
Incorporating single and multiple losses in operational risk: a
multi-period perspective

Kamil J. Mizgiera,∗, Maximilian Wimmerb

aChair of Logistics Management, Department of Management, Technology, and Economics, Swiss Federal
Institute of Technology Zurich, Weinbergstrasse 56/58, CH-8092 Zurich, Switzerland

bDepartment of Finance, University of Regensburg, 93040 Regensburg, Germany

Abstract

Operational disruptions can have serious repercussions for firms over extended periods of

time. In this work, we develop a multi-period model of operational risk. We define the loss

process of operational disruptions as a sum of events triggering single and multiple losses.

We empirically validate our approach using an extensive data set of operational disruptions

experienced by firms from the financial services and manufacturing industry sectors. The

results of our simulations point out that operational risk is significantly underestimated if

the events leading to multiple losses are not accounted for in the firms’ long-term capital

planning.
Keywords: Risk management, Multi-period risk modeling, Operational risk

1. Introduction

Operational risk is considered to be one of the most material risks incurred by financial

institutions. According to the latest Basel II/III disclosures, regulatory capital requirements

for operational risk currently account for 10–30% of the total risk exposure of banks, a share

that is recognized as being due to increase further in the future (Ames et al. 2015). The

heterogeneity in the risk disclosures of the firms is not only due to different underlying

risk exposures, but also due to the adoption of different models for the measurement and

management of operational risk (Chorafas 2004; Chavez-Demoulin et al. 2006; Chernobai
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et al. 2008). In practice, the dominant approach to managing operational risk is the Loss

Distribution Approach (LDA), which relies on the assumption that both the frequency and

severity of losses are identically and independently distributed (Aue and Kalkbrener 2006).

This assumption is, however, challenged by the following exemplary cases1 in which firms

experienced multiple losses from operational disruptions over extended periods of time.

JP Morgan Chase & Co. (hereafter, JP Morgan), a US financial institution, reported

in October 2013 that it was called by the US Federal Housing Finance Agency to settle

claims that it and its subsidiaries had sold unsuitable residential mortgage-backed securities.

From November 2013 until May 2014, JP Morgan had to pay several fines to investors

and regulators related to this case (as depicted in Figure 1). However, not only financial

institutions are exposed to operational disruptions triggered by events with multiple losses.

Toyota Motor Corp. (hereafter, Toyota), one of the world’s major automotive manufactures,

implemented procedures to repair a gas pedal defect in its vehicles in Europe and Canada in

late September 2009. Customer complaints claimed that the gas pedals in Toyota vehicles

would become stuck, causing the vehicles to accelerate unexpectedly. Even though numerous

US customers complained of the same problem, Toyota did not issue a recall in the US until

January 2010. After Toyota issued the recall, the US Transportation Department began

to investigate the company’s actions. They found that Toyota had known of the safety

defects as early as September 2009 and yet did not report them until January 2010. As a

result, Toyota had to pay several fines and penalties between April 2010 and March 2014

(as depicted in Figure 2).

10-2013 11-2013 05-2014

$5.1B $34M, $515M, $1.0B, $1.4B, $6.0B $280M

Figure 1: Timing of losses of JP Morgan due to the mis-selling of residential mortgage-backed securities

In summary, in the case of JP Morgan, from the initial loss of $US 5.1B, six more losses

1For more examples we refer to the SAS OpRisk Global Data database, on which we give more details

in Section 4.
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were settled and the accumulated losses, until May 2014, amounted up to $US 14.4B. In

the case of Toyota, from the initial loss of $US 16.4M in April 2010, ten more losses were

settled and the accumulated losses, until March 2014, totaled $US 8.0B. Figures 1 and 2

highlight that the initial triggering event does not contain all information about the future

losses which may lead to very severe outcomes that extend over significant periods of time.

04-2010 10-2010 05-2011 11-2011 06-2012 12-2012 07-2013 01-2014

$16M

$3M

$32M $25M, $5.0B

$17M

$1.6B

$34M

$16M

$3M

$1.2B

Figure 2: Timing of losses of Toyota due to the sudden acceleration of vehicles attributed to the gas pedal’s

failure to release

The main aim of this paper is to quantify the impact of prolonged losses from operational

disruptions on multi-period risk measures. In particular, we use multi-period extensions of

Value-at-Risk (VaR) and Expected Shortfall (ES) – two risk measures that are proposed in

the literature and extensively used in practice. We develop a multi-period model of opera-

tional risk which allows the integration of operational risk events that lead to multiple losses

over time. Multi-period risk measurement is well established in the financial services sector

(Pfister et al. 2015) and it has also been widely explored in the production and operations

research literature (e.g., Tomlin 2006; Nickel et al. 2012). Especially in the manufacturing

sector, multi-period risk measurement has equally if not more important implications, since

investment decisions typically have longer time-horizons in capital-intensive industries. For

instance, financing a new factory site is a decision in which return on investment tends to be

measured in decades as opposed to loans issued by banks which typically mature in less than

10 years. Moreover, transaction costs for investing in new machinery are usually high and

such assets are held for a long time. In order to achieve sustainable growth, firms in both

industry sectors have to rely on risk models that take into account the extended planning

periods and the costs arising from lead times (De Treville et al. 2014).

