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Abstract The analysis of high-dimensional data is an important, yet inher­
ently difficult problem. Projection techniques such as Principal Component 
Analysis, Mult i-d imensional Scaling and Self-Organizing Map can be used to 
map high-dimensional data to 20 display space. However, projections typi­
ca lly incur a loss in information . Often, uncertainty exists rega rding the preci­
sion of the projection as compared with its original data characte ristics. While 
the output quality of these projection techniques can be discussed in terms of 
aggregate numeric error values, visualization is often helpful for better under­
standing the projection results. We address the visual assess ment of projection 
precision by an approach integ rating an appropriate ly designed projection 
precision measure directly into the projection visualization. To this end, a fl ex­
ible projection precis ion measure is defined that allows the user to balance the 
deg ree of loca lity at which the measure is evaluated. Several visual mappings 
are designed for integ rating the precision measure into the projection visual­
ization at various levels of abstraction. The techniques are implemented in an 
interactive system, including methods supporting the user in finding appro­
priate settin gs of relevant parameters. We demonstrate the usefuln ess of the 
approach for visual analysis of cl ass ified and unclassified high-dimen sional data 
sets. We show how our interactive precision quality visualization system helps 
to examine the preservation of original data properties in projected space. 

Keywords: high-d imensional data analys is; projection precision; point cloud 
visualization 

Introduction 

In many data analysis applications such as clustering, classification and 
retrieval, the data under concern is high-dimensional. Typical data sets 
used in these applications consist of data instances ch aracterized by 
multiple describing attributes, or vectors of features extracted by appro­
priate extraction functions. For visual analysis of data embedded in a 
metric or high-dimensional vector space, this data often is mapped to 2D 
display space by means of projection algorithms. Projection is a popular 
tool for analyzing the structure of high-dimensional data. Different projec­
tion tech niques exist, supporting visual analysis of key data characteris­
tics . Projections usually incur a loss in information, introducing uncertainty 
about the global or local quality of the projection visualization shown to 
the analyst (cf. Figure 1 for an illustration). 
Projection visualization is very useful in different application scenarios. In 
analysis of unclassified data, a main task includes assessment of the overall 
data structure, finding clusters of data instances, and analyze the relation­
ships within and between the clusters. In analysis of classified data, class 
labels are known for the different classes, and the relationship between 
the classes is of interest. Often, questions regarding the compactness 
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Figure 1: Projections from origina l metric or high-d imensional input data space (left) to low-dimens ional projection spaces 
(right top and bottom) typically introduce an information loss . As a consequence, data element relationships as indicated in 
the projection may not be representative for those given in original data space. The loss of information can be measured, 
for example, in terms of element distances or topo logy, and should be adequately reflected in the projection visualization . 

of class distributions, the overlap of a class with other 
classes, and the discrimination between classes are 
posed. 1 While projection is a popular data analysis tool, 
the ana lyst needs to be aware that projection may incur 
an information loss and may therefore, suggest erroneous 
interpretations by the analyst. SpeCifically, the spatial 
relationship between the data instances in projected space 
may not appropriately reflect those present in original 
(high-dimensional, or metric) data space. So whenever 
visual analysis of data in projected space is performed, the 
degree of projection precision underlying the visualization 
needs to be taken into account. 

Precision of a projection may be regarded objectively or 
subjectively. Subjectively, we could argue that the quality 
of any projection can be judged by the usefulness of the 
projection in a given data analysis case. If the data analyst 
can successfully interpret a projection based on domain 
knowledge, then it could be assumed that the projection 
was appropriate for the task. This assessment of course is 
subjective and data dependent. Better suited are objective 
projection precision assessments based on the comparison 
of properties in original and pro jected space. 

We therefore want to objectively measure and visually 
integrate the notion of projection preciSion into the visu­
alization, to allow the analyst to assess the reliability of 
the analysis while working with the projection visualiza­
tion. To consider the degree of precision in any proj ection 
visualization is important (a) to assess the trustworthiness 
of the projection-based data analysis; and (b) as a feedback 
mechanism for the analyst to interact with the projec­
tion algorithm. The first argument refers to a static projec­
tion visualization, where the analysis is enriched by the 
degree of confidence that can be put into the projection. 
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An appropriate consideration of projection preCision in 
the visua lization should allow statements such as' Classes 
x and y separate from each other and share overlap with class 
z with high reliability; and classes a and b do not share overlap 
with z, but here we can not be so sure.' Based on these consid­
erations, the analyst could also leverage the projection 
precision information to (re)configure the projection algo­
rithm, to generate improved projection views which allow 
more reliable analysis of data parts which were not being 
analyzable with high precision in an original pro jection. 

