%{. Journal of Information Technology (2010) 25, 216-229
© 2010 JIT Palgrave Macmillan All rights reserved 0268-3962/10

Research article

palgrave-journals.comyjit/

Exploring the impact of socio-technical
core-periphery structures in open source
software development

Chintan Amrit, Jos van Hillegersberg

Department of Information Systems and Change Management, Faculty of Management and Governance, University of Twente, Enschede, the Netherlands

Gorrespondence:

G Amrit, Department of Information Systems and Change Management, Faculty of Management and Governance,

University of Twente, P.0. Box 217, 7500 AE Enschede, the Netherlands.
Tel: + 31(0)53 4894064;

Fax: + 31(0)53 4892159;

E-mail: c.amrit@utwente.nl

Abstract

In this paper we apply the social network concept of core-periphery structure to the socio-
technical structure of a software development team. We propose a socio-technical pattern
that can be used to locate emerging coordination problems in Open Source projects. With
the help of our tool and method called TESNA, we demonstrate a method to monitor the
socio-technical core-periphery movement in Open Source projects. We then study the
impact of different core-periphery movements on Open Source projects. We conclude that
a steady core-periphery shift towards the core is beneficial to the project, whereas shifts
away from the core are clearly not good. Furthermore, oscillatory shifts towards and away
from the core can be considered as an indication of the instability of the project. Such an
analysis can provide developers with a good insight into the health of an Open Source
project. Researchers can gain from the pattern theory, and from the method we use to

study the core-periphery movements.

Journal of Information Technology (2010) 25, 216-229. doi:10.1057/jit.2010.7

Keywords: core-periphery; coordination; open source software development

Introduction

pen Source software development has become quite
0 popular in recent times, with such well-known success

stories as Linux, Send Mail, Apache and Firefox, to
name a few. A recent report from Gartner states that Linux
is the fastest growing Operating System for the server
market and continues to substitute Unix because of its
‘cost-to-performance ratio, high availability of support
resources and lower cost of ownership’ (Pettey, 2008).
Nearly 50% of the websites run on Apache web server
(Survey, 2008) and Send Mail is used for all the e-mail
routing through the Internet. Yet, Open Source develop-
ment projects still face significant challenges. Out of
1,58,669 projects registered in the Sourceforge portal, the
largest host of Open Source projects (Sourceforge, retrieved
1st March 2009), only 27,004 (17%) of the projects can be
considered stable (have a stable version of their software)
and only 2414 (1.52%) have reached a mature status (data
were accessed in July 2008). It has been observed that
success or failure of Open Source software depends largely
on the health of their Open Source community (Crowston

and Howison, 2005, 2006). Open Source developers are
spread all over the world and rarely meet face to face. They
coordinate their activities primarily by means of computer-
mediated communications, like e-mail and bulletin boards
(Raymond, 1999; Mockus et al., 2002). Developers, users
and user-turned-developers of the software form a com-
munity of practice (Ye and Kishida, 2003). For an IT
professional or Open Source project leader it is crucial to
know the status of an Open Source project, in order to
contribute or recommend the project (Crowston and
Howison, 2006). Understanding how the coordination of
software developers can be monitored and improved in an
Open Source environment can help in preventing Open
Source projects from being abandoned. Although there
are a handful of papers discussing how one can assess
if an Open Source project is a success (Lee et al., 2009,
Subramaniam et al., 2009), there are relatively few recent
papers discussing the health of an Open Source project.
Crowston et al. (2006a) discuss metrics that can be useful to
assess the success of Open Source projects. They consider

Impact of socio-technical core-periphery structures

C Amrit and] van Hillegersberg ;

measures that reflect the health of the community’s social
structure but do not consider the socio-technical structure
of the community. We propose that an analysis of the
socio-technical structure of an Open Source project can
provide a better understanding of the health of the project.
For example, a socio-technical analysis reveals whether
developers are working on the important/relevant parts of
the source code.

In this paper, we demonstrate how one can analyse the
socio-technical core-periphery structure of Open Source
projects. Such an analysis can give the Open Source project
leader and the community a better understanding of who is
working on which part of the software (the core or the
periphery) at any given point of time. We arrive at the
socio-technical core-periphery structure in two ways. First,
we borrow the concept of core-periphery from the social
network field, and apply it to the software call graph. Then
we mine the Open Source software repository to determine
which developer is working on the core or the periphery of
the software call graph, at any given point of time. We show
that when such information is integrated into Open Source
project portals such as Sourceforge, one can obtain
considerable information on the socio-technical health of
a particular project.

The rest of the paper is structured as follows: The next
section gives an overview of the relevant literature, and the
subsequent section deals with the identification of the core-
periphery shift socio-technical structure clash (STSC). The
penultimate section deals with the results and the final
section discusses and concludes the paper.

Literature review

Socio-technical patterns and STSCs

Christopher Alexander, who originated the notion of
patterns in the field of architecture, described patterns as
‘a recurring solution to a common problem in a given
context and system of forces’ (Alexander et al., 1977).
Coplien and Harrison (2004) define a pattern as ‘a recurring
structural configuration that solves a problem in a context,
contributing to the; wholeness of some whole, or system
that reflects some aesthetic or cultural value’ (Coplien and
Harrison, 2004: 14).

As an example, we can consider the core-periphery shift
pattern that we describe in Table 2. The problem this pat-
tern describes is the loss of interest among the developers
in the particular project. The context of this pattern is the
Open Source projects, where developers have implicit roles
of either working on the core or the periphery (including
documentation) of the software. The forces describe the
constraints that require resolution, namely, that core deve-
lopers lose interest in the project and move to developing
the peripheral parts of the software and later leave the
project. The solution describes a resolution of the problem
through creating more interest among the core developers
for the Open Source project. The resulting context describes
the situation after the solution has been applied to the
problem and in the case of this pattern this results in a
higher number of developers being active on the core
modules of the software project.

217

Some of the problems concerning development activ-
ities have been collected and described by Coplien and
Harrison (2004) including a set of what they call ‘process
patterns’ to deal with software developers’ coordination
problems. As the term ‘process pattern’ is also used in
business process management and workflow, we prefer to
use the term ‘socio-technical patterns’. Socio-technical
patterns address problems related to social and technical
networks that emerge in software development projects.
As they capture a wide variety of knowledge and
experience, socio-technical patterns are potentially very
useful for the project manager in planning and monitor-
ing a complex development project. However, these
patterns are hard to implement as manual monitoring
of dynamically evolving social and technical networks is
practically infeasible.

It has to be noted here that the term socio-technical as
used in this paper is based on the concept of socio-technical
as used in the field of computer-supported cooperative
work (Herbsleb et al., 2008) and is related to the socio-
technical systems literature (Emery and Trist, 1960) only
through the socio-technical interaction network (STINs)
framework (Kling et al., 2003).