Using a comprehensive database of operational losses, we calibrate our model for the
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financial and manufacturing industries. In a next step, we compare our model to a parsimo-

nious LDA model and find that operational risk is significantly underestimated if the events

leading to multiple losses are not accounted for appropriately. These results can have serious

implications for firms’ capital planning and budgeting processes, since a misinterpretation

of the underlying risk of a project can lead to suboptimal investment decisions.

The rest of this paper is organized as follows. In Section 2, we review the relevant

literature. Section 3 elaborates on the model definition. Next, in Section 4, we describe

the data, which is used in Section 5 to calibrate the model. The simulation setup, results

from the simulations as well as structural results from the model are presented in Section 6.

Finally, in Section 7, we conclude with implications for theory and managerial practice, and

discuss limitations and future research.

2. Literature Review

Our research is anchored in the operations–finance interface literature (Birge 2015; Miz-

gier et al. 2015a; Zhao and Huchzermeier 2015). While the literature is rather scarce,

there are a few papers that recognize the possibility of prolonged losses in operational risk.

Chernobai and Yildirim (2008) propose a shot-noise process to simulate the arrival of opera-

tional disruptions triggered by an initial event. Under the assumption that the events decay

exponentially or follow a power law, they found that a one-period VaR could be underestim-

ated if multiple loss effects are neglected. Bardoscia and Bellotti (2011) introduce a dynamic

operational risk model, which incorporates the evolution of the losses in time and takes into

account different time-correlations among the processes. Guegan and Hassani (2013) study

the possibility of multiple losses triggered by one event by capturing autocorrelation and

large losses simultaneously.

Our approach broadens the results of existing studies in several directions. First, we

introduce a multi-period measure of operational risk which accommodates the prolonged

impact of aftershocks more appropriately. The application of multi-period risk measures

is especially desirable for capital allocation purposes (Pfister et al., 2015), in which the

evolution of risk during the lifespan of a project is essential. While the multi-period approach
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is well established in the management of other types of risk (such as credit or market risk),

it has not yet received such attention in the operational risk literature. Second, we do not

impose any restrictions on the loss generating process. We fit and calibrate the distribution

of the aftershocks of an event and explicitly model the length and severity of the loss chains.

Thus, if the data suggests a distribution of aftershocks that is not exponential, it can be

readily incorporated into our general model formulation. Third, we empirically demonstrate

the existence of differences in operational risk measures between the financial services and

the manufacturing sector. In contrast to Chernobai and Yildirim (2008), we use data that

spans the entire industry sectors which makes our results more generalizable.

In the remainder of this section, we first detail one- and multi-period approaches to risk

modeling. Then we compare operational risk management practices in the financial and

manufacturing industry sectors.

2.1. One and multi-period risk models

While various one-period risk measures such as Value-at-Risk (VaR) were proposed in

the late 20th century, a rigorous analysis of the properties of such measures commenced with

the seminal work of Artzner et al. (1999). They define a coherent risk measure to inhibit

four desirable properties, in particular monotonicity, sub-additivity, positive homogeneity,

and translation invariance. Later on, some authors proclaim a relaxation of the notions

of sub-additivity and positive homogeneity to the notion of convexity (Föllmer and Schied,

2002), whereas others proclaim the use of spectral risk measures, which form a tightening

of coherent risk measures (Acerbi, 2002).

From a mathematical viewpoint, all such one-period risk measures are a map from a

random variable (representing the risky cash flows, for instance the losses from operational

disruptions) to a real number (representing the risk). When lifting one-period risk measure-

ment to a multi-period setting, the input for the risk measure function becomes a stochastic

process (representing the cash flows of future periods). The output of multi-period risk

measures can either be a random process representing the (today unknown) risk in future

periods (see Pfister et al., 2015, for an overview), or a real number aggregating the risk
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of all future periods into a single term (Frittelli and Scandolo, 2006; Artzner et al., 2007).

For practical purposes, the latter type of multi-period risk measures is more relevant. Melo

et al. (2009) showed that this approach can be used to the facility location problem in which

parameters change over time. Moreover, an overview of multi-period supply chain design

decisions can be found in Klibi et al. (2010).

2.2. Operational risk measurement in financial services and manufacturing

In particular in the field of financial literature, operational risk measurement has received

significant attention (Embrechts et al. 2003; De Fontnouvelle et al. 2006) and is closely

followed in practice (Frachot et al. 2007; Chernobai et al. 2008). The main approach to

quantifying operational risk is related to the calculation of VaR and Conditional VaR (CVaR)

which is also termed Expected Shortfall (ES) by banks and insurance companies (Rockafellar

and Uryasev 2002). One common method used to calculate VaR is the LDA which draws

on the mathematics of actuarial science (Bühlmann 1970, Nešlehová et al. 2006, Chavez-

Demoulin et al. 2015). Two input distributions are required for the LDA: the frequency and

severity of operational losses. The typical applications of VaR and CVaR are in enterprise-

wide risk management and capital planning (Jorion 2006). These quantile measures of

operational risk are mainly set in a one-period framework. However, a few multi-period

approaches to the measurement of operational risk have been proposed in the literature,

relying on a simple time-scaling transformation of the one-period VaR (e.g., Bocker and

Klüppelberg 2005). Kleindorfer and Li (2005) study a multi-period model for portfolio

optimization with applications to the electric power sector.