The contribution of this article is the integration of 
a flexible projection precision measure in data visual­
ization for evaluating the precision of point and hull­
based projections. Several approaches for incorporating 
this measure into projection visualization approaches 
are introduced, and applied to example data sets. The 
remainder of this article is structured as follows. Section 
'Background and related work' recalls important projec­
tion techniques, pro jection analysis tasks, and potential 
problems resulting from projections of insufficient preci­
sion. Section 'Measuring projection precision' discusses 
our projection precision concept and introduces a fl ex­
ible measure to assess the degree of projection precision. 
Section 'Visualizing projection precision' presents suitable 
visua l mappings to integrate it into point- or hull-based 
projection visua lization . Section 'Interactive vizualization 
system' describes a visual analysis system that implements 
our proposed approach. In Section 'Case studies', we apply 
the techniques on multip le high-dimenSional data sets, 
demonstrating the usefulness of the approach for various 
tasks . Section 'System support for parameter selection' 
develops extensions that support finding appropriate 
settings for key user parameters. Section' Discussion and 



future work' presents a discussion of the approach and 
options for future work. Section 'Conclusions' concludes 
the article. 

Background and related work 

In this section, we recall prominent projection and visual­
ization techniques. We also briefly discuss studies on data 
quality and uncertainty visualization related to our work. 

Projection techniques 

There exist a wealth of algorithms to project data 
embedded in metric or high-dimensional vector space 
to low-dimensional display space. Data projection tech­
niques can be divided into linear and nonlinear methods. 
Linear projection methods such as Principal Component 
Analysis (PCA)2 calculate a linear combination of original 
attributes to construct derived attributes. Specific linear 
projection techniques include Factor Analysis, Indepen­
dent Component analysis and Projection Pursuit, each 
of these aiming at specific projection goals. While, for 
example, the PCA captures a maximum of data variance 
in the projection, Projection Pursuit maximizes a specific 
notion of interestingness defined as the deviation from 
normal distribution in the projection. Nonlinear tech­
niques do not restrict calculation of derived attributes 
to linear combinations of original attributes. Tech­
niques include nonlinear PCA, Multi-dimensional Scaling 
(MOS),3 and Sammon's Mapping (SM).4 Both MOS and 
SM try to preserve relative distances between objects in 
the input and output space by minimizing an objec­
tive function defined on distance differences. Neural 
networks, specifically the Self-Organizing Map (SOM) are 
also applicable for dimensionality reduction. The SOM 
algorithmS is a combined vector quantization and projec­
tion algorithm, mapping high-dimensional data vectors 
to a limited number of prototype vectors arranged on a 
network (often, 20 regular grids are chosen). 

Projection techniques typically either implicitly or 
explicitly optimize certain statistical properties of the 
projection. Recent work has started to consider also 
user-dependent notions of interestingness when forming 
projections. The Scagnostics approach6 defines certain 
measures of interestingness based on convexity, corre­
lation, degree of outliers and so on as measured in 
aXis-parallel projections to two dimensions. The Class 
Consistency approach? proposes two measures rating the 
discrimination of labeled data in 20 projection space. In 
Ta tu et al,8 two interestingness measures for labeled and 
unlabeled point cloud data based on correlation and class 
separation properties are proposed. All these measures 
were applied to filter or sort a large space of candidate 
projections, to show the most interesting ones to the user, 
thereby allowing efficient exploration of large projection 
spaces. Seifert et al9 recently and independently of our 

work introduced and approach to incorporate projection 
stress measured at each data point into an information 
landscape visualiztion. Our approach relates to these 
works. We also propose a measure which can be used 
to filter candidate projections. Our measure comple­
ments the aforementioned techniques and is applicable 
to labeled and unlabeled data . However in the first place, 
we here are interested in the visual representation of our 
measure within a given projection display. 

Projection-based data visualization 

Given a projection of data instances to low-dimensional 
display space, appropriate visualization methods are 
needed to support the data analysis task at hand. Point­
based projection visualizations such as scatter plots are 
commonly used.1 These visualize the projected data 
instances by individual marks in the display, for example, 
by dots, symbols or textual labels. Optionally, color can 
be assigned to visually discriminate point categories, for 
example, classes. 

The visualization of large point cloud data sets raises 
sca lability and effectiveness challenges. In Hopf and 
EltllO the problem of interactively visualizing very large 
point sets is addressed by introduction of a hierarchic 
data structure for efficient data management. In Williams 
and Munzner,11 the interactive projection of large data 
sets is supported by a progressive MDS variant based on 
the spring model. In the approach, the user controls the 
projection area for which the algorithm then refines the 
projection, allowing fast exploration of large data sets. 
In Sanftmann and Weiskopf,12 the authors consider the 
problem of rendering large sets of 30 point data. Based 
on analysis of local data point characteristics, appropriate 
illumination functions generate views that support the 
effective percertion of 30 data properties. In Bachthaler 
and Weiskopf, 3 the concept of continuous scatter plots 
was introduced, including methods for generating dense 
interpolated views from discrete data distributions . A 
number of works consider visual aggregation of sets of 
points by formation of enclosing hulls. These approaches 
support the perception of point distribution properties 
for single and sets of point clouds. A statistically moti­
vated approach to represent 20 pOint clouds by hulls was 
introduced in Rousseeuw et al. 4 In Schreck and Panse 
and Schreck et a/ lS ,16 the usage of convex hulls and 
spline-based refinements thereof for abstraction of large 
point clouds by enclosing hulls is discussed. 

