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We consider a scalar stochastic linear optimization problem subject to linear constraints. We introduce the notion
of deterministic equivalent formulation when the underlying probability space is equipped with a probability
multimeasure. The initial problem is then transformed into a set-valued optimization problem with linear
constraints. We also provide a method for estimating the expected value with respect to a probability
multimeasure and prove extensions of the classical strong law of large numbers, the Glivenko—Cantelli theorem,
and the central limit theorem to this setting. The notion of sampling with respect to a probability multimeasure
and the definition of cumulative distribution multifunction are also discussed. Finally, we show some properties

of the deterministic equivalent problem.
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1. Stochastic linear optimization

It is well known that stochastic optimization in both the scalar
and vector cases plays a significant role in the analysis,
modeling, design, and operation of modern systems. Stochastic
optimization refers to a collection of methods for minimizing or
maximizing an objective function when randomness is present
and, in general, stochastic optimization methods and techniques
generalize those used for deterministic problems. In recent years
stochastic optimization has become an essential tool for
modeling in science, engineering, business, computer science,
and statistics. Applications include business and decision
making, computer simulations, medicine and laboratory exper-
iments, traffic management, signal analysis, and many others. In
practical applications it is easy to find situations in which the
decision maker (DM) wishes to optimize an objective which
depends on some random parameters.

In financial portfolio management (see Markowitz, 1952)
the use of stochastic linear optimization is well known: In fact
if rj(w) >0, j = 1...m, are the stochastic returns of j financial
investments that are depending on the event w, the portfolio
financial decision-making problem can be written as:

*Correspondence: Davide La Torre, Department of Mathematics,
Nazarbayev University, Astana, Kazakhstan.

E-mail: davide.latorre @unimi.it

subject to:

Xj:]

{ >

x>0, j=1..m.

In practical cases the DM solves the above problem by taking
its deterministic equivalent version that can be formulated by
taking into consideration the expected value of each invest-
ment, their related covariances, or other criteria such as
dividends, liquidity, sustainability (see Markowitz, 1952;
Hirschberger et al, 2013). More general, let (Q, A, P) be a
probability space where Q is the basic space of events, A is a
o-algebra and P is a probability measure. The classical
formulation of a stochastic linear optimization model is as
follows:

m

max Z oj(w)x;

J=1

(SLP)

subject to:

Ax=0>b
>0 j=1..m.
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where @ is an event in the probability space Q, A is a
deterministic matrix of coefficients, b is a deterministic vector,
and x is the vector of input variables. One way to simplify and
solve the above problem consists of introducing the notion of a
deterministic equivalent formulation as follows:

m

max Y E(x))x; (DEP)
=1
subject to:
Ax=1>
x>0, j=1..m.
The notion of deterministic equivalent formulation reduces the

complexity of the initial stochastic formulation: There is a
price to pay of course, and this is mainly related to the loss of
information when switching from a stochastic context to a
deterministic one.

Very rarely the decision maker has a complete knowledge of
this probability distribution, as very often he is subject to
incomplete and partial information on the probability distri-
bution P. When such a scenario happens, the formulation of
the above deterministic equivalent problem is not so straight-
forward. Several attempts have been made in the literature to
mathematically describe this lack of complete information
(Abdelaziz and Masri, 2005; Ben Abdelaziz and Masri, 2010;
Bitran, 1980; Ermoliev and Gaivoronski, 1985; Dupacova,
1987; Urli and Nadeau, 1990, 2004), and all of them rely on
the imposition of lower and upper bounds for the underlying
probability distribution.

Here we propose an innovative approach based on our
notion of probability multimeasure: This definition allows to
formally describe the uncertainty related to the estimation of
the probability associated with a certain event. The name
probability multimeasure is essentially due to the fact that the
probability of an event takes multiple values. Several authors
have studied the main properties of this extension of the
classical notion of measure including, among others, Radon—
Nikodym theorems, martingales (see Artstein, 1972, 1974;
Hess, 2002; Hiai, 1978). The aim of this paper is then to
analyze and discuss the main properties of the deterministic
equivalent problem when the probability measure is replaced
by a probability multimeasure: The main difference with
respect to the classical context is that now the expectation is
replaced by the expected value of a random variable with
respect to a probability multimeasure. We first introduce the
notion of probability multimeasure and then define a deter-
ministic equivalent problem with respect to this new object.
The most important features of this model are the estimation of
the expected value of coefficient. This is typically done by
assuming an underlying probability distribution of events that
allows to estimate the above quantities.