Furthermore, there are a number of applications of VaR (both in one- and multi-period

settings) that can be found in the operations management literature. For instance, Cash

Flow at Risk is used to measure losses due to industrial activities (Turner 1996). The

most widespread industrial applications of VaR are in the context of inventory management

(Tapiero 2005). Luciano et al. (2003) formulate a VaR approach to inventory earnings in a

multi-period inventory model. Ahmed et al. (2007) study an extension of the classical multi-

period, single-item, linear cost inventory problem where the objective function is a coherent
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risk measure (CVaR). This problem, also known as a newsvendor problem, has also been

studied by Choi and Ruszczyński (2008) and Jammernegg and Kischka (2009). Mizgier et al.

(2015b) apply VaR to measure risk in complex supply chain networks. Zhang et al. (2009)

study one- and multi-period optimal inventory control models with risk-averse constraints.

Another class of VaR models in inventory control has been proposed by Borgonovo and

Peccati (2009) who offer a quantitative measurement of the similarity/discrepancy of policies

reflecting different risk attitudes. In Borgonovo and Peccati (2011), the authors extend the

proposed model and introduce a comprehensive approach to the sensitivity analysis of risk-

coherent inventory models. A comprehensive overview of the current state of knowledge

about the applications of VaR to supply chain risks can be found in Chiu and Choi (2013).

In this study different areas of supply chain management research are addressed, including

single-echelon, multi-echelon supply chains, both in single and multi-period settings. In the

context of firms’ industry affiliation, Mizgier et al. (2015a) investigate statistical properties

of operational disruptions not only in the financial services but also in the manufacturing

industry. The authors propose to manage operational risk through capital adequacy and/or

process improvement contingent upon the risk event type and industry sector.

3. Model Specification

Building upon the insights from the literature in the previous section, we specify our

model for estimating the risk from operational disruptions. To this end, first we need to

define a loss process capturing the distribution of the losses. Afterward, we need to specify

a risk measure that translates the loss process to an interpretable figure. In order to remain

as general as possible, we do not impose any distributional assumption for our model in this

section.

3.1. Loss process

The point of debarkation for our model relies on the observation that a significant portion

of operational risk losses cannot be characterized as being independent. Instead, as high-

lighted in the examples of Figures 1 and 2, there are triggering events which are followed
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by a number of subsequent losses. In particular, the SAS OpRisk Global Data database

characterizes a total amount of $US 735B as operational losses from single event, multiple

losses (SEML) type. Given a total amount of operational risk losses of $US 2,901B, SEML

type losses account for more than 25% of all losses in this database. As pointed out by

Chernobai and Yildirim (2008), such SEML type losses do not occur independent in time

and thus cannot be modeled by a traditional LDA model. Let lt be the total loss amount

from operational risk of a firm incurred in period t and LT =
∑T

t=1 lt be the cumulative loss

until period T . We split the total loss into two classes with distinct stylized characteristics.

3.1.1. Single event, single loss (SESL)

SESL type events form the typical losses in operational risk. The main assumption is

that both the frequency and the severity of the losses are identically and independently (iid)

distributed, respectively. Let lSESL
t denote the total loss from such events in period t. Let

Ft denote the number of losses incurred in period t and St,i denote the severity of the ith

loss in period t.

Then, the total loss of all SESL type losses in period t is the sum of all losses occurring

in the same period, i.e.,

lSESL
t =

Ft∑
i=1

St,i,

and the cumulative loss until period T is

LSESL
T =

T∑
t=1

Ft∑
i=1

St,i, (1)

where Ft ∼ iid for all t and St,i ∼ iid for all t and i.

3.1.2. Single event, multiple losses (SEML)

In this case, we relax the iid assumption for the loss frequency distribution. Instead

of modeling the amount of losses incurred in each period directly, we consider triggering

events. Each triggering event is the head of an event chain that can induce losses in a

certain number of periods (the length of the chain). Let the random variable Et denote the

number of triggering events in period t (i.e., event chains starting in period t) and let et,i,
8



1 2 3 4 5 6

e1,1
e3,1
e3,2

e4,1
e6,1

Figure 3: SEML frequency modeling. This figure illustrates the approach of modeling the frequency of SEML

losses. The different periods of the model are denoted on the x-axis. The black dots represent triggering

events e. Each triggering event can induce several losses in subsequent years, which are depicted by white

dots.

i = 1, . . . , Et, denote the triggering events in period t. The number of subsequent periods

after a triggering event in which losses are induced by the event (i.e., the length of the

chain) is specific to the event and denoted by the random variable Lt,i. Finally, the random

variable F t,i
l , l = 0, . . . , Lt,i, denotes number of losses induced by event et,i in the lth period

of the event chain (i.e., in period t+ l) and the random variable St,i
l,j , j = 1, . . . , F t,i

l , denotes

the severity of the jth loss of that event chain in period t+ l.

Equipped with the above notation, the cumulative loss from all SEML type losses up to

period T can be computed as

LSEML
T =

T∑
t=0

Et∑
i=1

min{Lt,i, T−t}∑
l=0

F t,i
l∑

j=1

St,i
l,j , (2)

where Et ∼ iid, Lt,i ∼ iid, F t,i
l ∼ iid, and St,i

l,j ∼ iid for all t, i, l, and j, respectively. The

minimum operator in the third summation ensures that only losses that occur until period T

are counted in equation (2).