Figures 2 (left and middle) show point- and hull­
based 20 plots of projected high-dimensional data (d. 
also Section 'Integrated projection precision analysis of 
ISO LET data set') . While plots such as these are standard, 
they usually do not include a measure for the actual 
pro jection precision . Depending on the precision of the 
plots, their visual analysis without conSidering the preci­
sion may therefore result in imprecise or even misleading 
findings. 
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Figure 2: PCA-based projection of the high-dimensiona l ISOLET spoken letter data set to 2D (ct. Section ' Integrated 
projection precision analysis of ISOLET data set') . Left: A scatter plot usin g printed class labels . Each data sample belongs to 
o ne of 26 classes. Middle : A plot using hull-based agg regation of points by class membership . Rainbow co lors are u sed to 
he lp distin ct point classes by the user. Right: Visualization of proj ection precision in an inte rp olated precision map image. 

For the remainder of this article, we assume moderate 
data sets sizes, not considering computational scalability 
problems possibly incurred by very large data sets. Our 
implementation currently does not include acceleration 
data structures and was successfully applied to data set 
sizes of thousands of points. To retain interactive response 
times also for larger data sets, we expect that usage of 
hierarchic data structures or sampling techniques will be 
required. These are readily available from the literature. 

Visualization of data uncertainty and quality 

An important data aspect relates to the degree of certainty 
or quality which encompasses the data to be analyzed. 
Information Visualization researchers have proposed 
various techniques to incorporate the notion of data 
certainty or quality into specific data visualization appli­
cations. The proposed techniques usually capture data 
quality or uncertainty by a quantitative or qualitative 
variable which is mapped to one or more graphical vari­
ables still free for use in the given visualization. These 
may be any typical visua l variable including color, hue 
or saturation, size, position or textures of visual element, 
and others. Also, the integration of addit ional graph ical 
objects into the given data display, including uncer­
tainty glyphs or labels, is possible. Furthermore, usage of 
animation, interactivity (for example, for quality detail 
on demand) and leveraging other human senses such as 
acoustic or haptic senses (for example, sound or vibration) 
are possible. Extensive overviews of methods for visual­
izing data error, quality and uncertainty are presented in 
surveys.17-20 

Measuring projection precision 

From the family of MDS projection algorithms, the 
classic Kruska l stress function is known. [t is an aggre­
gate measure for the difference between pairwise point 
distances in original and in projected space. We here 
adapt this aggregate method to operate on single data 
points. Specifically, our measure compares, for each data 
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point individually, the vectors of distances between the 
given point to its nearest neighbors in original and in 
projected space. 

Let 0 be a data set consisting of N data elements 
embedded in an original metric space (for example, high­
dimensional vector space). Let P be the projection of the 
data elements from 0 to [ow-dimensional vector space 
(for example, two-dimensional display space) . Let dOO 
and dP 0 be distance functions for measuring the distance 
between any pair of elements in 0 and in P. Given a 
point ° E 0, we consider a number n, 1 ~ 11 < N of nearest 
neighbors. Let io,o, .. . , ;o ,n denote a sorted list of nearest 
neighbors, where the first index io,o is the index of o. We 
then consider the vector of nearest neighbor distances in 
o as 

d~n = (dO(o, O[io, l]), . . . , dO(o , O[io ,I1])) ' 

Let P E P be the projection of data element o. Then, 
consider the vector of distances between p and the projec­
tion of its n nearest neighbors in 0 as 

d~,11 = (dP (P, Plio, 1]) , .. . , dP (P, P[io,n])) . 

Based on these distance vectors, we define the projec­
tion preciSion score (Pps) as pps(o , n) ;:: 0 for the data 
element 0 and its n nearest neighbors as 

II 
df/n d~n II pps(o, n) = -0-' - - -p-' - . 

Ildo,nll IIdo,n ll 

The pps is measured as the norm of the difference vector 
between the scaled distance vectors . The distance vectors 
are scaled to unit length to normalize distances measured 
in 0 and P, which might otherwise not be comparable. 
Note that the list of nearest neighbors to 0 need not be 
identical in 0 and P. It is therefore important to deter­
mine the nearest neighbor list in either 0 or P, and apply 
it to the other space as well. While we determine the 
nearest neighbor list in 0, determining it in P would be 
viable as well. 

