preferred) from S7 and deploying them to other stations (S3,

S4 and S8 are preferred).

Table 6 shows six alternative plans generated by APG

procedure. For example, in plan 1, one Type-3 helicopter is

shifted from S7 to S3. In plan 6, two Type-3 helicopters are

shifted from S4; one of them to S3, and the other to S8.

We ran our simulation model for the base plan obtained

from optimization model and collected results. After that, we

tested all alternative plans suggested by APG procedure, which

comprises dynamic changes in initial allocation, while stations

are constant. All simulation runs are conducted in Micro Saint

Sharpª version 3.7. The simulation of each plan is performed

1500 times for one year. Table 7 shows performance metric

values for the base plan under analytic and simulation models,

as well as the simulation results for the six alternative plans

mentioned in Table 6.
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Figure 6 Probability of canceling a flight on a day in each month due to weather conditions.
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Figure 7 Probability of canceling a flight on a day for each station. Black disks and the solid line represent monthly and yearly averaged
probability, respectively.
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Table 5 Results of optimization model

Activated station Number of incidents responded Demand (h) Number of helicopters assigned

Type-1 Type-2 Type-3 Type-4

S1 78 498 1 – – –
S3 181 1796 – – 3 –
S4 227 3877 – 5 2 1
S7 204 2509 – – 3 1
S8 62 1721 – 1 1 1

Figure 8 (Left) Breakdown of number of incidents responded from stations with each helicopter type. (Right) Breakdown of demand
satisfied from stations with each helicopter type.

Table 6 APG suggested alternative plans (the superscript numbers represent the number of helicopters shifted to (+) and from (-) a
station)

Plan 1 Plan 2

Station Type-1 Type-2 Type-3 Type-4 Station Type-1 Type-2 Type-3 Type-4

S1 1 – – – S1 1 – – –
S3 – – 4(+1) – S3 – – 5(+1) –
S4 – 5 2 1 S4 – 5 2 1
S7 – – 2(-1) 1 S7 – – 1(-1) 1
S8 – 1 1 1 S8 – 1 1 1

Plan 3 Plan 4

Station Type-1 Type-2 Type-3 Type-4 Station Type-1 Type-2 Type-3 Type-4

S1 1 – – – S1 1 – – –
S3 – – 3 – S3 – – 3 –
S4 – 5 3(+1) 1 S4 – 5 2 1
S7 – – 2(-1) 1 S7 – – 2(-1) 1
S8 – 1 1 1 S8 – 1 2(+1) 1

Plan 5 Plan 6

Station Type-1 Type-2 Type-3 Type-4 Station Type-1 Type-2 Type-3 Type-4

S1 1 – – – S1 1 – – –
S3 – – 4(+1) – S3 – – 4(+1) –
S4 – 5 3(+1) 1 S4 – 5 2 1
S7 – – 1(-2) 1 S7 – – 1(-2) 1
S8 – 1 1 1 S8 – 1 2(+1) 1
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The results show that analytic solution performs slightly

worse than expected when tested under realistic assumptions.

The total response time (O1) increases by 6.8%, whereas the

average ratio of incidents responded (O3) and the ratio of

demands satisfied (O4) decreases by 7%. Also 4% of the

incidents cannot find an available helicopter at the time of

incident and stand in queue. The most important result is that

among candidate plans, plans 2 and 5 dominate the base plan

in terms of all five outputs. In particular, plans 2 and 5 end up

with 5% and 4% less total response time (O1) than the base

plan, respectively. The average response time to incidents

satisfied (O2) is also decreased by 3% and 4%. Both plans

perform almost equally with the base plan in terms of incident

(O3) and demand (O4) satisfaction ratios. Finally, plans 2 and 5

perform 25% and 21% better, respectively, in terms of average

ratio of incidents stand in queue (O5).

5. Discussion

Operational Research and Management Science (OR/MS)

community can benefit from utilizing hybrid methods, and this

study may serve as an example. Mathematical modeling, one

of the strongest tools in OR/MS toolbox, is able to come up

with the exact solution of a ‘‘well-defined’’ problem. However,

not every problem in real world can be well defined, and in

such cases, other tools in the toolbox may help. For example, a

time-related constraint that can be hard to include in a

mathematical model may be an easy one for a simulation

model. Likewise, methods in data analytics, an emerging area,

can ease setting inputs to a mathematical model. Modelers,

particularly, can benefit from using different or hybrid

methods for solving problems in OR/MS.