An STSC is said to occur if and when a socio-technical
pattern exists that indicates that the social network of the
software development team does not match the tech-
nical dependencies within the software architecture under
development. STSCs are indicative of coordination pro-
blems in a software development organization. The design
structure matrix (DSM) that shows people, tasks and
people-task dependencies has been used to identify STSCs
(Sosa et al., 2004; Cataldo et al., 2006; Sosa, 2008). However,
the DSM has only been applied to identify one particular
STSC namely the Conway’s Law (1968) STSC.

de Souza et al. (2005) recognize socio-technical patterns
of work assignment among the Open Source community
members (de Souza et al., 2005). In this paper, we extend
this research further by identifying different types of core-
periphery shifts in Open Source projects. Some of these
core-periphery shifts correspond to socio-technical coordi-
nation problems, or what we call STSCs based on socio-
technical patterns. In the following sections we provide a
method to measure and identify these core-periphery shifts.
In order to identify STSCs, we followed a design science
research methodology (Hevner et al., 2004) to create a
method and tool called TESNA (short for Technical and
Social Network Analysis (Amrit and van Hillegersberg,
2008)). We use this tool to study a diverse collection of
Open Source projects. To better understand core-periphery
shifts, we first discuss the structure of an Open Source
community.

Open source community structure

Although there is no strict hierarchy in Open Source
communities, the structure of the communities is not
completely flat. There does exist an implicit role-based
social structure, where certain members of the community
take up certain roles based on their interest in the project
(Ye and Kishida, 2003). A healthy Open Source community
has a structure as shown in Figure 1, with distinct roles for
developers, leaders and users.

; Impact of socio-technical core-periphery structures

C Amrit and] van Hillegersberg

218

Project
Leaders

Core Developers

Contributing Developers
Bug Reporters

Readers

Passive Users

Figure 1The onion model of an Open Source community.

The project leaders, who can also be core developers, are
responsible for guiding and coordinating the development
of an Open Source project. These developers are generally
involved with the project for a relatively long period, and
make significant contributions to the development and
evolution of the Open Source system.

In those Open Source projects that have evolved into
their second generation, there exists a council of core
members that take the responsibility of guiding develop-
ment. Such a council replaces the single core developer in
second-generation projects like Linux, Mozilla, Apache
group, etc.

e Project leaders: The project leader is generally the person
responsible for starting the Open Source project. This is
the person responsible for the vision and overall
direction of the project.

o Core developers: Core developers or core members are
responsible for guiding and coordinating the develop-
ment of Open Source projects. They have been with the
project for a long time (occasionally since the project’s
inception) and have made significant contribution to the
system. In some communities they may be called as
Maintainers.

o Contributing developers: Also known as peripheral
developers, they occasionally contribute new features
and functionality to the system. Frequently, the core
developers review their code before inclusion in the code
base. By displaying interest and capability, the peripheral
developers can move to the core.

o Active users: Contribute by testing new releases, posting
bug reports, writing documentation and by answering
the questions of passive users.

o Bug reporters: Discover and report bugs. They might not
be fixing bugs as they generally do not read the source
code. They can be considered the equivalent to testers in
commercial software development.

e Passive users: Generally just use the system like any other
commercial system. They may be using Open Source
because of the quality and the possibility of changing the
software when required.

Each Open Source community has a unique structure
depending on the nature of the system and its member
population. The structure of the system differs on the
percentage of each role in the community. In general, most
members are passive users, and most systems are developed
by a small number of developers (Mockus et al., 2002).

Crowston et al. (2006b) describe three methods to
identify a core-periphery structure in Open Source projects.
The three methods include formally appointed roles,
distribution of developer contributions and an analysis of
the core-periphery structure of the social network of the
developers using the core-periphery concept from Borgatti
and Everett (1999). They find that all three methods give
different results with the developer distribution being most
useful. In this research we apply the core-periphery
structure of the developer social network (Crowston et al.,
2006b) to the developer core-periphery structure related to
the software call graph (what we call the ‘socio-technical’
core-periphery structure). We then see the relationship
between the movement across this structure and the health
of the project. We also show how this movement can be
monitored using visualizations and a metric. In the next
section we dwell on the Open Source literature surrounding
core-periphery structures, and then we describe what is
meant by socio-technical core-periphery in the context
of Open Source projects. This is followed by a case study
of core-periphery movements in various Open Source
projects.

Core-periphery in open source software development

Through a literature search, we identified several studies
that deal with core-periphery structures (see Table 1).
Table 1 lists all the literature reviewed in this section along
with a brief description of the case and whether the
particular paper studied a static or dynamic core-periphery
shift. We start by discussing papers published using the
social concept of core-periphery and move on to papers
published using the socio-technical concept of core-
periphery. We pay attention to whether the papers mention
a static structure or describe a more dynamic evolution of
the socio-technical communities.

In the Open Source context there have been quite a few
papers in the recent past discussing the social concept of
core-periphery. Moon and Sproull (2002) describe the
process by which the Linux operating system was devel-
oped. They study the linux-kernel mailing list and notice
that 50% of the messages are contributed by only 2% of the
total contributors and 50% of the 256 core contributors are
members of the core team of developers and maintainers.
Mockus et al. (2002) analysed the Apache http project and
found that only around 15 developers contributed to 80% of
the code while bug reporting was decentralized with the
top 15 developers only contributing 5%. Crowston and
Howison (2005) analysed the bug trackers for 120 Open
Source projects from Sourceforge (Sourceforge, Retrieved
1st March 2009) and studied the social communication
structures in the projects. They find that a consistent