This paper proceeds as follows: Section 2 presents the main
mathematical and statistical properties of this object. Section 3

presents the deterministic equivalent problem and studies its
main properties. The last section concludes.

2. Imprecise information and the notion of probability
multimeasures

In the literature several approaches are available to model the
notion of uncertainty in complex systems. In many cases this is
done by assuming the existence of an underlying probability
measure or distribution, but there are situations where this
assumption cannot be made due to the lack of data or the
vagueness, imprecision, or incompleteness of the available
information. Alternative techniques to describe the level of
imprecise information rely on fuzzy sets and set-valued
analysis. In both these two contexts the degree of uncertainty
is modeled using sets: The idea is that a set can contain all
possible outcomes or states of the world without specifying
any particular value. Our approach to set-valued measures or
multimeasure is a further attempt along this direction: We
suppose that the probability associated with a certain event is
no longer a number but a compact and convex subset of RY.
We used this definition in other previous papers, mainly
dealing with the notion of self-similarity and the extension of
the classical Monge—Kantrorovich distance between probabil-
ity measures (see Kunze et al, 2012; Torre and Mendivil,
2007, 2009, 2011, 2015). With respect to other definitions in
the literature (see Hess, 2002; Stojakovié, 2012) that are
essentially based on the notion of selector, this definition
allows one to introduce a parametrized family of classical
probability measures that are obtained from the multimeasure
through the process of scalarization via support function. This
approach works well any time one has to deal with abstract
integrals with respect to a probability multimeasure as it is
possible to reduce the complexity of the set-valued problem to
a family of scalar problems and then use classical results.

2.1. Preliminaries on compact convex sets

Let K denote the collection of all nonempty compact and

convex subsets of R? with addition and scalar multiplication
(A € R) defined as

A+B:={a+b:acAbeB} and JIA={la:acA}.

For A € K, we say that A is nonnegative (A>0) if 0 € A.
Given A € K the support function spt(-,A): R > R is
defined by

spt(p,A) =sup{p-a:a € A}

and one can recover A as

A= ﬂ {x:x-p<spt(p,A)}.

lIpll=1
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The support function satisfies the properties that, for all 1> 0
and A,B € K,

spt(p, /A + B) = Zspt(p,A) + spt(p, B),

spt(p, —B) = spt(—p, B). (2.2)

However, it is usually not the case that spt(p,—A) =
—spt(p,A). For any A € K, we define the norm of A as

[A[}:= sup{ix]| : x € A} = Sup spt(p,A).
pl=
It is easy to show that this satisfies the usual properties of a

norm.
For A, B € K, we also have that

du(A,B) = Sup |spt(p, A) — spt(p, B)|,
pl=

where dy is the Hausdorff metric on KC (Beer, 1993). Using
this fact and properties of the support function, it is easy to
show that if A, — A and B, — B in the Hausdorff metric on K
then A, + B, — A+ B.

A set A C R is balanced if JA C A for all |A| < 1. A unit
ball in R? is any balanced B € K with 0 € int(B). Any such
unit ball defines a norm on R? via the Minkowski functional

|lx|| = sup{1>0: ix € B}.

Whenever we have chosen such a set B, we will always use
this induced norm on R¢. The dual sphere is defined as

S*={y:sup{y-x:xcB} =1} CR’

and is also a nonempty compact set. Notice that since B is
compact, for each y € S*, there is some x € B with y - x = 1.