Figure 3 illustrates this approach. Consider, for instance, the second triggering event in

period 3, e3,2. The event induces losses in the two subsequent periods, i.e., L3,2 = 2. In

the first subsequent period (period 4), there are two losses, i.e., F 3,2
1 = 2, in the second

subsequent period (period 5), there is one loss, i.e., F 3,2
2 = 1. The first white dot to the

right of the black dot of e3,2 represents the first loss in period 4, S3,2
1,1 , and the dot above it

represents the second loss in period 4, S3,2
1,2 . The rightmost dot in the line represents the loss
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in period 5, S3,2
2,1 .

Altogether, the total loss incurred until period T is the sum of all SESL type losses and

all SEML type losses in period T , i.e., LT = LSESL
T + LSEML

T .

3.2. Risk measures

Once a proper loss process has been specified, the next step is to find an adequate risk

measure. As above, let L = (Lt)t=1,2,... be the cumulative loss process. While single period

risk measures would consider only the next periods loss L1, we use the following two multi-

period risk measures with horizon T and discount rate r (cf. the Appendix of Pfister et al.,

2015):

VaRα(L) = VaRα(L1) +
1

1 + r
(VaRα(L2)− VaRα(L1)) + . . .+

+
1

(1 + r)T−1
(VaRα(LT )− VaRα(LT−1))

=
T−1∑
t=1

(
r

(1 + r)t
VaRα(Lt)

)
+

r

(1 + r)T−1
VaRα(LT )

ESα(L) = ESα(L1) +
1

1 + r
(ESα(L2)− ESα(L1)) + . . .+

+
1

(1 + r)T−1
(ESα(LT )− ESα(LT−1))

=
T−1∑
t=1

(
r

(1 + r)t
ESα(Lt)

)
+

r

(1 + r)T−1
ESα(LT )

Let us briefly illustrate the motivation for the two multi-period risk measures by means of

the latter. For each period t = 1, . . . , T , there is a certain capital requirement ESα(Lt) which

depends on the accumulated losses up to that period. However, not all the capital ESα(LT )

needs to be reserved today. Today, only ESα(L1) needs to be available. In the next period,

ESα(L2) needs to be available so on average an additional capital of ESα(L2) − ESα(L1)

will be required. The present value of this additional capital is added to today’s risk. One

period later, an additional capital of ESα(L3)−ESα(L2) will be required. Again, the present

value is added to today’s risk. This process iterates until the time horizon T is reached.

Using such a multi-period risk measure is decisive for many capital allocation applications,
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in which the time structure of the required risk capital during the lifespan of a project may

vary.

4. Data

In order to calibrate the above model, our primary source is the SAS OpRisk Global

Data database. This database is one of the largest, most comprehensive, and most accurate

repository of information on publicly reported operational losses in excess of US$ 100,000

(SAS 2014). As of September 2014, the database has comprised more than 31,000 operational

loss events covering all industry sectors globally. Among the information provided for each

loss event are date of loss, loss severity, name of firm, industry of firm, and a classification

on whether it is a SESL or SEML type loss. In the latter case, there is a code assigned to

each triggering event so that subsequent losses can be related to it.

We split our database into four subsamples, namely SESL and SEML type losses in two

separate industry sectors: financial services and manufacturing. This resulted in 20,880

observations that we used in our analysis. These observations stem from 6,397 different

firms from the financial services sector and from 3,897 different firms from the manufacturing

sector. The loss severities have been scaled using the 2014 Consumer Price Index. All figures

are represented in US$ million.

4.1. Descriptive statistics—Single event single losses

The SESL severity distributions are characterized by relatively low mean values and high

skewness and kurtosis pointing to heavy-tailed distributions. This observation is consistent

with other empirical studies (e.g., Chavez-Demoulin et al. 2006). As Table 1 reports, higher

mean and higher maximum values can be observed in the manufacturing than in the financial

industry.

4.2. Descriptive statistics—Single event multiple losses

There are 1,136 different SEML triggering events recorded in the database. Each trigger-

ing event induced several losses. Therefore, when aggregating, we wind up with 2,905 losses
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Table 1: Descriptive statistics of SESL in financial services (FS) and manufacturing (M)

N Min Max Sum Mean Std. Dev. Skew. Kurt.

FS 13,012 0.10 26,525.11 767,734.15 59.00 558.17 30.15 1,110.27

M 5,894 0.10 98,829.52 675,210.78 114.56 1878.91 42.69 2,001.22

of which 1,160 losses belong to the financial services sector and 814 to the manufacturing

sector. The remaining 931 losses belong to the other sectors such as mining, retail trade,

construction, etc. and have been excluded from the analysis. As summarized in Table 2, the

mean severity in both sectors is higher than in the SESL case, whereas the skewness and

kurtosis are lower. There are 480 different firms from the financial services and 326 different

firms from the manufacturing sector in the SEML data sample.

Table 2: Descriptive statistics of SEML in financial services (FS) and manufacturing (M)

N Min Max Sum Mean Std. Dev. Skew. Kurt.