C Amrit and] van Hillegersberg

Impact of socio-technical core-periphery structures

219

uoyiAd
stwreuf (g P s30T SAD ‘sAd ‘wrdIedng quy Spuweday (s007) v 12 ezZnog Ip
oness - L1oysoday SAD Suruiy 4a) ‘INOND 9yoedy (9007) ‘v 2 zopupuidg-zado
stwreuf (g P ys1[Surrewr pue s3o[SAD uoylsg ($007) MeaUIYPONT
ejep
STweuA(q i 2310J001n0§ JO SIsA[eue aAT}BIIUBNY) (dwnp eyep) s1oafoad a8103901n0g (£007) Aopey pue LapistayD
STweuAq i 190813 8nq pue 1s1] urrewr ‘s8of SAD ANOND (9007) ‘Jv 12 zZIelld|
sysT[Burprewr un(“JO$2181504-VHS
sTureuf (g P a1 Jo sisf[eue ‘smararajur 1adoppasQq 910ddng xnury 9nuduipy NNO (2007) “1v 12 1loxEEN
orwreuL(- 807 SAD 9s1] Surrey dINID (€007) eprysmy pue 9x
onels i surasds Sunpen 9nq jo sisdfeuy a8103001n0g woiy s309(o1g (99002) "1v 12 UOISMOID)
ejep
onels 1 23103001n0¢G JO SIsA[eue aAT}BIIUBNYD) (dwmnp eyep) s1oafoad a8103901n0g (5007) ‘1v 12 nX
3s1] Sur[rew [dUIdY XnUIT pue
surayjed Sunyrom 1adofessp ‘sjoejolre
onels i Pa1e[aI 9POD ‘SISA[eUe SpO)) 90IN0S Xnury (€0027) 910D pue 297
one)s A sways4s Suppen Sng 98103001mog woiy s303foxd 0z1 (SO0T) UOSIMOH pue UO0ISMOID)
£103150d21 3nq pue
SAD Trewr-a ‘ssaooxd juswdoraasp jo
omels i uondridsap uo yoeqpadj quedpnied B[[IZON ‘Oyoedy (20027) *1v 12 SPOW
omels i s3sT] Surrewr Xnury pue asea[ey apoD Xnury (z007) [noids pue uool
24NJONAIS
sisdjpuv A1aydiiad-a.100 24N39N438
o1uvudp [p21UY22) Aiaydiiad-a100
/213038 -01908 p1208 pasAjpup spvfo1iy 13lo4d 224n0s uadp siadvq

syiys Alaydiied-8100 10) MBIAIBAO BINjRISYNT | dlqel

; Impact of socio-technical core-periphery structures

C Amrit and] van Hillegersberg

220

core-periphery shift pattern does not exist across different
projects. Lee and Cole (2003) describe the core-periphery
structure in Open Source projects as a two-tier structure.
They describe how this structure of an organization scale
better than the hierarchical structure found in a typical
commercial firm. They reason that this is so because in the
two-tier organization the peripheral developers follow
Linus’s Law (Raymond, 1999). That defects are found and
fixed very quickly due to the peripheral developers, or in
other words that debugging is parallelizable (Raymond,
1999). Xu et al. (2005) quantitatively analysed a large data
dump from Sourceforge. What they noticed was that large
and small projects had different distributions of core and
peripheral developers. While large projects had many co-
developers and active users, small projects had a majority
of project leaders and core developers.

Ye and Kishida (2003) analyse the GNU Image Manip-
ulation Program (GIMP) project in order to understand the
motivation behind new members joining and aspiring to
have more influential roles in an Open Source project. They
postulate that the motivation could be in the learning that is
possible through legitimate peripheral articipation (LPP).
In particular, they notice that there is a relationship
between active participation in the mailing list and the
contributions made to the GIMP software, thus showing
that the GIMP community is a meritocracy. Nakakoji et al.
(2002) analyse the evolution of developer roles in four Open
Source software projects. They note that the evolution of
developer roles is consistent with the theory of LPP and is
determined by the existence of enthusiastic developers who
aspire for more influential roles and the nature of the
community encourages and enables these role changes.
They further describe the co-evolution of the communities
along with the systems, noting how any modification done
to the system not only makes the system evolve but also
modifies the roles of the developers and the social dynamics
of the community. They cite the example of GIMP and
explain that without new members aspiring to become core
developers, the development of the Open Source project
will stop the day the existing core members decide to leave
the project in pursuit of other ventures (Nakakoji et al.,
2002). Herraiz et al. (2006) study the pattern of joining the
GNOME Open Source project. They notice a majority of
developers committed a change in the CVS repository
before posting a bug report, thus indicating that the onion
model (Figure 1) based on the mailing lists and bug tracker
is not very accurate when used to predict the joining
behaviour of new members. Moreover, they noticed the
difference in the joining patterns of volunteers and hired
developers; although volunteers had a slow joining process,
the hired developers integrated into the community very
fast. Christley and Madey (2007) study the global vs tempo-
ral social positions from a data dump from Sourceforge.net
(Sourceforge, Retrieved 1st March 2009). They find that
new members can initially occupy any of the peripheral
social positions, and eventually move to the position of a
software developer or a handyman (a person who does a
little bit of everything). They find this pattern especially
true in software projects that maintain a high activity level
after the initial months. Ducheneaut (2005) analyses the
socio-technical joining behaviour of new members for the
Python Open Source project. Ducheneaut (2005) analyses

both the social and the technical networks over time and
shows how the socialization of new members is both
individual learning and a political process.

All papers mentioned above discuss the notion of core-
periphery in Open Source software development from a
social network standpoint, that is, the communication ties
between the members of the Open Source project.

Although there are several studies discussing the core-
periphery aspect of Open Source teams, there are only a
handful of papers (we could only locate two) that discuss
the core-periphery aspect of Open Source from a socio-
technical point of view, that is, by first considering the two
mode network of the developers working on the different
modules of the software and then looking at the affiliation
network of the developers (where two developers are
connected if they work on the same software modules or
dependent modules). Lopez-Fernandez et al. (2006) apply
social network analysis techniques to the affiliation net-
works of developers for Apache, GNOME and KDE pro-
jects. When they plot the average weighted degree of the
developers, they find that the developers with higher
degrees are only related to developers with similar degrees.
Hence, they postulate that these developers can be called
‘core’. de Souza et al. (2005) identify changes in developer
positions in different Open Source projects by studying
the socio-technical network of developers. They notice a
core-periphery shift by mining software repositories. The
core-periphery shift in a healthy Open Source project is
when the peripheral developers move from the periphery of
the project to the core, as their interest and contribution in
the project increases (de Souza et al., 2005).

As shown in Table 1, most of the literature is
concentrated on static core-periphery descriptions of Open
Source social networks. We could only locate two papers
that consider dynamics, out of which only one looked into
the dynamic aspect of socio-technical core-periphery shift.
This research adds to the literature on the socio-technical
core-periphery shift pattern, while providing another way
of assessing the health of an Open Source project. Our
notion of core-periphery is from the perspective of the
software, namely, if a developer modifies a more dependent
part of the code (with more number of dependencies to
other modules), he or she affects more code modules than
when modifying the peripheral modules. Using the average
core-periphery shift metric we build on the notion of how
one can determine the health of an Open Source project
(Crowston and Howison, 2006). All the papers mentioned
above do not define the core-periphery structure of the
social or technical network explicitly, as attempted in this
section. They focus more on how developers can success-
fully contribute to an Open Source project, rather than try
and determine the health of the Open Source project. We
also wanted to explore the trends of motion of developers
between the Core and the Peripheral regions of various
Open Source projects. In order to identify the trends of
motion, we needed a method to first identify the core and
the periphery of software. Then we needed a method to
visualize the bipartite (or affiliation networks) network of
the core and the periphery of the software along with the
developers working on them. This visualization also needs
to be easily understandable (Miller, 1956; Baddeley, 1994).
In order to make the visualization understandable we

Impact of socio-technical core-periphery structures

C Amrit and] van Hillegersberg ;

cluster the software modules of an Open Source project
into nine clusters (as will be described in the next section).
We then create a bipartite or two-mode affiliation network
(Wasserman and Faust, 1994) of the clusters and the
developers. However, unlike a normal two-mode network
where the connections between the nodes of each mode are
not displayed, we show dependency relations (connections)
between the software clusters. By showing the dependencies
between the software clusters, we want to make the location
of each cluster with respect to the other clusters visually
clear. We then show how core or peripheral the clusters are.