2.2. Multimeasures

We provide only basic definitions and those properties of
multimeasures that we will need; for more information and
proofs see Artstein (1972, 1974), Arstein and Vitale (1975),
Aubin and Frankowska (1990), Hiai (1978), Kandilakis
(1992), Torre and Mendivil (2011). Given a set Q and a o-
algebra A on Q a set-valued measure or multimeasure on
(Q, A) with values in K is a function ¢ : A — K such that

¢(0) = {0} and
(2.3)

o) o

for any sequence of disjoint sets A; € A. The left side of (2.3)
is the infinite Minkowski sum defined as

Z[(i = {Zk, 1k € Ki7zki<oo}'
i i i

We comment that the left side of (2.3) also converges in the
Hausdorff distance on K. The total variation of a multimea-
sure ¢ is defined in the usual way as

|1(A) = SUPZHWA:')W

where the supremum is taken over all finite measurable
partitions of A € A. The set function |¢| defined in this fashion
is a (nonnegative and scalar) measure on Q. If |$|(Q) <oo,
then ¢ is of bounded variation.

We will say that a multimeasure ¢ is nonnegative if
$(A) >0 (i.e.,0 € ¢(A)) for all A. Nonnegative multimeasures
are monotone: If A C B, then ¢(A) = {0} + ¢(A) C ¢p(B\ A)
+¢(A) = ¢(B). This makes nonnegative multimeasures a nice
generalization of (nonnegative) scalar measures. If ¢ is a
multimeasure and p € R, then the scalarization ¢" defined by

P"(A) = spt(p, $(A)) (2.4)

is a signed measure on Q and is a measure if ¢ is nonnegative.

One simple way to construct a multimeasure is by integrat-
ing a multifunction density f with respect to a measure [:

$) = [ 09 dut), 23)

There are several approaches to defining this integral (see

Aubin and Frankowska, 1990). For our purpose we only

consider f : Q — IC and so we can define the integral in (2.5)

as an element of K via support functions using the property
(see Aubin and Frankowska, 1990, Proposition 8.6.2)

spt(a [ 100 aut)) = [ sptta.s) auto

which defines the set as in (2.1). If the multifunction f is
nonnegative (that is, 0 € f(x) for all x), then the resulting
multimeasure will also be nonnegative. In addition, if
0<f(x)<g(x) and ¢ is a positive multimeasure, then (see
Torre and Mendivil, 2011)

[ 76 40 € [ 5(2) a0,

the convexity of the values of ¢ is crucial. For more results on
set-valued analysis see Aubin and Frankowska (1990).

2.3. Probability multimeasures

Definition 2.1 (probability multimeasure) Let B C R? be a
unit ball. A B-probability multimeasure (pmm) on (Q, A)
is a nonnegative multimeasure ¢ with ¢(Q) = B.

One strong motivation for this definition is that a pmm ¢
defines a parameterized family, ¢ for p € S*, of probability
measures. However, in general ¢’ and ¢7 are related and the
relationship can be quite complicated (the main constraint on
this relationship is that p—¢”(A) is convex).
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We can construct a pmm by using a density as in (2.5) and
integrate against a finite measure p. Of course, we need some
conditions on fin order for this to define a pmm. The simplest
conditions are to assume that f(x) € K is balanced for each x,
lf (xX)|| < C for some C and all x, and

0e intAf(x) du = int(B).

In general, it is difficult to choose a density to obtain a given
B; it is better to use the integral of the density to define B.

An example of a finitely supported pmm is given in Section 4,
so here we give a simple example of a continuous pmm.

Example 2.2 Let y be any probability measure fully sup-
ported on the unit circle S C R? and for each x € § let
F(x) = {Ax : =1 <A< 1}. Then (2.5) defines a pmm fully
supported on the circle S as well.

In this context, a random variable on (Q,A) is a Borel
measurable function X : Q — R. The expectation of X with
respect to a pmm ¢ is defined in the usual way as

E4(X) = [ X(0) dglo). (2.6)
This integral can also be constructed using support functions
(that is, using the ¢”) and each part of the decomposition
X = XT — X~ separately (since support functions work best
with nonnegative scalars); see Kandilakis (1992) for another
approach. Since 0 € ¢(A) for each A, it is easy to see that
0 € E4(X) as well.

We easily obtain a version of Chebyshev’s inequality in this
setting.

Theorem 2.3 (Chebyshev inequality) Suppose that f :
[0,00) — [0,00) and is nondecreasing and X is is a
nonnegative random variable with E4(f(X)) € K. Then
for all a>0 with f(a) > 0,

 Bslrx).