FS 1,160 0.10 27,009.08 348,031.14 300.03 1,318.95 11.11 173.57

M 814 0.11 26,433.42 179,162.10 220.10 1,315.27 15.77 281.19

5. Model calibration

In order to be able to compare our model with a traditional LDA model, we estimate

the multi-period risk measures for two different model specifications. The first one is a

traditional SESL only model (designated SESL only model). This model assumes that all

losses are of SESL type and all distributions are fitted using historical losses from both

SESL and SEML types. Notice that this model is identical to a traditional LDA model.

The second model specification (designated SESL plus SEML model) includes SESL and

SEML type losses separately. Here we fit the distributions of the loss process for SESL

events and SEML events separately. The total loss is the sum of the losses of SESL and

SEML type.

We fitted the following distributions of our operational risk model in both industry

sectors (SESL only and SESL plus SEML model):
12



1. Yearly frequency of operational disruptions F (discrete)

2. Severity of operational disruptions S (continuous)

Additionally, in the SESL plus SEML model, we fitted the following distributions:

3. Yearly frequency of triggering events E (discrete)

4. Length of the period of subsequent losses after a triggering event in years L (discrete)

For discrete distributions, we calibrated the parameters for Binomial, Negative binomial, and

Poisson distributions. For continuous distributions, we calibrated the parameters for Beta,

Birnbaum–Saunders, Exponential, Extreme value, Gamma, Generalized extreme value, Gen-

eralized Pareto, Inverse Gaussian, Logistic, Log-logistic, Lognormal, Nakagami, Normal,

Rayleigh, Rician, t location-scale, and Weibull distributions. We rank each distribution

according to the Bayesian information criterion2. Table 3 reports upon the best-fitting

distribution and second best fitting distribution and the calibrated parameters for the fin-

ancial industry sector. Table 4 reports upon the same results for the manufacturing in-

dustry sector. In both industry sectors, the best fitting distributions are the same for all

parameters—Inverse Gaussian for severity, Poisson for frequency in the SEML model, and

negative binomial in all other instances. Our choice of distributions is in line with the

guidance provided by the relevant literature (Klugman et al. 2012). Moreover, the existing

applications in the financial services industry further confirm the validity of our approach

(Boucher et al. 2008; McNeil et al. 2015).

6. Results

Note that while we are eventually interested in calculating the risk on a firm level, our

calibration of the number of yearly SESL losses (SEML triggering events) was on an industry

sector level. Hence, we alter our model from Section 3.1 in such a way that instead of of

taking the distribution for the frequency F t (SESL) and for the triggering events Et from

Section 5 directly, we use a compound distribution Bin(Nt, 1/n) for these distributions,

2A ranking according to the Akaike information criterion or Log Likelihood does not alter the best fit.
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Table 3: Fit and calibration of distribution parameters (Financial sector).
Model Parameter Rank Fitted Distribution −logL BIC AIC

SE
SL

on
ly

Frequency 1 negative binomial 284.64 576.85 573.28
Ft r = 0.4373, p = 0.0014

2 binomial 32921.94 65851.44 65847.87
N = 1374, p = 0.2344

Severity 1 inverse Gaussian 37938.15 75895.42 75880.30
St,i µ = 78.7303, λ = 0.7817

2 generalized Pareto 50159.63 100347.95 100325.27
k = 2.0039, σ = 1.7083, θ = 0.1

SE
SL

Frequency 1 negative binomial 281.78 571.14 567.57
Ft r = 0.4473, p = 0.0015

2 binomial 30614.68 61236.92 61233.35
N = 1295, p = 0.2284

Severity 1 inverse Gaussian 32507.80 65034.55 65019.60
St,i µ = 59.002, λ = 0.745

2 generalized Pareto 43831.23 87690.88 87668.46
k = 1.9077, σ = 1.5854, θ = 0.1

SE
M

L

Triggering events 1 negative binomial 116.30 239.47 236.60
Et r∗ = 0.7443, p∗ = 0.0458

2 Poisson 297.45 598.34 596.91
λ∗ = 15.5161

Length of chain 1 negative binomial 851.16 1714.68 1706.32
Lt,i r′ = 1.5381, p′ = 0.4746

2 Poisson 928.14 1862.46 1858.28
λ′ = 1.7027

Frequency 1 Poisson 1518.73 3044.63 3039.46
F t,i
l λ̄ = 0.8923

2 binomial 2379.13 4772.60 4762.26
N = 3, p = 0.2974

Severity 1 inverse Gaussian 5237.19 10488.50 10478.39
St,i
l,j µ = 300.0268, λ = 1.869

2 lognormal 6050.84 12115.80 12105.69
µ = 2.885, σ = 2.4911
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Table 4: Fit and calibration of distribution parameters (Manufacturing sector).
Model Parameter Rank Fitted Distribution −logL BIC AIC

SE
SL

on
ly

Frequency 1 negative binomial 248.03 503.48 500.05
Ft r = 0.6630, p = 0.0040

2 Poisson 2550.38 5104.48 5102.77
λ = 163.6098

Severity 1 inverse Gaussian 24621.50 49260.63 49247.01
St,i µ = 127.3663, λ = 2.6409

2 generalized Pareto 30026.08 60078.58 60058.15
k = 1.2662, σ = 9.1152, θ = 0.1

SE
SL

Frequency 1 negative binomial 243.29 494.00 490.57
Ft r = 0.6982, p = 0.0048

2 Poisson 2134.64 4272.99 4271.28
λ = 143.7561

Severity 1 inverse Gaussian 20849.21 41715.78 41702.42
St,i µ = 114.5590, λ = 2.5464