The first paper to define and comprehensively describe
the concept of core-periphery is Borgatti and Everett
(1999). They consider two types of core-periphery models,
namely; (i) Discrete model: This model contains just two
clusters: a core and a periphery. An actor belongs to
the core depending on the correlation of the matrix of
connections with the ideal core-periphery matrix (where a
small group of actors or the core form a clique and the rest
are only connected to the core actors); (ii) Continuous
model: In this model they consider three clusters a core, a
semi-periphery and a periphery. They suggest that one can
try partitions with even more classes. According to Borgatti
and Everett (1999), the concept of core-periphery structure
describes the ‘pattern of ties’ between actors in a network
where the core is more densely interconnected than the
periphery. Everett and Borgatti (1999) follow up this work
(in a companion piece for the same issue), by considering
the core/periphery structure of a network with multiple
cores. They consider each subset of the network as a core
and try and define the periphery of the subset. We use a
similar approach in this paper, as shown later (in the
Method subsection). Our approach is also similar to the
core-periphery perspective of de Souza et al. (2005) and
Lopez-Fernandez et al. (2006). At the same time, it is
different, as we cluster the software and then visualize the
developer-software module two mode network. de Souza
et al. (2005) define core and periphery in terms of the
dependencies between developers, that is, from the devel-
oper to developer dependency network (the one-mode
affiliation network of the developers).

The core-periphery notion used in this paper is a
reflection of the part of the software a developer changes.
This is different from just looking at developer-developer
dependency as if a developer is in the core of the developer-
developer network. It doesn’t imply that the developer is
working on the most dependent part of the Call Graph.
Even if the developer is working on the periphery of the
software, changing HTML documentation files he could be
central in the developer to developer network (by analysing
the dependencies among the html documentation files).
Hence, if the change the core developer makes affects more
developers, the changes (in the case of HTML documenta-
tion) might not be critical for the project on the whole. So
if a developer shifts from the core to the periphery it need
not necessarily have an impact on the health of the
software. On the other hand, the core-periphery notion in
this research is from the perspective of the software. If
a developer modifies a more dependent part of the code,
he or she affects more code modules than when working
on the periphery modules. Hence we state that the more
dependent part of the code is the core. So, in this sense we

221

add one more method of defining core-periphery devel-
opers (Crowston et al., 2006b). We claim that if the
developers working on the core of the project move towards
working on the periphery of the project and at the same
time developers working on the periphery do not move to
the core, then we have an STSC (the social structure clashes
with the technical structure of the software). This is
especially true if the core of the software is not stable, but
after studying different Open Source projects with stable
software cores we think one can safely say that this is true
for most Open Source projects. This Open Source STSC is
illustrated in Table 2.

In order to visualize the core-periphery shift we consider
the different visualizations of two-mode data (Freeman,
2000) relevant to our study, namely:

1. visualizing the one-mode affiliation developer-developer
network;

2. correspondence analysis;

3. Galois Lattice;

4. representing the two-mode data as a bipartite graph.

Option 1 is ruled out by the argument given earlier in
this section. Options 2, 3 and 4 result in large networks
(as typical Open Source projects thousands of software
modules) that are quite incomprehensible. Furthermore, we
wanted to analyse and represent the core-periphery move-
ment of the developers in the software and this was not
possible with the existing visualizations. In the next section
we describe our method of analysis and visualization.

Identification of core-periphery shift STSC in Open Source
In this section we describe how the core-periphery shift
STSC can be identified in an Open Source project.

In order to identify the STSC we used a clustering
algorithm based on the algorithm by Fernandez (1998) and
later adapted by MacCormack et al. (2006). We implemen-
ted this algorithm (see Appendix A) to cluster the software
components, as explained in the following subsection. The
resulting software clusters are shown in Figure 2. We
then included the author information of the components
(mined and then parsed from the project’s software
repository (SVN)) in the same diagram and displayed the
authors of the individual code modules as authors connec-
ted to the particular clusters (in which the code modules
reside), as seen in Figure 2 where the developers are shown
as blue circles. As this clustering method is based on the
dependencies between the software components, the central
cluster would represent the most dependent components of
the software, or in other words the software core. Thus, the
structure of the clustered software graph would represent
the actual core and periphery of the software architecture.
It has to be noted that this break up of core and periphery is
based on software dependencies and could be different
from the original design.

Next, we trace the co-evolution of the project and the
communities (Ye and Kishida, 2003) and demonstrate the
method of identifying Open Source related STSCs by
looking at the author-cluster figures (Figures 2-4) at equal
intervals in the development lifetime of the project. To
make the identification of the STSC more quantitative
compared to a qualitative observation of the evolution of

; Impact of socio-technical core-periphery structures

C Amrit and] van Hillegersberg

222

Table 2 Core-periphery shift pattern for Open Source projects

Pattern name

(gives an indication of what the pattern is about and the
name needs to be descriptive in order to communicate the
essence of the pattern) (Coplien and Harrison, 2004)

Core-periphery shift patterns

Problem: A problem growing from the Forces
(the problem is not context free)

Context: The current structure of the system giving the
context of the problem

(gives an indication of the current structure of the system
and could hint on other possible patterns that can be
applied)

Forces: Forces that require resolution

(describe the different considerations that need to be
balanced in the solution and hence can be considered
a part of the problem)

Solution: The solution proposed for the problem
(solution represents the preferred way to deal with the
problem based on knowledge from best practice solutions
gathered from practitioners and researchers)

Resulting context: Discusses the context resulting from
applying the pattern. In particular, trade-offs should be
mentioned

Design rationale/related patterns: The design rationale
behind the proposed solution. Patterns are often coupled
or composed with other patterns, leading to the concept
of pattern language.

Developers do not have sustained interest in working on the
core modules of the software.

Developers working on the different areas (core/periphery)
of the software.

When core developers move on to developing peripheral
parts of the software (when the core is not stable yet) and
soon leave the project.