PX=a) S =20

Proof We see that

sx>a) = [

X>a f

7@

2.4. Statistical properties of probability multimeasures

In this section we provide extensions of the strong law of large
numbers, the Glivenko—Cantelli theorem, and the central limit
theorem. To do this, we introduce the notion of a cumulative
distribution multifunction associated with a probability
multimeasure.

2.4.1. Samples and the strong law of large numbers The
strong law of large numbers is so fundamental that, in order to
be useful, any theory of set-valued probability should have an
analogous result. However, as we will see, the idea of an iid
sequence of samples is fundamentally different in the set-
valued case; the standard framework does not work. Recall
that, given a probability measure u on R, a the standard
construction of an iid sample from g is any element of the
infinite product space RN equipped with the infinite product
measure generated by u on each factor.

This construction does not work in the set-valued context;
the construction breaks down even for the product of two
multimeasures. Thus, another approach is required. We have
chosen to use the path of Radon—-Nikodym derivatives of a
pmm with respect to a probability measure. This allows us
to convert the context from that of probability multimea-
sures to the setting of random sets, where there is a wealth
of results.

Proposition 2.4 Any probability multimeasure is of bounded
variation.

Proof To show this, let ¢} € S* be a basis for (R?)". Then
there is a K > 0 so that ||x|| <K >_, |} (x)| since all norms
on R? are equivalent. Now let C € K. Then

IC]| = sup |l < K'sup > " [ej ()| <K Y |spt(ef, O)]
ceC ceC 5 i

+ [spt(—¢;, C)|.

Using this, for any finite measurable partition {A;} of A
D Io@AII< D KDY o T (A) + ¢9(4))
J J i

kY4 (u A,.) e (uAj)
<K Q) + ¢ (Q) < 24K,

since each ¢ is a probability measure. This shows that
lpll <2dK. O

Let the probability measure p, be defined by py(A) =
|$[(A)/|$[(Q). Then ¢(A) = {0} whenever p,(A) =0 (that
is, ¢ < u,) and thus by the Radon-Nikodym theorem for
multimeasures (see Hiai, 1978, Corollary 5.3) there is a
multifunction fy, with compact and convex values such that

$) = [ 0 iy

Notice that f, : Q — K is a random set when we use the
probability measure w4 on €. In addition, notice that

1/ I <[1(Q) for all x.
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351 Definition 2.5 (i.i.d. sample) Let ¢ be a B-pmm on Q and
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X : Q — R be a random variable. Then by an iid sample
from (X, ¢) we mean an element from the product space

E = {(X(01)fp(an), X (@2)fp(an),...) : 0; € Q} C KV,

where we place the product measure on E induced by g,
on each factor.

Unlike in the case of scalar probability, a sample needs to
include some “set-valued” information along with the sample
values from the random variable X. It is too much to hope that
a sequence of scalar samples would allow us to recover the set-
valued expectation (2.6); this is unfortunate but unavoidable.

Theorem 2.6 (Strong law of large numbers) Suppose that
Ey, (I1X]) <oo and let xufy(x,) be an i.i.d. sample from
(X, ¢). Then almost surely

1
h}?‘ﬁ Z Xnﬂ/)(xn) = Ed)(x)v

n<N

where the set convergence is in the Hausdorff distance.

Proof The function w—X(w)fy(w) is a random set and
Ey, ([IXfyl) <oo by our assumption. Thus, by the strong
law of large numbers for random sets (Arstein and Vitale,
1975; Molchanov, 2005), we have that

iy S 00 = £, (05) = [ X(@)fo(o) ditg(0)

n<N

= Ey(X)

almost surely. [J

2.4.2. Cumulative distribution multifunctions and the Glivenko—
Cantelli Theorem For x,y € R™, we define x <y if x; <y; for
i=1,2,...,m and also define the set (—oo,x] := {y € R" :
y<x}. Using these notions, we say that a multifunction
F:R" — K is increasing if x<y implies F(y) = F(x) + A
with A > 0.

Given a pmm ¢ on R™ the cumulative distribution
multifunction (cdmf) is defined in the usual way as

Fy(x) = ¢((=00,x]).