Parameter 11 reflects the size of the neighborhood at 
which projection precision is evaluated. Small values 
imply that only a local neighborhood is conSidered, while 
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Figure 3: The pp5 is a measure for the loca l stress eva lu ated for a given point (here: the black dot) and a number of nearest 
neighbors n to it. It is based on comparing an index of normalized nearest neighbor distances in original (left) and projected 
space (right). The measure can be regarded as a loca l variant of the Kruskal stress measure . 

for larger values, the scope of the measure increases. For 
/1 = N - I, all data elements in the data set are considered. 
/1 is determined interactively by the analyst, to support 
evaluation of projection precision at different scales. 

The value of pps can be regarded as a measure for the 
stress of the projection of data element o. Projections of 
high preciSion are expected to yield a high resemblance of 
the distribution of distances, indicated by low pps values. 
Figure 3 illustrates the evaluation of pps for a given data 
point and its three nearest neighbors. 

In terms of an example, consider the black circle in the 
diagram of Figure 1 right top and bottom as the point 
for which to evaluate pps. The pps measure for /1 = 3 in 
the top and bottom projections eva luates to 4.5 and 4.2, 
respectively. Therefore, the bottom projection is attributed 
a higher projection precision, as compared to the projec­
tion shown at the top . 

Visualizing projection precision 

We use our precision measure to extend a given 
projection-based visualization by reflecting its precision. 
We consider two main approaches. First, we offer the 
analyst an additional precision map view which can be 
considered in addit ion to the existing projection visual­
ization. Second, we devise methods to directly integrate 
the projection precision measure into the visualization, 
by mapping it to appropriate visual variables. We discuss 
both approaches in turn. 

Projection precision maps 

The first approach renders a projection precision map to 
complement a given projection-based visualization. The 
precision map can be used to gain an understanding of the 

distribution of the projection precision over the projected 
display space. 

To obtain the precisio/1 map, we start with the pps values 
of all data points in 2D projected space. These give a 
discrete distribution of precision scores in the pixel raster 
display. We calculate a screen-filling precision image by 
interpolating the precision scores at each display pixel. 
The precision map image is obtained from the interpo­
lated precision map by color-coding the appropriately 
normalized base and interpolated scores. For interpo­
lation, we implemented nearest neighbor, weighted 
average, and median interpolation schemes. From these, 
the user may chose interactively. Figure 2 (right) illus­
trates a precision map using a bright-to-dark color-coding 
scheme. Lower projection preciSion (higher pps) is visual­
ized by darker color tones . 

Figure 4 (top row) shows the effect of using different 
interpolation schemes, to obtain the display filling preci­
sion maps from the pixel-based pps values. We compared 
nearest neighbor interpolation with weighted average 
and median interpolation. The latter two methods allow 
for a selectable number of neighbor samples to be aggre­
gated. Compared to simple nearest neighbor interpola­
tion, weighted average introduces a controllable degree 
of smoothing to the image, removing high-frequency 
precision changes over the map as more samples are 
aggregated. Median aggregation, like nearest neighbor 
interpolation, forms a rather sharp image with high­
frequency features. We regard weighted average a good 
candidate method, as it allows the user to focus on the 
overa ll distribution of projection precision over the map, 
not getting distracted by too much local detail. In Section 
'Setting the precision map interpolation method', we will 
introduce' an approach to identify appropriate interpola­
tion methods based on the given data set characteristics. 

The calculation of the proposed pps measure requires 
the number /1 of nearest neighbor pOints to consider 

185 



Figure 4: Comparing the effect of different settings for the visualization of the precision measure. In this example, the 
ISOLET-5 data set was used. Top row: Different interpolation functions for obtaining interpolated precision maps . From left 
to right: nea rest neighbor, weighted average with 5 and 50 neighbors, and median interpolation. Bottom row: The effect of 
the number of nearest neighbors n considered in the eva luation of the pps measure, for a given display interpo latio n scheme. 
From left to right: n = {30, 100, 750, 1250} . 

in the preCIsIOn measure definition. We illustrate the 
sensitivity of this parameter in Figure 4 (bottom row). 
From left to right, precision map images obtained for 
increasing n are shown. Smaller settings for n reflect more 
local precision details, while larger settings perform an 
aggregation over the precision map. While n is primarily 
considered an exploration parameter, we also support the 
user in comparing the effect of different settings for n 
based on a meta-quality measure of the given visualiza­
tion (d. Section 'Setting the number of nearest neighbors' 
for details). 

Integrating precIsion maps with point- and hull-based 
projection visualization 

The precision map may also be directly integrated into an 
existing projection visualization by mapping it to certain 
visual variables. We implemented mappings based on 
points, enclosing hulls and a combination of both . 