2 generalized Pareto 25616.66 51259.37 51239.33
k = 1.1975, σ = 8.5739, θ = 0.1

SE
M

L

Triggering events 1 negative binomial 115.90 238.97 235.80
Et r∗ = 1.1722, p∗ = 0.1181

2 Poisson 187.87 379.32 377.73
λ∗ = 8.75

Length of chain 1 negative binomial 675.30 1362.11 1354.61
Lt,i r′ = 0.8619, p′ = 0.2447

2 Poisson 930.84 1867.43 1863.68
λ′ = 2.6603

Frequency 1 Poisson 1232.23 2471.51 2466.46
F t,i
l λ̄ = 0.7060

2 binomial 2149.95 4314.00 4303.90
N = 4, p = 0.1765

Severity 1 inverse Gaussian 3747.85 7509.11 7499.70
St,i
l,j µ = 220.1009, λ = 3.6501

2 lognormal 4325.93 8665.26 8655.85
µ = 3.1677, σ = 2.0716
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where Nt is the respective industry-wide frequency F t or Et and n is the total numbers of

firms in the respective industry (n = 6397 and n = 3897 for the financial and manufacturing

sector, respectively). This assumes that each firm in an industry is equally prone to the

losses (given the regulatory-driven unification of risk management practices, this is a fairly

justified assumption (De Luna-Martinez and Rose 2003), which could however be altered by

adjusting the probability parameter 1/n in the binomial distribution).

In the following, we use two different approaches to derive estimates for the multi-period

risk measures as detailed in Section 3.2. The first is Monte Carlo simulations, the second

builds upon structural results derived from our model of Section 3.1. In both approaches,

we use a relatively high confidence level α = 99.9%, which is predominant with respect to

operational losses.

6.1. Monte Carlo simulations

Since high impact losses are relatively scarce, we use Monte Carlo simulations with

500 million iterations to compute our risk measures with the calibrated model and a time-

horizon of 20 years. Figure 4 displays the multi-period VaR and ES for financial and man-

ufacturing firms with an annual discount rate of 5%.3 The dash-dotted line in each graph

represents the total risk for the traditional SESL only model, whereas the solid line rep-

resents the total risk for the SESL plus SEML model. Furthermore, we display the SESL

component (dashed line) and SEML component (dotted line) of the SESL plus SEML model.

With respect to the industry sector, the level of operational risk both the financial and

manufacturing industry are comparable. When comparing the SESL plus SEML model to

the SESL only model, our results show that a parsimonious LDA approach captures the

risk (both measured with VaR and ES) surprisingly well in the manufacturing sector for all

time horizons. The same holds true when using VaR as risk measure in the financial sector.

However, this general picture changes when considering ES in the financial sector. Consid-

ering the upper right graph in Figure 4, we infer that the SESL only model substantially

underestimates the true risk for time horizons exceeding 4 years.

3The results with different discount rates are displayed in Figures A.1 and A.2 in the Appendix.
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Figure 4: Multi-period VaR and ES. The four graphs in this figure display the multi-period VaR (left) and

multi-period ES (right) for financial firms (top) and manufacturing firms (bottom). In each graph, we display

the risk of the total (SESL plus SEML) loss process LT (solid line), the risk of the SESL process LSESL
T

(dashed line), the risk of the SEML process LSEML
T (dotted line), and the total risk under the assumption

of SESL losses only (dash-dotted line). All risk measures are computed using a 99.9% confidence level and

a discount rate of r = 5%. All values are expressed in US$ million.
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Figure 5: Proportion of SEML and SESL risk. This figure displays the proportion of risk induced by

the SEML and SESL losses on the risk induced by the total losses for financial firms (solid line) and

manufacturing firms (dashed line). Risk is measured as multi-period VaR (left) and multi-period ES (right).

All risk measures are computed using a 99.9% confidence level and a discount rate of r = 5%.

To gain more insight, we partition the SESL plus SEML risk into its two components,

the SESL risk and the SEML risk and plot these proportions in Figure 5. For instance,

the solid line in the left plot shows that when considering the first year, only 0.7% of the

total VaR stems from SEML losses. When considering twenty years, this figure increases

to 38.9%. Generally, the proportion of SEML risk is higher in the financial industry sector

than in the manufacturing sector. The most pronounced influence of SEML losses can be

observed for the ES in the financial sector when considering time horizons of 4 years and

more, when the proportion of the SEML component reaches 44.5–63.4%.