It is easy to see that Fy is a nonnegative and increasing
multifunction which is cadlag in that F(x) = lim, F(x,) =
MuF (xn,) whenever x, \,x € R" and lim, F(x,) = U,F (xn)
exists whenever x, / x € R™ (these limits also exist in the
Hausdorff distance on K).

We can also convert from a cdmf to a pmm; for simplicity
we restrict attention to one-dimension.

Theorem 2.7 (a cdmf induces a pmm) Let F: R — K
be a cadlag nonnegative increasing multifunction with

NyF (x) = {0} and U,F(x) = B. Then there is a B-pmm ¢
so that F(x) = ¢((—o0,x]).

Proof Take a<b. Then F(b) = F(a) + A%, for some non-
negative A? € K. Define ¢((a, b]) = A2 and let B be the
algebra generated by sets of the form (a, b]. Using the
obvious modification of standard arguments (see for
example [?, Chapter 12]), it is possible to show that ¢
defines a countably additive multimeasure on B. In
addition, ¢ extends to a Borel probability measure for all
p € S*. Thus, by (Kandilakis, 1992, Theorem 2.6) there is
a multimeasure extension of ¢ to the Borel g-algebra; this
extension is clearly the desired pmm. []

Given an i.i.d. sample x;fy(x;) from (X, ¢), we can construct
the empirical cdmf of this sample

Fafe) = 23 Folo) Ve )

i<n

(2.8)

Theorem 2.8 (Glivenko—Cantelli) We have that as n — oo,

sup sup [spt(p, Fu(z)) — spt(p, F(2))| — 0
7€R peS*

almost surely.
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In particular, we have F,(z) — F(z) in the Hausdorff 413

distance uniformly in z.

Proof Let M =|¢|(Q)<oco. Since |[fy(z)]| <M and

IF(z)|| <M for all x, we also have ||F,(z)|| <M for all

z. Thus, as a function of p € S*, both spt(p, F(x)) and

spt(p, Fu(x)) for all n and x are Lipschitz with factor at
most M.

Let € > 0 be given and q1, g2,q¢ € S™ be such that they

form an €/(3M)-cover of S*. This means that for any

g € S” there is some i so that |spt(q, G) — spt(g;, G)|

<e€/3 where G is any one of F,(x) or F(x), for any n or x.

By the Glivenko—Cantelli theorem, for large enough
n we have almost surely

sup sup |spt(qi, Fa(2)) — spt(qi, F(2))| <€/3

eER 1<i<t

this, and the choice of the g; gives the desired result. [

2.4.3. Central limit theorem The theory of random sets also
contains versions of many standard results from probability
theory (see Molchanov, 2005; Cascales et al, 2007; Cressie,
1979; Puri and Ralescu, 1983; Rockafellar and Wets, 1998).
One example of this is the central limit theorem. Here we
briefly discuss how the CLT for random sets translates into our
setting. For simplicity we restrict to nonnegative random
variables X.

The standard CLT characterizes the distributional behavior
of the averages (1/n) Y, ,(Z;i — E(Z)). However, since there
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is no analogue of subtraction in the arithmetic of sets, we have
to be content with analyzing the behavior of the distance
between the sample average and the expected value. The
appropriate distance to use is the Hausdorff distance. A
random Gaussian variable £ in a Banach space Y is a random
variable with values in Y and such that y*(&) is a scalar
Gaussian random variable for all y* € Y*.
Theorem 2.9 (Central limit that
YEW(|X\2) <00 and let x,fy(x,) be an iid. sample from

(X, d). Then

theorem) Suppose

1
\/r_zdy(—inﬂ/,(x,-)JE</)(X))—][> distribution sup || ()],
n

i<n pes”

where & is a centered Gaussian random variable in C(S™)
with covariance structure

Tx(p, q) == spt(Ey[spt(Xfy(X), q)],p)
— spt(Ey(X),p) spt(E4(X),q), p.g€S"

3. The deterministic equivalent problem

The aim of this section is to present a notion of deterministic
equivalent problem associated with the stochastic linear
optimization model

m
max Z oj()x;
=1

subject to:

Ax=0b
x>0 j=1...m,

where w € Q (Q is a basic space of events, A is a g-algebra,
and ¢ is a pmm defined on the A). For simplicity we also
assume that the feasible set is compact.