Point-based visualization 
In point-based visualization, each data item is repre­
sented by a glyph. Simple glyphs include dots, charac­
ters or symbols, but also, more complex glyphs can be 
designed. The pps of each projected point may be visu­
alized by scaling an appropriate visual attribute of the 
points' respective glyphs. Candidate variables include 
glyph shape, size or color. We implemented both scaling 
of co lor opacity and of mark size. Figure 5 (left) illustrates 
a point cloud plot in which both opacity of the point 
color and the point size are scaled to reflect the projec­
tion precision of each point. Note that in this example, 
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combined size and opacity indicate projection precision, 
and that larger and more opaque marks indicate higher 
projection precision (lower pps). 

Hull-based visualization 
In case classification labels or other grouping informa­
tion is associated with the data points, an option is to 
form enclosing hulls over the points belonging to the 
same class . This may improve the visual differentiability of 
paint groups, specifically in case of large data sets. If such 
hulls are given, we map the aggregated precision score of 
each point being a member in the group by scaling one 
or more visual attributes of the enclosing hull shape. The 
resulting hulls both compactly visualize the distribution 
of point classes in projected space, and indicate the aggre­
gate projection precision of the classes' member points . In 
our implementation, we rely on scaling the opaCity of the 
hulls' fill color. Figure 5 (middle) shows an example. 

Combined point and hull-based precision visualization 
Point-based precision visualization is inherently local and 
applicable to any point-based projection visualization. 
Hull-based projection visualization relies on availability 
of grouping information and is more global in that it 
aggregates point-based precision scores up to the group 
level. Also, a combination is possible: If class information 
is available, a hull-based class visualization may be visu­
ally integrated with the precision map in several ways. 
For instance, we can use the preciSion map to scale the 
brightness channel, such that a 'dark cloud' metaphor 
hides relatively imprecise projection regions from the 
analyst's view. Yet another option is to introduce local 
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Figure 6: Our projection precision visual ization system all ows to explore many different views on a given data set. 

image blur, where the degree of blur applied at each 
pixel is determined in proportion to the precision map 
value at that pixel coordinate. We implemented these 
techniques and let the user chose from them, to find 
the best visual representation of the projected data set. 
Figure 5 (right) shows an example which combines color, 
shape and blur to reflect the projection precision. Note 
that combined representations such as this introduce 
visual redundancy. However, depending on user pref­
erences and application, this can significantly improve 
perception of the projection precision information. 

Interactive visualization system 

We integrated our projection precision approach with 
point- and hull-based projection visualizations to form 
an interactive system. Figure 6 gives an overview over 

the main components of the system, which we detail 
next. The system is arranged around a main view which 
shows a 2D scatter plot of the pro jected data, shown 
in Panel S. To improve the visual ability to distinguish 
data sets with many labeled classes, the user can chose 
from different coloring schemes. Panel 6 shows the color 
palette, from which colors are sampled and mapped to 
the labeled classes. Via Panel 4, the user may select from 
different point visualization modules including labeled 
scatter plots and formation of basic and more complex 
enclosing hulls. 

On the left of the main visualization is Panel 2 showing 
the interpolated precision map as well as main parameters 
for obtaining the precision map and integrating it into 
the 2D visualization . The precision map is updated inter­
actively in response to the user changing corresponding 
parameters. The data points can optionally be overlaid 
over this map . We integrated also bar charts for showing 
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the histogram and cumulated histogram of the pps values 
occurring in the given precision image (d. also Section 
'Setting the precision map interpolation method') . 

Panel 1 allows setting the parameters for calcula­
tion and interpolation of the precision score. The user 
can determine the parameter n as described in Section 
'Measuring projection precision' via a slider, select the 
interpolation method to form the screen filling precision 
image, and control the color map normalization . Inter­
polation currently supports nearest neighbor, weighted 
average and median interpolation as described in Section 
'Projection precision maps'. Color map scaling includes 
quantile scaling, histogram scaling, and linear min-max 
scaling. Quantile and histogram scaling are supported to 
increase the robustness of the normalization with respect 
to outlying pps values. 

Panel 3 offers the main parameters for mapping the 
precision map to the scatter plot diagram. Specifically, 
mapping of pps values to scatter mark size, hull color 
(for classified data), and blur option can be set. Addi­
tional scaling parameters for all mappings are included in 
the control pane. As projection techniques, we currently 
support PCA and aXis-parallel projection, however further 
projection techniques can easily be incorporated. 

Case studies 

We present three applications of our visual analysis 
system for assessment of projection precision. The appli­
cations show a variety of tasks which can be addressed 
by our system. First, we examine the projection precision 
of a PCA-based plot of the well-known ISO LET data set. 
Second, by means of a correspondence plot, we compare 
SOM-based and PCA-based projections of a data set, lever­
aging the pps measure to assess areas of high and low 
projection precision in the PCA-based plot. Third, we 
use our approach to score the scatter plot diagrams in a 
scatter plot matrix for projection precision, highlighting 
the most precise projections. 