As a consequence of this study, we can argue that a

mathematical model can be supported by a simulation model

to achieve realistic and convincing outcomes. In our case, the

simulation model has added weather conditions and failure

concepts to the problem, and this altered the base solution

provided by the mathematical model. Furthermore, the sim-

ulation model helped reduce the risk of getting long response

times suggested by the mathematical model.

The most distinctive outcome of this study is that it is

possible to determine improved solutions (compared to the

analytic solution) by implementing the combined optimization

and simulation model with the proposed APG methodology.

Our results showed that, among a small but high-quality

fraction of the search space generated by APG, alternative

plans 2 and 5 outperform the analytic solution in terms of all

outputs under more realistic settings. The numerical results

proved that the proposed methodology would enable strategic

decision makers to measure and improve the performance of

their SAR organizations.

6. Conclusion

Helicopters are the most effective vehicles in maritime SAR

operations to respond to incidents. They are deployed at base

stations, called helipads, mostly on land to ease the logistics of

operations. Two questions exist for the effective design of

SAR operations; first, where to locate helipads, and second,

how many and which type of helicopters to allocate to

helipads. Although finding the right location for helipads is

difficult, due to the cost of contraction and weather charac-

teristics, it is easier to allocate helicopters to helipads.

However, there are some factors and complications to consider

for answering both of these questions.

In this study, we proposed a hybrid methodology to help

relieve SAR operations’ design issues, such as finding the

location of helipads and allocating helicopters to helipads. Our

methodology includes an ILP model which finds the optimal

locations of helipads among candidate locations. This model is

a p-MP model and aims at finding the configuration of

helicopters to minimize total response time to incidents. The

model takes different incident types, and hence the helicopter

types, into account and tries to allocate the right number of

helicopters to the right incident types. Moreover, some

business rules, such as assigning an additional evacuation

helicopter to fire incidents, are included in the model. The

second part of our methodology is a DES model. This model

simulates SAR operations with the base helipad configuration

by considering two stochastic factors affecting SAR opera-

tions, namely weather conditions and helicopter failures.

Incident entities at random locations are created at random

times, and helicopters assigned at helipads respond to

incidents. Meanwhile, if there are bad weather conditions or

Table 7 Comparison of base plan and alternative plans

ID Output Base plan Alternative plans

Analytic Simulation Plan 1 Plan 2 Plan 3 Plan 4 Plan 5 Plan 6

O1 Average total response time to incidents (h) 204.243 218.032 239.417 206.433 221.083 190.216 209.133 222.833
O2 Average response time to incidents satisfied

(min)
17.115 19.643 21.281 19.085 20.534 17.371 18.841 21.241

O3 Average ratio of incidents responded (%) 100 93.41 94.67 94.02 90.60 92.15 93.41 91.14
O4 Ratio of demands satisfied (%) 100 93.36 94.59 93.98 90.59 92.15 93.37 92.99
O5 Average ratio of incidents stand in queue (%) – 4 4 3.2 3.5 4.4 3.3 4.1
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helicopters experience failure, different helicopters are

assigned. The third part of the methodology is to cover

experimental space in DES model. We developed a rule-based

algorithm based on operational experience to narrow the

search space. For example, allocating more helicopters to

helipads with low probability of canceling a flight due to

weather conditions is a general rule of allocation.

We demonstrated our methodology in action using the

Aegean Sea case. Among candidate station locations, we first

determined the activated helipad locations on the west coast of

Turkey and an allocation plan of helicopters. The model

suggested to activate five helipads and allocated one Type-1,

six Type-2, nine Type-3, and three Type-4 helicopters to cover

all incidents at minimum response time. Analysis of the

historical incident data revealed high density regions as well as

incident types in 2014 when the numbers peaked. Addition-

ally, we worked on weather data to find out the probability of

canceling a flight due to bad weather conditions, by helipad

and month of year. We then simulated one year’s operations

with different allocation plans, and compared results with ILP

model output. APG procedure helped us narrow the experi-

ment area. Results showed that, under realistic constraints such

as weather conditions and technical failures, ILP model results

could be improved and more realistic results can be achieved.

We believe that this study contributes to the present

knowledge at two levels. Firstly, at the methodological

domain, it is unique in the sense that a hybrid of ILP, DES,

and a novel APG method are used to solve a real-world

problem. Secondly, at the application domain, SAR operation

planning with helicopters, to the best of our knowledge, is

studied in OR/MS context for the first time at the Aegean Sea

where an effective SAR administration is needed urgently.
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