In the following, let E; be the expected value of the random
variables o; with respect to a probability multimeasure ¢, that is

B = E(5) = [ 50) dp(0).
Since ¢ is a postive multimeasure we have that, for all j,

E; € K with 0 € E; (i.e., E; are positive). The deterministic
equivalent problem can be written as

m
max F(x) := Y Epx; (DLP)
j=1

and subject to:

Ax=0b
5>0 j=1.m

This is a set-valued optimization problem where the objective
function F takes compact and convex values. The following

definition introduces the notion of ordering between elements
in /C (see also Kuroiwaa, 2003).

Definition 3.1 Given two sets A, B € K we say that A <B if
A CB.

A standard separation argument gives the following lemma.

Lemma 3.2 Suppose A,B € K. Then A<B iff spt(q,A)
<spt(q,B) for all q and there is a p with spt(p,A)
<spt(p, B).

Definition 3.3 We say that a point X is a solution to (DLP)
there is no feasible y for which F(y) > F(X).

Proposition 3.4 There is at least one solution to (DLP).

Proof Let K be the compact and convex feasible set for
(DLP) and let g, € RY, with ||g,|| =1 for each n, be a
countable dense set in the unit sphere in R?. Since F is
continuous, so is each f,(x) = spt(gn, F(x)).

Define Aj:={x€K:fi(x)>fi(y) for all y € K}.
Since f; is continuous and K is compact, A is compact as
well (in fact, A; is also convex). Having defined A,, we
define A, 1 = {x € A, : fs1(x) > fur1(y) for ally €A,}.
We obviously have () # A, ;1 € A, and each A,, is compact
and convex, and thus, N,A, is nonempty. We claim that any
X € N,A, is a solution to (DLP).

If not, then there is some y € K with F(y) > F(%)
which means that spt(q, F(y)) > spt(g, F(%)) for all g and
there is some p with spt(p, F(y)) > spt(p, F(x)). This
implies that f;,(y) > f,,(X) for all n and there is some m so
that f,,(y) > fin(%), which is not possible by the con-
struction of x. [J

Our next result relates the solutions of (DLP) to the

solutions of the scalarizations of (DLP). The proof is
immediate and so we do not include it.
Proposition 3.5 Let X be a solution to the optimization
problem
m
maxZijj
j=1
subject to:

Ax=0>b
>0 j=1...m

Then there exists p € R? so that % solves the following
scalarized linear optimization problem:

m

max Z spt(p, Ej)x;

J=1

(3.1)
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subject to:

Ax=0b
>0 j=1.m.

Theorem 2.6 gives a way of using samples to obtain a
sequence of estimates for the sets E; in (DLP), which in turn
lead to a sequence of problems which converge (in the
appropriate sense) to (DLP). Our next result is a stability result
and shows that almost surely solutions to these problems
converge to a solution to (DLP).

Let dlfy(a)) be an iid. sample from (a,¢) for
j=1,2,...,m. From these data, we can construct sequences
of estimates of E; = [Eg4(o;), which are given by

1 .
B == dfs(d). (3.2)
j=1
Associated with each of these collections, for j =1,2,...,m,

there is a (DLP) given by

m
max F"(x) == Y Ex; (n—DLP)
j=1

and subject to:

Ax=0b
>0 j=1..m.

Theorem 3.6 Suppose that X" is a solution to n-DLP for each
n. Then almost surely any cluster point of X" is a solution
to (DLP).

Proof First we note that since a.s. E/ — E; in the Hausdorff
metric (by Theorem 2.6) and the feasible set is compact, it
is straightforward to show that a.s. F" — F uniformly, in
the Hausdorff distance, on the feasible set.

Suppose that ™ — X and X is not a solution to (DLP).
Then there is some feasible y with F(y) > F(X). By
Lemma 3.2 this means that there is a p so that
spt(p, F(y)) > spt(p, F(£)). By the uniform convergence
of F" to F, the properties of support functions, and the
definition of Hausdorff distance in terms of support
functions, this means that for large enough k& we have

[spt(p, F(y)) > spt(p, F™(v)) > spt(p, F™ (%y,))
> spt(p, F (X)),

and so F"(y) > F"™(%, ) which contradicts the fact that
Xy, is a solution to ng-DLP. [

4. Numerical examples

As illustrative examples let us consider a space of events Q =
{w1, w2} composed of only two possible states of nature, let us
say w; and wp, corresponding to economic growth and

recession, respectively. Suppose that three different invest-
ments are available, and let us denote by oy, o5, and o3 the
corresponding returns.