Get more developers interested in the core part of the
software.

Make sure that more people are interested in the core part
of the software project.

The core of the Open Source project is vital to its
performance and hence needs more work in order to
reach stability.

B 1e5NA Version 1.0

NetworkDisplay

Display Metwork

Top

Task Clusters

1ol x|

dingercat o

Figure 2 The core-periphery snapshot of JAIM at the first time interval.

Impact of socio-technical core-periphery structures

C Amrit and] van Hillegersberg ;

TESNA Version 1.0

NetworkDisplay

Display Network

Top

Task Clusters

dingercat

223

B 157 Version 1.0

NetworkDisplay

Display Network

Top

Task Clusters

1ol x|

o7 ® dingercat

Figure 4 Snapshot of JAIM at the third instance; notice that dingercat has moved even further to the periphery.

author-clusters, we define a way of measuring the extent of
this shift with a metric. The metric is based on the
representation of the cluster graph and the author cluster
graph (Figure 2) as matrices as shown in the following
subsection.

Method: measuring the core-periphery shift metric

As described earlier, we use the Everett and Borgatti (1999)
model to handle the core/periphery of multiple subsets. We
calculate the core-periphery shift metric with nine subsets

(or clusters as they are called here). The reason behind the
number of clusters is to prevent cognitive overload, when
the number of elements is more than nine (in accordance
with the famous seven plus or minus two rule by Miller,
1956). The concept of core-periphery used in this paper is
similar to the socio-technical concept used by Lépez-
Fernandez et al. (2006) and de Souza et al. (2005) and uses
affiliation networks of people depending on which part of
the software they are working on. Or, in other words, the
core-ness concept depends on the ‘pattern of ties’ among
the software modules. The software is clustered into nine

; Impact of socio-technical core-periphery structures

C Amrit and] van Hillegersberg

224

clusters, each of the clusters has a number assigned to it
depending on how core the cluster is, and the number is
then assigned to the developers who have modified a file in
the cluster. This number is an indicator of how core the
software that a particular developer modified is. The metric
is called Average core periphery distance metric (Average
CPDM) and as the name suggests describes the average
distance from the core.

The clusters formed from this clustering process
represent the amount of dependency in the modules. The
larger a particular cluster is, the more closely dependent
modules the cluster would have. After clustering we define
the Cluster Dependency Matrix to represent the connections
or dependencies between software module clusters. The
corresponding People Cluster Matrix represents the people
working on the clusters. We also have the Cluster Size
Matrix which is the matrix of the sizes of the clusters in the
Cluster Dependency Matrix. Everett and Borgatti (1999)
state that by choosing appropriate parameters one can
include every node, that is not in the cohesive core subset of
the network, in the periphery. We use a similar method by
first identifying the core and the periphery of the network.

The procedure to calculate the core-periphery shift
consists of the following steps:

1. identifying the core and the periphery of the Cluster
Dependency Matrix;

2. reordering the Cluster Dependency Matrix in the
descending order of core-ness;

3. reordering the People Cluster Matrix in the same order
as the Cluster Dependency Matrix;

4. calculating the core-periphery metric.

In order to identify the core and the periphery of the
Cluster Dependency Matrix we realize that the core-ness
of a particular cluster depends not only on the size of
the cluster but also the dependencies of the particular
cluster with other clusters. Hence, we multiply the Cluster
Dependency Matrix with the Cluster Size Matrix. The
resulting matrix gives us an indication of the core and the
periphery clusters with the larger entries being more core
than the smaller entries. So if we arrange the columns of
this matrix in the descending order we would have the
clusters in the descending order of core-ness. Now we can
assign weights to the clusters (if there are nine clusters,
then 9 for the most core, 8 for the little less core, and so
on) and take a weighted average based on which clusters
the particular developer in the People Cluster Matrix has
worked.

The average of the core-periphery metric of all the
developers together would give the average CPDM of the
software for the particular time frame.

Empirical data

The purpose of this research is to help the software project
manager become aware of the software core-periphery
shifts in the software development process. To this end we
tested our method on various Open Source projects, from
large (in terms of lines of code (LOC)) and popular projects
like jEdit to relatively small and not so popular projects like
JAIM and Megameknet. We chose these projects in order to
get an idea of, as well as compare the core-periphery

structures of small (JAIM), medium (Megameknet) and
large (jEdit) projects. The reason we sample projects of
different sizes is to see if core-periphery shifts occur even in
large projects (with more LOC), as working on the different
parts of a large project would be more complicated (with
more learning required for individual developers) for large
projects. Furthermore, we expect projects with large code
(more LOC) to be associated with a larger community and
as a result have a better health.

The software and the socio-technical connections requi-
red to develop the matrices (described in the previous
section) were derived from the Sourceforge.net site and
mined with the help of our tool, TESNA (Amrit, 2008). We
could then construct visualizations (as in Figure 2) of the
core-periphery shifts through time. We could also calculate
the average CPDM over equal time intervals of each project.
In order to calculate the average CPDM, cumulative CVS
Log data for the project was taken at regular intervals of
time since the inception of the Open Source project. The
average CPDM was then calculated on this cumulative data
(from the particular time period) according to the
algorithm described in the earlier section.

Results

We studied the average CPDM of different projects from
Sourceforge.net (Sourceforge, Retrieved 1st March 2009)
selected based on the following criteria: (i) size of the
project, in terms of number of developers and LOC and (ii)
based on the health of the project according to the status of
the project on Sourceforge.net (Sourceforge, Retrieved 1st
March 2009). The other criteria for choosing the particular
projects was that the language of coding had to be
predominantly Java, as TESNA at present can calculate
the call graph of only software written in Java. Given this
constraint, we could get quite a diverse set of projects to
study varying from three developers and 847 LOC (JAIM) to
79 developers and nearly 72 KLOC (JBoss).

Table 3 shows the name of the Open Source project, the
development status, number of developers, LOC, clustered
cost and which pattern of core-periphery shift was observed
for the project. The LOC and clustered cost were calculated
for the last version accessed from the home of the Open
Source project. The rows of Table 3 are sorted in ascending
order of the clustered cost of the different projects.

Using the tool TESNA, we generated the author-cluster
diagrams for the projects listed in Table 3 (using the
matrices and the algorithm described in the earlier section).
We noticed three distinct patterns of core-periphery shifts:

1. a steady shift away from the core;

2. oscillatory shifts away and towards the core (almost
sinusoidal in nature);

3. no perceptible shift away or towards the core.