6.2. Structural results

In this section, we analytically compute the first four moments of the loss of SESL and

SEML type. Afterward, we compare analytical VaR and ES estimates using both normal

and Johnson distributions to the VaR and ES computed via Monte Carlo simulations in the

previous section.
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6.2.1. SESL

With the adaption to a firm level described in Section 6, the cumulative loss from SESL

events from Equation (1) can be expressed as

LSESL
T =

T∑
t=1

Ft∑
i=1

St,i,

where St,i
iid∼ InvGaussian(µ, λ) and Ft

iid∼ Bin(Nt,
1
n
) with Nt

iid∼ NegBin(r, p) are the fitted

distributions with the respective parameters from Section 5. The probability generating

function ψFt of the compound random variable Ft can be computed as

ψFt(u) = ψNt(ψFt |Nt(u)) =

(
1− p

1− p((1− 1
n
) + 1

n
u)

)r

,

cf. Gut (1991), Theorem 5.1. Using ψFt(u), the characteristic function φLSESL
t

of LSESL
T is

φLSESL
T

(u) =
(
ψFt

(
φSt,i

(u)
))T

,

where φSt,i
(u) = exp

(
λ
µ

(
1−

√
1− 2µ2iu

λ

))
is the characteristic function of St,i. Comput-

ing the moments E
[
(LSESL

T )k
]
= i−k

[
dk

dukφLSESL
T

(u)
]
u=0

yields

µ(LSESL
T ) =

Tµpr

n (1− p)

σ2(LSESL
T ) =

Tµ3pr

λn (1− p)
+
Tµ2pr (n+ p− np)

n2(1− p)2

Skew(LSESL
T ) = Tpr

σ3(LSESL
T )

(
3µ5

λ2n(1−p)
+ 3µ4(n+p−np)

λn2(1−p)2
+ µ3(n+p−np)(n+2p−np)

n3(1−p)3

)
Kurt(LSESL

T ) = Tpr

σ4(LSESL
T )

(
6µ5p2(Tr+2)

λn3(1−p)3
− 3µ5(2λ2+5λµ+5µ2)

λ3n(1−p)
+ µ4(n+p−np)

n2(1−p)2

− 3µ5p(6λ+5µ+2Tλr+Tµr)

λ2n2(1−p)2
+ 3µ4p(Tr+2)(n+p−np)2

n4(1−p)4

)
Using these moments, we compute two different analytic estimates for the VaR and ES.

The first ones are the canonical estimates assuming a normal distribution and are computed

as

VaRNormal
α (LSESL

T ) = µ(LSESL
T ) + σ(LSESL

T ) · Φ−1(α)
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ESNormal
α (LSESL

T ) = µ(LSESL
T ) + σ(LSESL

T ) · ϕ(Φ
−1(α))

1− α
,

in which Φ−1(·) and ϕ(·) denote the inverse cdf and pdf of the standard normal distribution,

respectively. The second measures take the skewness and kurtosis of the loss distribution into

account using the Johnson (1949) SL translation. This translation transforms a continuous

random variable Z into the normalized form Y = a + b · ln
(
Z−c
d

)
and the parameters a, b,

c, and d can be estimated from the first four moments of the random variable Z. Simonato

(2011) derives the following analytical formulas for VaR and ES:

VaRJohnson
α (LSESL

T ) = µ(LSESL
T ) + σ(LSESL

T ) ·
(
c+ d · exp

(
Φ−1(α)− a

b

))
ESJohnson

α (LSESL
T ) = µ(LSESL

T ) + σ(LSESL
T ) · c·Φ(1−α)+d·exp( 1

2b2
−a

b )·Φ(1−(K− 1
b
))

1−α
,

where K = a+ b · ln
(

VaRJohnson
α (LSESL

T )−µ(LSESL
T )

σ(LSESL
T )

− c
)
− b · ln(d).

The two upper graphs in Figure 6 compare the two analytic VaR and ES estimates with

the results from our previous Monte Carlo simulation for the financial firms. Clearly, the

normal estimator heavily underestimates both risk measures, as it does not take the high

skewness and kurtosis of the loss distribution into account. The Johnson estimate, however,

works reasonable well for the VaR estimate at an 99.9% level. Yet, it overestimates the true

risk according to the ES measure by a factor of 2–4.

6.2.2. SEML

After switching sums and changing variables of the second sum, Equation (2) for the

SEML process becomes

LSEML
T =

T∑
t=0

min{Lt,i, t}∑
l=0

Et∑
i=1

F t,i
l∑

j=1

St,i
l,j ,

where St,i
l,j

iid∼ InvGaussian(µ, λ), F t,i
l

iid∼ Poisson(λ̄), Et iid∼ Bin(Nt,
1
n
) with F t,i

l

iid∼ NegBin(r∗, p∗)

and Lt,i iid∼ NegBin(r′, p′) are the fitted distributions with the respective parameters from

Section 5. To compute the first four moments of LSEML
T , we use Equations (32a–d) from

Grubbström and Tang (2006) for each summation iteratively. These equations provide for-

mulas for computing the moments of a random sum of random variables. However, the
20
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Figure 6: Multi-period VaR and ES. The four graphs in this figure display the multi-period VaR (left) and

multi-period ES (right) for SESL (top) and SEML (bottom) losses of financial firms. In each graph, we

display the simulated risk measures (solid line), the risk according to the Johnson estimator (dashed line),

and the risk according to a normal mean–variance estimator (dotted line). All risk measures are computed

using a 99.9% confidence level and a discount rate of r = 5%. All values are expressed in US$ million.
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second and the third summation need special care. The third is a random sum of a com-

pound distribution Et. The moments of Et, however, can be computed using the probability

generating functions similarly to the SESL case. The second is a random sum of a trun-

cated random variable. Since Lt,i is a discrete random variable and the truncation is from

above, the moments of min{Lt,i, t} can be computed directly using the discrete probabilities

P (Lt,i = x), x = 0, . . . , t.