Example 4.1 For our first example we take ¢ to be the
multimeasure defined by ¢(w;) = [—1,0] and ¢(w2) =
[0,1] (so that ¢(Q) = [—1,1]:=B). The three random

variables oy, o, 03 : Q — R are given by
ar(m) = 1/4, o2(w1) =0, o3(w1) =1/2,
or(my) = 1/4, op(wp) = 1/2, o3(wy) = 0.

Adding the constraint x; +x; +x3 =1 completes the
specification of the problem. The optimal financial
portfolio allocation is obtained by solving the following
stochastic linear problem

max o (w)x; + o (w)xz + az(w)x;

subject to:

X1+x+x=1
x>0 j=1...3.

We can easily see that

11

By 1= Bglm) = 5 [-1,0) + 70,1 =[5 ]

4
In a similar way, it is easy to see that E; = [0, 1/2] and
E3s=[—1/2,0] and so F(x) = [—1x; —{x3,4x +1x].
With this information, the two scalarizations are easy to
compute:

1 1
spt(1,F(x)) = 7 + 5%

and

spt(—1, F(x)) = %xl + %X3.

The first of these is maximized when x; = x3 =0 and
x> = 1, while the second is maximized when x; = x, = 0
and x3 = 1. Thus, it is impossible to simultaneously
maximize both. Of course, this is due to the fact that the
situation is completely symmetric with respect to the two
risky investments o, and o3 and so no preference is really
possible since they are completely equivalent.

Example 4.2 In our second example we keep the same
investments (random variables o, o, «3) and constraints
but we change the uncertainty given by the pmm. Take
¢(wy) =[—1/2,0] and ¢(wp) =[-1/2,1]. Since
[-1/2,0] C [-1/2,1], we view w; as being more proba-
ble and thus associated with less uncertainty.

In this case, Ey = [—1/4,1/4], E; = [-1/4,1/2], and
E; = [—1/4,0] and so

590
591
592

593
594
595
596

598
600
601
602

604

603

610
612
613
614

616

620
621
622
623
624
625

629

628
629
630
631
632
633
635
636



Author Proof

638

642

644
646
647
648

650

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665

666

i

671
672

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688

Journal of the Operational Research Society

1 1 1 1 1
X1 T Xy = X3, <X +§x2] ==

11
R ]

1
X1 +=x2].

Fx) = A

Again the two scalarizations are easy to compute:
t(1,F(x)) = ] + :
spt(1, F(x)) = g x1 + 5%,

and

spt(—1, F(x)) :%.

In this case clearly it is optimal to set x; = x3 =0 and
x2 = 1. The interpretation is that while the payouts of the
two risky investments o, and o3 are equal, their uncer-
tainty is not and thus oy is the best choice.

5. Conclusions

In this paper we have analyzed how to study a stochastic linear
programming problem when the underlying space is subject to
partial and incomplete information of the probability distribu-
tion and this uncertainty is modeled using the notion of a
probability multimeasure. Stochastic linear optimization is a
model of huge interest in financial applications as it allows to
determine an optimal portfolio allocation. We have showed
how this problem can be transformed into a deterministic
equivalent problem that takes the form of a set-valued
optimization model. We have also provided some statistical
properties of probability multimeasures that can be used
whenever a practical real case requires the statistical estima-
tion of the expected value of a random variable with respect to
a probability multimeasure. Finally, an illustrative example
has showed how the method works practically.

Acknowledgements—The second author (FM) was partially supported by
the Natural Sciences and Engineering Research Council of Canada
(NSERC) in the form of a Discovery Grant (238549-2012).

References

Artstein Z (1972). Set-valued measures. Transactions of the AMS
165:103-125.

Artstein Z (1974). On the calculus of closed set-valued functions.
Indiana Univeristy Mathematical Journal 24:433-441.