The first pattern (a steady shift away from the core) was
observed in the JAIM project as seen in Figures 2-4. We
studied the JAIM project (like all the other projects) from
the inception of the project (marked zero on the graph)
until when we collected the data (mid-2008). For JAIM this
period was 10 months. In Figure 2, we notice the developer
dingercat working on three core software clusters (0, 3 and
6), while after an interval of time (in Figure 4), he is

Impact of socio-technical core-periphery structures

C Amrit and] van Hillegersberg ;

working on only one core cluster (cluster 0). After another
equal interval of time, we see him not working on any of the
software clusters. This means he is modifying a non-java
file which could be an XML or HTML document. This trend
is seen on plotting the average CPDM vs the Version
of the software as shown in Figure 5. In Figure 5, we see that
after 72 months the average CPDM reduces to zero as all
the core developers (there were only two developers
observed for the project) moved away from the core of
the JAIM software.

We also analysed the Open Source project called
Megameknet. The average CPDM of this project was plotted
at equal intervals of time over a 17-month period (where
month 0 indicates the start of the Open Source project).
We observed oscillatory shifts away and towards the
core. We also noticed that the peaks steadily decreased
over time. This trend is seen by plotting the average CPDM
of Megameknet vs the version of the software at equal time
intervals, as seen in Figure 6.

We also tested our core-periphery metric on large Open
Source projects, like jEdit. We calculated the average CPDM
over a period of 7 years since the inception of the project.
In this case, we observed that after the initial dip there were
no perceptible shifts away or towards the core over a period
of time (Figure 7).

From Table 3, we notice two projects that have a core-
periphery shift away from the core, namely JAIM and
Eclipse Plugin Profiler. While JAIM has had very little
activity, Eclipse Plugin Profiler is formally inactive and has

w B~ o,

Average CPDM
(g%
/’

0 25 5 T 10
Time in Months

Figure 5 The steadily decreasing average CPDM of JAIM plotted over equal
time intervals.

§6</ \ 1N 2
\ T E
\ [/
) L W A U

+
0 2 4 6 8 10 12 14 16
Time in Months

Figure 6 The oscillatory average CPDM of Megameknet plotted over equal
time intervals.

225
3.5 -
3 -
= -} 7
o 25
e+ ———
5, 8 / '
@«
315 \
E N/
40.5 v
0 ' . . ' Y - .
0 1 2 3 4 5 6 7

Time in Years

Figure 7 The steady average CPDM of jEdit plotted over equal time intervals.

poor health (Appendix B). Table 3 also shows three projects
with an Oscillatory core-periphery shift away and towards
the core, namely ivy-ssh, JBoss and Megameknet. Although
ivy-ssh and Megameknet are declared inactive and have
poor health (Appendix B), JBoss is Production/Stable and
as seen earlier is considered to be a successful Open Source
project (Appendix B). So, intuitively, and supported by this
small but diverse sample of projects we can say that the
core-periphery shifts pattern described in Table 3 is valid. If
a project has a steady shift away from the core, we can
assume that the developer’s interest in the project has
begun to wane. However, the converse as seen in the case of
Megameknet and ivy-ssh need not be true. That is, a project
that is inactive or whose health is waning need not have a
core-periphery shift away from the core. Furthermore, an
oscillatory shift towards and from the core need not
indicate poor health of the project especially as the average
CPDM never touches zero (as in the case of Megameknet
and ivy-ssh).

Figure 8 represents the variation of the average CPDM
of JBoss, whereas Figure 9 represents the average CPDM
of ivy-ssh. As is clear from Figure 8, the average CPDM of
JBoss reaches one but does not become zero as it does in
the case of Megameknet and ivy-ssh (Figures 6, 9). Touching
zero is considered unfavourable, as it would mean that
during the period of observation not a single change has
been done to the software (the Java code) and changes have
only been done to the documentation or related files (like
XML).

As explained earlier, the entries in Table 3 are arranged
in the ascending order of clustered cost metric. From the
data in Table 3 we can also gain some insight into the
differences in modularity of the different Open Source
projects. We see that even though JBoss has the highest
LOGC, it is only fifth in clustered cost and hence much more
modular than Megameknet or jython.

Discussion and conclusion

In this paper, we have discussed how we applied the core-
periphery concept from the field of social networks to
identify problematic socio-technical core-periphery shifts
in Open Source projects, which can provide another indi-
cator for the health of the project. We have provided a
socio-technical pattern and supported it with a literature
review. We have then validated the pattern with case studies
on multiple Open Source software projects.

; Impact of socio-technical core-periphery structures

C Amrit and] van Hillegersberg

226

Table 3 The core-periphery trends of the different Open Source projects studied

Name of Open Development Number of LOC Clustered Shift Oscillatory No shift
Source project status active cost away shift away and from
developers from towards core
core core (Steady)
EIRC (Eteria IRC Stable and 1 4171 2.63E+07 l/
Client) Inactive
JAIM Beta 3 847 4.03E+07 4
Ivy-ssh Inactive 1 2978 1.28E+09 V
Eclipse Plugin Inactive 7 3267 2.30E+09 I
Profiler
JBoss Production/ 79 71,974 1.01E+F10 e
Stable
Megameknet Inactive 9 11,189 1.66E+10 '
jEdit Mature 156 29,957 8.85E+10 e
jython Production/ 21 13,972 1.89E+11 I
Stable
8 7
2 ¢ 2 /= 6 =
S ° Z— s 5 S 7
i | I < o X 7
g S g 3
< 7 £ X 7
1 é 22
0 ; : : ; ; ; : : < 1 \ /
0 8 16 24 32 40 43 56 64 0

Time in Months

Figure 8 The average CPDM of Jboss.

Crowston et al. (2006a) describe code quality, user
ratings, number of users/downloads and code reuse among
other indicators for the health and success of an Open
Source project. The core-periphery shift pattern could
give us another indicator of Open Source project health.
The project JAIM is in the beta stage of development and
has all the signs of joining the ranks of an inactive and
failed project in the Sourceforge database. So, a steady
shift away from the core could be an indication of lack of
interest in the project. Through the identification of core-
periphery shift patterns, we plan to provide the project
leader (of JAIM for example) and potentially interested
developers with one more indicator for the health of the
Open Source project. An oscillatory shift away and towards
the core with a CPDM of zero in-between, as in the case
of the Megameknet project, could also be considered as
unstable for the health of the project. While a steady
average CPDM as in the case of jEdit can be considered as
the converse. In this paper we claim that the trend of the
average CPDM is only an indicator that the health of
the project maybe deteriorating and need not always imply
that the project is unhealthy.

We had expected larger projects (larger LOC) to be
healthier, as they have a larger community. What we
observe from Table 3 (and Appendix B) is that this is not

Time in Months
Figure 9 The Average CPDM of ivy-ssh.

the case. although Megameknet is a reasonably large project
(with approximately 11k LOC), it is not very healthy. The
reason behind this could be that Megameknet is not as
modular as JBoss (as explained earlier). Future research
into the complexity and modularity of Open Source
projects could further test this hypothesis.