Integrated projection precision analysis of ISOlET 
data set 

We first apply our system to analyze the UCT TSOLET-
5 spoken letter recognition data set.2J It consists of 1559 
audio samples of the letters A-Z spoken by different 
persons, forming 26 classes. The samples are represen ted 
by 6160 feature vectors encoding certain aural properties 
of the samples. The ISOLET vector representation of the 
samples provides high discrimination power, as classifi­
cation precision up to 95 per cent have been reported 
on this data set. 21 The task is to identify properties 
of the relationships among the 26 classes, in terms of 
similarity and dissimilarity of groups of data instances. 
We use PCA projection of this data set to visually assess 
the discrimination capability in this data set. 
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We analyze the data set using an integrated projection 
precision display. As a base display, a point-based preci­
sion plot is shown in Figure 5 (left), where the size and 
opacity of simple point marks (dots) are scaled in propor­
tion to the projection precision. The larger pOints show 
better projection precision, and could be more mean­
ingfully interpreted. Figure 5 (middle) presents a shape­
based precision plot, where the opacity of the shapes' 
colors were scaled in proportion to the pps averaged over 
the class member points. We see that the area of low 
precision involves specifically a densely populated area 
of overlapping clusters of letters in the top-middle area 
(letters (UQWNM); clusters linked by comparison with 
label plot in Figure 2 (left». Other classes, for example, 
cluster for letters (BCOEGPTVZ) or (FSX), are better repre­
sented according to the averaged precision measure. This 
is apparent from the integrated projection and precision 
plot, and allows the analyst to better assess the certainty 
of interpretations as performed in this specific projection. 

Comparative SOM and PCA analysis 

As a second application, we show how our projection 
precision visualization can be used to validate the result 
of a SOM cluster analysis. As an example, we consider 
the data set used in. 22 In this, the SOM algorithm was 
applied to cluster and project a set of 5000 trajectory data 
elements. Specifically, the trajectories were described by 
simple geometric features, and a 12*9 SOM was trained 
from this data .22 Figure 7 (left) shows the distribution of 
SOM prototype vectors on a 12*9 SOM grid, by visualizing 
the trajectory representation of the prototype vectors in 
their respective SOM grid cells . Considering each SOM 
prototype vector with the best matching data samples 
as a data cluster, we generate a PCA projection for these 
clusters. We define a color-coding scheme illustrated 
in Figure 7 (middle), which assigns each adjacent SOM 
cluster a specific color, where color similarity indicates 
spatial neighborhood in the SOM grid. 

Figure 7 (right) shows the resulting PCA projection, 
using color-coded ellipses to indicate the distribution of 
each data cluster in projection space. Two properties are 
apparent from the display. First, the distribution of SOM 
clusters is closely mapped in PCA projection space, which 
is seen from the globally similar distribution of class 
colors in the PCA and SOM plots (d. Figure 7 (middle) for 
the reference 20 color map) . We note that the SOM was 
linearly initialized (using PCA), and that the subsequent 
training iterations did not change that initial overall 
layout, but refined it. Second, looking at the pOint preci­
sion indicated by point size, we see that the precision 
is better on the outer areas of the projection space, and 
lower on the inner area. 

[n summary, from this display we concl ude that the 
SOM projection could be validated by the PCA projection 
in terms of global mapping, however there is indi cation 
that the precision is not of same quality everywhere. This 



Figure 7: Assessment of the projection properties of a Self-Organizing M~p \SOM) projection . Left: A SOM trained for 
origina l trajectory data is shown. Middle: 2D co loring scheme. Right: PCA projection of the SOM .cI~ster~, color-coded by the 
2D co loring scheme. This plot can be used to compare SOM and PCA projections for structura l similarities In the proJection. 

could lead the analyst to be specifically careful when in ter­
preting the more central parts of the projected data in 
this view. 

Precision-based scatterplot matrix filtering 

Besides projection techniques such as PCA or SOM, also 
orthogonal projection techniques consisting of selecting 
two dimensions from the original data space can often 
be effective. They are especially popular because of their 
straightforward interpretation. However, and especially 
for data sets of large dimensionality, it is often not clear 
a priori which pair of dimensions to select. Therefore, 
often all possible combinations of two dimensions from 
all dimensions are considered by forming a scatterplot 
matrix. However, for high-dimensional data sets, the 
corresponding scatterplot matrices tend to be very large 
and therefore not easily interpretable. In this respect, it 
is useful to assist the user in screening the projections by 
emphasizing the most interesting views in the matrix. In 
Wilkinson et al,6 it was proposed to sort the scatter views 
based on certain statistical interestingness measures. In 
our approach, the proposed pps measure is also suitable 
for this task. In this respect, we use the score for filtering 
the scatter plot matrix view and highlighting the most 
interesting projections. 