Similar to the SESL case, we compute the normal and Johnson VaR and ES, respectively,

with the first four moments of LSEML
T for the financial firms. The results are plotted in the

two lower graphs in Figure 6. In general, the analytic Johnson VaR and ES overestimate

the true risk, whereas the analytic normal ES underestimates the true risk. In the case of

the normal VaR, the true risk is overestimated for short time horizons (up to 9 years) and

underestimated for longer time horizons.

6.3. Implications for capital allocation

The different outcomes for the risk of the total loss process (cf. Figure 4) can have serious

implications for the capital allocation in firms with different lines of business. Generally,

capital allocations principles, such as gradient allocation introduced by Tasche (2004), can

be used to compute the marginal capital requirement of each line of business. A multi-

objective capital allocation problem was proposed by Mizgier and Pasia (2015). Buch and

Dorfleitner (2008) introduce the notation of coherent capital allocation and note that it is

desirable to use a coherent risk measure in the allocation principle. Therefore, let AES be an

expected shortfall-based allocation principle so that
∑N

n=1A
ES
n = ES(L), where L denotes

the loss process of the entire firm. In particular, gradient allocation is given by

AES
m = lim

h→0

ES(
∑

n ̸=m Ln + hLm)− ES(
∑

n̸=m Ln)

h
, (3)

where Ln denotes the total loss of the nth line of business. To illustrate the potential impacts,

consider a large automotive manufacturing group. Such groups typically have two major

lines of business, the traditional manufacturing arm and a financial services arm. When

allocating operational risk capital to the two arms, it becomes evident from Equation (3)
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that a precise estimation of the operational loss processes for each arm is critical. Now, as

illustrated in Section 6.1, a traditional SESL only process may underestimate the true risk

especially for the financial services arm. In turn, the financial services arm is being allocated

more risk capital than appropriate.

7. Conclusions, limitations and future research

Our research has important contributions both to the literature and managerial prac-

tice. To our knowledge this is the first study to formally propose a multi-period model for

operational risk. As opposed to other studies which tackle the issue of prolonged losses

(e.g., Chernobai and Yildirim 2008), we do not assume any structural model formulation

or suggest a priori any distributional loss properties. Our contribution to the literature is

also to provide analytical estimates of VaR and ES using both normal and Johnson dis-

tributions. Therefore, our model generalizes the existing approaches and extends them to

a multi-period setting. Moreover, we show that, due to the possibility of prolonged dis-

ruptions, multi-period risk measures reveal the true impact of multiple losses over longer

planning horizons. Our approach can be utilized by firms in the financial services and in

the manufacturing sector to better manage their capital allocation decisions.

By investigating a large dataset of operational disruptions, we observe substantial dif-

ferences in the reported risk figures between the two industry sectors. The proportion of

SEML risk is generally higher in financial services than in manufacturing firms. Moreover,

the impact of SEML losses becomes particularly relevant when risk calculations are exten-

ded over several years. Driven by the insights of our model, risk managers can assess the

impact of prolonged losses on their long-term strategic decisions.

As computational power increases, we could run 500 million Monte Carlo simulations in

an acceptable run-time (approximately six hours on a personal computer). By doing so, we

could circumvent the problem of small samples for heavy-tailed distributions, making our

results more robust. We demonstrate that operational risk can be severely underestimated

when SEML losses are treated in the same manner as SESL losses, which is the current best
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practice. This implication is particularly important for policy-makers and regulators aiming

to impose more realistic capital requirements on the regulated firms.

The limitation of our study lies in the granularity of data resulting from the event

recording mechanism. As operational losses are rather infrequent, we had to aggregate the

losses into yearly counts, leading to the loss of some information. Nonetheless, since our

model is mainly used for long-term capital planning, this limitation does not affect the degree

to which our results can be generalized.

Future research could focus on incorporating the multi-period view of operational risk

into the general capital allocation framework. The aggregation of operational risk with other

types of risk in the multi-period setting is also an interesting research path to be explored in

the future. Our proposed method directly impacts the firms’ capital planning activities, but

it is also noteworthy that regulators could benefit from this approach as well. The design

of stress-tests, which include our proposed methodology in order to support the sustainable

growth of the regulated firms, is a promising future research path.
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Figure A.1: Multi-period VaR and ES. The four graphs in this figure display the multi-period VaR (left) and

multi-period ES (right) for financial firms (top) and manufacturing firms (bottom). In each graph, we display

the risk of the total (SESL plus SEML) loss process LT (solid line), the risk of the SESL process LSESL
T

(dashed line), the risk of the SEML process LSEML
T (dotted line), and the total risk under the assumption

of SESL losses only (dash-dotted line). All risk measures are computed using a 99.9% confidence level and

a discount rate of r = 1%. All values are expressed in million US$.
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Figure A.2: Multi-period VaR and ES. The four graphs in this figure display the multi-period VaR (left) and

multi-period ES (right) for financial firms (top) and manufacturing firms (bottom). In each graph, we display

the risk of the total (SESL plus SEML) loss process LT (solid line), the risk of the SESL process LSESL
T

(dashed line), the risk of the SEML process LSEML
T (dotted line), and the total risk under the assumption

of SESL losses only (dash-dotted line). All risk measures are computed using a 99.9% confidence level and

a discount rate of r = 10%. All values are expressed in million US$.
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