Arstein Z and Vitale R (1975). A strong law of large numbers for
random compact sets. The Annals of Probability 3(5):879-882.
Aubin JP and Frankowska H (1990). Set-Valued Analysis. Birkhauser:

Boston.

Ben Abdelaziz F and Masri H (2005). Stochastic programming with
fuzzy linear partial information on probability distribution. Euro-
pean Journal of Operational Research 162(3):619629.

Ben Abdelaziz F and Masri H (2010) A compromise solution for the
multiobjective stochastic linear programming under partial uncer-
tainty. European Journal of Operational Research 202:5559.

Beer G (1993). Topologies on Closed and Closed Convex Sets.
Kluwer: Netherlands.

Bitran GR (1980). Linear multiobjective problems with interval co-
efficient. Management Science 26:694706.

Cascales B, Kadets V, and Rodriguez J (2007). The Pettis integral for
multi-valued functions via single-valued ones. Journal of Mathe-
matical Analysis and Applications 332:1-10.

Cressie N (1979). A central limit theorem for random sets. Z
Wahrsch. Verw. Gebiete 49(1):37-47.

Dupacova J (1987). Stochastic programming with incomplete infor-
mation: a survey of results on post optimization and sensitivity
analysis. Optimization 18(4):507532.

Ermoliev Y and Gaivoronski A (1985). Stochastic optimization
problems with incomplete information on distribution functions.
SIAM Journal on Control and Optimization 23(5):697716.

Hess C (2002). Set-valued integration and set-valued probability
theory: an overview. In Handbook of Measure Theory. vols. 1, 1L
North-Holland: Amsterdam.

Hiai F (1978). Radon—Nikodym theorems for set-valued measures.
Journal of Multivariate Analysis 8(1):96-118.

Hirschberger M, Steuer RE, Utz S, Wimmer M, and Qi Y (2013).
Computing the nondominated surface in tri-criterion Portfolio
selection. Operations Research 61(1):169-183.

Kandilakis D (1992). On the extension of multimeasures and
integration with respect to a multimeasure. Proceedings of the
AMS 116(1):85-92.

Kunze H, La Torre D, Mendivil F, and Vrscay ER (2012).Fractal-
Based Methods in Analysis. Springer: New York.

Kuroiwaa D (2003). Existence theorems of set optimization with set-
valued maps. Journal of Information and Optimization Sciences
24(1):73-84.

La Torre D, and Mendivil F (2011). Minkowski-additive multimea-
sures, monotonicity and self-similarity. Image Analysis and
Stereology 30:135-142.

La Torre D, and Mendivil F (2015). The Monge—Kantorovich metric
on multimeasures and self-similar multimeasures. Set-Valued and
Variational Analysis 23(2):319-331.

La Torre D, and Mendivil F (2009). Union-additive multimeasures
and self-similarity. Communications in Mathematical Analysis
7(2):51-61.

La Torre D, and Mendivil F (2007). Iterated function systems on
multifunctions and inverse problems Journal of Mathematical
Analysis and Applications 340(2):1469-1479.

Markowitz H (1952). Portfolio selection. The Journal of Finance
7:77-91.

Molchanov I (2005). Theory of Random Sets. Springer: London.

Puri M, and Ralescu D (1983). Strong law of large numbers with

respect to a set-valued probability measure. The Annals of

Probability 11(4):1051-1054.

Rockafellar RT and Wets RJ-B (1998).
Springer: New York.

Stojakovi¢ M (2012). Set valued probability and its connection with
set valued measure. Statistics & Probability Letters 82:1043—1048.

Urli B and Nadeau R. Stochastic MOLP with incomplete information:
an interactive approach with recourse. Journal Operational
Research Society 41(12):11431152.

Urli B, and Nadeau R (2004). PROMISE/scenarios: An interactive

Variational Analysis.

method for multiobjective stochastic linear programming under
partial uncertainty. European Journal Operational Research
155:361372.

Weil W (1982). An application of the Central Limit Theorem for
Banach-space valued random variables to the theory of random
sets. Z. Wahrscheinlichkeitstheorie verw. Gebiete 60:203-208.

Received 12 October 2016,
accepted 8 May 2017

689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749

750