We apply our scatterplot filtering approach on the 
camera data set discussed in Elmquist et al.23 This data set 
consists of 12 numeric attributes of digital cameras, listing 
attributes such as price, weight and resolution . Figure 8 
shows a scatter plot matrix of this data set, constructed 
from the preCision plots of each pair of dimensions. 
We filtered this display for the 25 per cent of scatter 
plots yielding the best projection precision. For all non­
qualifying plots, we convered the precision plots to gray 
scale images. The resulting display effectively shows the 
overall scatter plots space, and allows to quickly identify 
the most interesting plots (in the projection precision 
sense) for detailed inspection. The specific interpretation 
is that the identified pairs of dimensions account for 
much of the overall point distances in original space, and 
should therefore be particulary interesting to explore. 

System support for parameter selection 

Our visualization approach requires two parameters for 
calculation of projection precision (number of nearest 
neighbors, ct. Section 'Measuring projection precision') 
and generation of the space-filling precision maps (inter­
polation method, ct. Section 'Pro jection precision maps') . 
Up to now, we considered the parameter selection as fully 
interactive. In addition, we also offer optional system 
support for finding appropriate parameter settings. The 
basic idea is to ca lculate quality measures for the visual­
ization obtained by a given parameter setting (referred 
to as a meta quality measure in the following) . Based on 
these measures, results of different parameterizations can 
be interactively compared. Also, best parameterizations 
can be identified automatically by appropriate heuristics. 
We introduce the meta quality measures for each of the 
two main parameters, including application examples, in 
the following. 

Setting the number of nearest neighbors 

The number of nearest neighbors /1 is the main param­
eter of the pps measure (d. Section 'Measuring projection 
precision'). /1 can be used to control the degree of locality 
in the display. The user may either have a specific idea for 
setting /1 based on the app lication or data set, or may want 
to explore different settings. In any case, it is important 
that the user is aware of the implications of this param­
eter setting with respect to the expressiveness of the visu­
alization . Therefore, our system allows to compute a meta 
quality measure for the projection precision images for all 
possible settings of n. The resulting meta quality graph 
can then be used to (a) validate the expressiveness of a 
given parameter setting; or (b) find an appropriate param­
eter setting by a search heuristic. 

As a meta quality measure, we implemented a measure 
based on the intersection of the nearest neighbor sets of 
size n in original and in projected data space 0 and P, 
respectively. For a given point 0, we ca lculate its nearest 
neighbor set error as 

NN INN(o, 0 , n) n NN(o, P, n)1 
error (0, /1) = 1 - n ' 
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Figure 8: Automatic fi ltering of a scatter plot matrix for the projections of highest projection precision. In th is case, the 25 
per cent projections of highest projection precision are highlighted by outg raying the remaining plots. 

where NN 0 is a function returning the 11 nearest neighbors 
data points to the given data point 0 in original (0) or 
projected (P) space. An error of 0 indicates a projection 
where the nearest neighbor sets are identical (that is, a 
perfect pro jection with respect to the nearest neighbor set 
overlap). Increasing errors indicate increasing differences 
in the nearest neighbor sets. An error of 1 indicates dis joint 
nearest neighbor sets. 

Figure 9 shows the graph of the average nearest 
neighbor error for all data po ints in the camera data set, 
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for all valid settings of 11. The graph allows the user to 
assess the meta qua lity of the Jiven setting for 11 . The 
graph shows that in 11, error N quickly increases to a 
maximum, for small values of 11 . The error then starts to 
decrease, but with diminishing rate. Based on this graph, 
it is possible to select promising parameter settings for 11. 

For example, if the user is interested in a local projection 
precision image of this data set, and tolera tes a maximum 
projection set error of 10 per cent, then a choice of about 
n = 650 is appropriate (d. configuration (B) in Figure 9). 
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Figure 9: The nearest neighbor set error graph supports selection of an appropriate setting of parameter n. 

Based on the error graph, it is also possible to apply search 
heuristics such as the so-called elbow criterion. This 
heuristic finds a configuration where slightly increasing n 
will not substantially further reduce the error. An example 
is given in configuration (A) in Figure 9. 

Setting the precision map interpolation method 

To obtain a space-filling map from the discrete distribu­
tion of pps, an interpolation scheme needs to be chosen. 
Methods implemented in our system include weighted 
average or median interpolation with accompanying 
neighborhood sizes (d. Section I Projection precision 
maps'). As different choices are possible, the question 
arises which one is the most preferable for a given data 
set and setting for n. We address this problem again 
by a meta quality measure that allows to systematically 
compare different interpolation schemes. 

Consider that the aim of the precision map is to repre­
sent a discrete distribution of precision scores in a space­
filling pixel display as closely as possible. Then, a simple 
quality criterion can be derived that compares the distri­
butions of pps values in data space (measured per data 
point) with the distribution of precision represented in 
image space (measured by the color gradient per pixel). 
Without further application or data-dependent assump­
tions, we argue that for two given precision images, the 
one for which both distributions are more similar should 
be preferred, as being more expressive. 

We apply this idea by calculating the histograms of the 
precision distributions for the data and the image space, 

for a given precision image. We combine the respective 
histograms in a joint diagram shown below a given preci­
sion map image. Figure 10 illustrates an example, again 
using the camera data set. The left and right images show 
precision maps of the PCA-projected data set, obtained by 
weighted average and by median interpolation, respec­
tively. Considering the combined histograms below, we 
see that in the first case, the data and pixel-based distri­
butions deviate clearly from each other: The distribution 
in data space (shown by black bars) is left skewed, while 
the pixel-based distribution (shown by red transparent 
bars) is more uniformly distributed. In the second case, 
also the pixel-based distribution is left-skewed, resem­
bling the distribution in data-space quite closely. From 
this comparison, we conclude that the second image is 
more representative, and should therefore be preferred 
over the first image. In this example, we explain this fact 
by the presence of outlier points in this projection, for 
which the median method gives more robust interpo­
lation results than the weighted average method. Note 
that this meta quality measure is useful for systematic 
interactive comparison of given precision images by the 
user. The measure can also be used as a target function 
for automatically searching for an optimal interpolation 
method. 

Discussion and future work 

Our approach to integrate the notion of projection preci­
sion into projection plots relies on the definition of a 
projection precision measure and a visual mapping of that 
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Figure 10: The histogram comparison view a llows to compare the distributions of projection precision measured in data 
and in image space. The d istributions are shown by b lack and red bars, respectively, in co mbin ed histogram charts. Here, 
the median method (right) shows more similar distributions than the weighted average method (left). The median method 
is therefore preferred as more expressive. 

measure. We discuss both aspects in the following, and 
outline possible future work. 

Precision measure 

The projection precision score (Pps) measures stress of 
points in projected space . It requires that the user sets the 
number of neighbor points n considered in the measure. 
By changing n, evaluation of pps can be balanced between 
loca l and global scope. An interesting extension to our 
system would be to provide an interactive zooming 
facility, by which the user can zoom into a part of the 
projection plot. Based on the zoom factor, the system 
could automatica lly determine n to focus only on the 
selected plot area . 

The score by definition is based on comparison of 
distances in original and projected data space. Depending 
on the dimensionality of the input data, the so-called 
curse of dimensionality arises,24 possibly drawing the 
meaningfulness of distances and nearest neighbor rela­
tionships in high-dimensional space into question . A first 
approach to assess the meaningfulness (or expressive­
ness) of the plots can be based on the nearest neighbor 
error graph discussed in Section 'Setting the number of 
nearest neighbors'. Further support for assessing and visu­
alizing the robustness of pps in context of the curse of 
dimens ionality should be researched in future work. 

Considering distances for evaluating projection preci­
sion is not the only option . Alternative precision measures 
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based, for example, on nearest neighbor rank correlation, 
or topological properties could be defined and integrated 
into our approach. Also, a combina tion of different 
measures could be suited to improve the precision 
calculation. 

Visua l mappings 

Regarding the visual mapping, we support visualization of 
precision maps based on space-filling interpolation, and 
mapping the precision score to pOints and hu lls using 
basic visual attributes such as size and color. 

Regarding the precision map displays, several inter­
polation schemes have been discussed, yet no general 
recommendation regarding the best scheme or param­
eterization can be given. The appropriate setting is 
expected to depend on the data and user preferences. The 
histogram-based analysis presented in Section 'Setting 
the precision map interpolation method' can be used to 
validate the parameter choice in terms of the correspon­
dence of precision scores and colors in the image. The 
histogram analysis, however, by its nature ignores locality 
aspects, and should be improved to this end. 

Regarding the hull-based visual mappings, these 
currently visualize precision scores averaged for each 
class. Advanced visual mappings could be designed, also 
taking into account the density of local precision distri ­
butions per class. 



Conclusions 

Projection usually incurs a loss in information. We 
proposed that this information loss should be commu­
nicated to the user in the respective projection diagram. 
We consider projection precision an important aspect for 
inclusion in projection-based visualizations, to back up 
the assessments made by the analyst based on the given 
projection. To do so, we designed and discussed a rich 
set of techniques for measuring the notion of projec­
tion precision, and for visually mapping it to point- and 
shape-based projection visualizations. Our approach in 
spirit follows classic work in data uncertainty visualiza­
tion. We developed system support for validating user 
parameter choices based on meta quality measures. The 
presented precision visualization and analysis approaches 
are a tool set that can be flexibly combined with different 
projection techniques and that can accommodate any 
appropriately defined projection precision measure. 
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