The main contribution of this paper is the core-periphery
shift pattern along with its usage. We propose and demon-
strate that this pattern can help in measuring and predic-
ting the health of an Open Source project. Another
contribution of this paper is to look at the software code
and try and define the core and the periphery of the code
based on class and function dependencies, rather than from
the software design (which is not generally available in
Open Source projects). This can provide one more method
to determine the core or periphery developers. Research
along the lines of Crowston et al. (2006b) (who test the
different techniques of analysing core-periphery structure)
is required in order to validate this technique.

Future work could deal with honing the core-periphery
metric by testing it on different and more varied Open
Source projects. A comparison along with a ranking of the
different factors that affect a project’s health can also be
considered for future research. By studying and supporting
the use of many more such patterns in Open Source

Impact of socio-technical core-periphery structures

C Amrit and] van Hillegersberg ;

projects, project managers can be aided in managing the
Open Source development process in a much better way.

Acknowledgements

The authors thank Jeff Hicks and the anonymous reviewers for
their extensive feedback that was really helpful in structuring and
improving this paper.

References

Alexander, C., Ishikawa, S. and Silverstein, M. (1977). A Pattern Language:
Towns, buildings, construction, New York: Oxford Universoty Press.

Amrit, C. (2008). Improving Coordination in Software Development through
Social and Technical Network Analysis, PhD thesis, University of Twente,
Enschede.

Amrit, C. and van Hillegersberg, J. (2008). Detecting Coordination Problems in
Collaborative Software Development Environments, Information Systems
Management 25: 57-70.

Baddeley, A. (1994). The Magical Number Seven: Still magic after all these
years, Psychological Review 101: 353-356.

Borgatti, S.P. and Everett, M.G. (1999). Models of Core/Periphery Structures,
Social Networks 21: 375-395.

Christley, S. and Madey, G. (2007). Global and Temporal Analysis of Social
Positions at SourceForge.net, presented at The Third International
Conference on Open Source Systems (OSS 2007) (Limerick, Ireland);
Springer IFIP WG 2.13.

Cataldo, M., Wagstrom, P., Herbsleb, J.D. and Carley, K.M. (2006).
Identification of Coordination Requirements: Implications for the design of
collaboration and awareness tools, in Proceedings of the 2006 20th
Anniversary Conference on Computer Supported Cooperative Work. Banff;
Alberta, Canada: ACM Press.

Conway, M. (1968). How do Committees Invent, Datamation 14: 28-31.

Coplien, J.0. and Harrison, N.B. (2004). Organizational Patterns of Agile
Software Development, Upper Saddle River, NJ, USA: Prentice-Hall.

Crowston, K. and Howison, J. (2005). The Social Structure of Free and Open
Source Software Development, First Monday, 10.

Crowston, K. and Howison, J. (2006). Assessing the Health of Open Source
Communities, Computer 39: 89-91.

Crowston, K., Howison, J. and Annabi, H. (2006a). Information Systems
Success in Free and Open Source Software Development: Theory and
measures, Software Process Improvement and Practice 11: 123-148.

Crowston, K., Wei, K., Li, Q. and Howison, J. (2006). Core and Periphery in
Free/Libre and Open Source Software Team Communications, in Proceedings
of the 39th Annual Hawaii International Conference on Systems Sciences -
Volume 06. Washington, DC, USA: IEEE Computer Society.

de Souza, C., Froehlich, J. and Dourish, P. (2005). Seeking the Source: Software
source code as a social and technical artifact, in Proceedings of the 2005
International ACM SIGGROUP Conference on Supporting Group Work
(Sanibel Island, Florida, USA); New York, USA: ACM.

Ducheneaut, N. (2005). Socialization in an Open Source Software Community:
A socio-technical analysis, Computer Supported Cooperative Work (CSCW)
14: 323-368.

Emery, F.E. and Trist, E.L. (1960). Socio-technical Systems, Management
Science, Models and Techniques 2: 83-97.

Everett, M.G. and Borgatti, S.P. (1999). Peripheries of Cohesive Subsets, Social
Networks 21: 397-407.

Fernandez, C.I.G. (1998). Integration Analysis of Product Architecture to
Support Effective Team Co-location, ME thesis, MIT, Cambridge, MA.

Freeman, L. (2000). Visualizing Social Networks, Journal of Social Structure 1: 4.

Herbsleb, J., Cataldo, M., Damian, D., Devenbu, P., Easterbrook, S. and
Mockus, A. (2008). Socio-technical Congruence (STC 2008), in Companion
of the 30th International Conference on Software Engineering (Leipzig,
Germany); New York, USA: ACM.

Herraiz, 1., Robles, G., Amor, J.J., Romera, T. and Barahona, J.M.G. (2006). The
Processes of Joining in Global Distributed Software Projects, in Proceedings
of the 2006 International Workshop on Global Software Development for the
Practitioner (Shanghai, China); New York, USA: ACM.

227

Hevner, A.R., March, S.T., Park, J. and Ram, S. (2004). Design Science in
Information Systems Research, MIS Quarterly 28: 75-105.

Kling, R., McKim, G.W. and Kin, A. (2003). A Bit More to It: Scholarly
communication forums as socio-technical interaction networks, JASTIS
54: 47-67.

Lee, S.Y.T., Kim, H.W. and Gupta, S. (2009). Measuring Open Source Software
Success, Omega 37: 426-438.

Lee, G.K. and Cole, R.E. (2003). From a Firm-Based to a Community-Based
Model of Knowledge Creation: The case of the Linux kernel development,
Organization Science 14: 633.

Lopez-Fernandez, L., Robles, G., Gonzalez-Barahona, J.M. and Herraiz, 1.
(2006). Applying Social Network Analysis Techniques to Community-Driven
Libre Software Projects, International Journal of Information Technology and
Web Engineering 1: 27-48.

MacCormack, A., Rusnak, J. and Baldwin, C.Y. (2006). Exploring the Structure
of Complex Software Designs: An empirical study of open source and
proprietary code, Management Science 52: 1015-1030.

Miller, G.A. (1956). The Magical Number Seven, Plus or Minus Two: Some
limits on our capacity for processing information, Psychological Review
63: 81-97.

Mockus, A., Fielding, R.T. and Herbsleb, J.D. (2002). Two Case Studies of Open
Source Software Development: Apache and Mozilla, ACM Transactions on
Software Engineering and Methodology 11: 309-346.

Moon,].Y. and Sproull, L. (2002). Essence of Distributed Work: The case
of the Linux kernel, Distributed Work 381-404.

Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K. and Ye, Y. (2002).
Evolution Patterns of Open-source Software Systems and Communities, in
Proceedings of the International Workshop on Principles of Software
Evolution (Orlando, Florida); New York, USA: ACM.

Pettey, C. (2008). Gartner Says Increased Disruption Lies Ahead for Operating
System Software Market, [www document] http://www.gartner.com/it/
page.jsp?id = 673308.

Raymond, E. (1999). The Cathedral and the Bazaar, Knowledge, Technology,
and Policy 12: 23-49.

Sosa, M.E., Eppinger, S.D. and Rowles, C.M. (2004). The Misalignment of
Product Architecture and Organizational Structure in Complex Product
Development, Journal of Management Science 50: 1674-1689.

Sosa, M.E. (2008). A Structured Approach to Predicting and Managing
Technical Interactions in Software Development, Research in Engineering
Design 19: 47-70.

Sourceforge Sourceforge.net [www document] http://sourceforge.net/ (accessed
1 March 2009).

Subramaniam, C., Sen, R. and Nelson, M.L. (2009). Determinants of Open
Source Software Project Success: A longitudinal study, Decision Support
Systems 46: 576-585.

Survey, W.S. (2008). Web Server Survey, [www document] http://news
.netcraft.com/archives/web_server_survey.html (accessed 1 March 2009).

Wasserman, S. and Faust, K. (1994). Social Network Analysis: Methods and
applications, Cambridge: Cambridge University Press.

Xu, J., Gao, Y., Christley, S. and Madey, G. (2005). A Topological Analysis of the
Open Source Software Development Community, in Proceedings of the 38th
Annual Hawaii International Conference on System Sciences - Volume 07.
Washington, DC, USA: IEEE Computer Society.

Ye, Y. and Kishida, K. (2003). Toward an Understanding of the Motivation of
Open Source Software Developers, in Proceedings of the 25th International
Conference on Software Engineering (Portland, Oregon); Washington, DC,
USA: IEEE Computer Society, 419-429.

Yin, R.K. (2003). Case Study Research: Design and methods, Newbury Park, CA:
Sage Publications Inc.

About the authors

Chintan Amrit is a post-doctoral researcher at the IS&CM
Department, University of Twente, the Netherlands. He has
a master’s degree in Computer Science Engineering from
the Indian Institute of Science. In the past he has worked as
a software engineer for a software company in Germany.
He is involved with the REMIDI workshop in the ICGSE
conference as head of the program committee.

; Impact of socio-technical core-periphery structures

C Amrit and] van Hillegersberg

228

Jos van Hillegersberg is a professor and chairman of the
IS&CM Department, University of Twente, the Netherlands.
His research interests include systems development meth-
ods, service-oriented architectures, global outsourcing and
agent systems for supply chains. He was on the faculty of
the Rotterdam School of Management, Erasmus University,
Rotterdam. He also worked for several years in business. At
AEGON Bank he was component manager for the setup of
an Internet Bank. In the past he has worked at IBM on
artificial intelligence and expert systems.

Appendix A

To represent the people and the software in an under-
standable way, we cluster the software into clusters
according to the class level dependencies (Fernandez,
1998) and display who is working at which cluster for the
particular time period of the data.

The algorithm we use is shown in Table Al.

In the above algorithm the vertical buses are those
elements in the SM whose ‘vertical dependencies’ (ones in
the vertical columns of the SM matrix) to other elements is
more than a specific threshold (MacCormack et al., 2006).
These elements are important, as they are common
functions called by other modules (MacCormack et al.,
2006). Once these vertical buses are identified a Dependen-
cyCost is assigned to each module, element of SM. This
DependencyCost is assigned as follows:

Equation 1: Calculation of the Dependency Cost (taken from
(MacCormack et al., 2006))

DependencyCost(i — j|jis a vertical bus) = d;;
DependencyCost(i — j|j is in the same cluster) = d;j n*
DependencyCost(i — j|jis not in the same cluster) = d; * N*
where d; is a binary variable indicating dependency
between i and j (so in our case it is SM(i,j) + SM(j, i), n
is the size of the cluster when i and j located within the

cluster and N is the size of the SM matrix (when i and j are
not located in the same cluster). 4 is a user-defined

Table A1 The algorithm used for clustering the software module DSM (adapted
from (MacCormack et al., 2006))

Algorithm 1 Dependency-based Clustering Algorithm

Input: n software modules, and their n*n DSM,
Number of Clusters k
Output: k clusters {C, ..., Cg}
1: Identify vertical buses
: Calculate initial clustered cost
: Repeat
: Select random software module m
: Accept bids for m from the clusters
: Determine the best bid
: If bid is accepted; modify the clusters
: Determine if clusters are stable
: Until clusters are stable
: Output the clusters

O O 00NNV W

—

parameter and is found by trial and error (depending on
the variation of the results) to be optimum at 2. Adding an
element to a cluster increases the cost of other dependen-
cies in the cluster (as the size of the cluster increases);
hence an element is only added to a cluster when the
reduction in the sum of DependencyCosts with the element
exceeds the added costs borne by other dependencies
(MacCormack et al., 2006).

Now the summation of the DependencyCosts of all the
elements of SM gives us the ClusteredCost of the matrix for
the particular iteration. Hence the ClusteredCost can be
expressed as:

Equation 2: Calculation of Clustered Cost (adapted from
(Fernandez, 1998) and (MacCormack et al., 2006))

CC(i) = Z (SM(i, j)
j=1
+ SM(j, 1)) xsize(i, j)*

In equation 2 CC(i) represents the Clustered Cost for the
element SM(i,).

Appendix B

In order to gauge the success of the Open Source projects
we studied in this paper, we looked into literature on
measuring Open Source success. We came up with two
papers, the often cited Crowston et al. (2006a) and the latest
and most comprehensive work on the subject, namely
Subramaniam et al. (2009). The data collection model used
by Crowston et al. (2006a) involves studying the bug
tracker and the mailing list of the projects. Since some of
the projects (JAIM, Ivy-ssh) do not have either, we decided
to use the data collection model of Subramaniam et al.
(2009). Subramaniam et al. (2009) measure an Open Source
project’s success by measuring user interest, project
interest and developer interest. They measure user interest
by calculating the number of project downloads. We use
project downloads and page views (as done by Crowston
et al. (2006a)) to measure user interest. We also add the
download and page view trend in order to get a more time-
variant perspective of user interest. In order to measure the
developer interest in the project, Subramaniam et al. (2009)
count the number of active developers in the project. We do
something similar, and calculate the average number of
active developers (per year) contributing to the project. We
gather these data from the project’s software repository. In
order to measure project activity, Subramaniam et al.
(2009) calculate the number of files released in the project.
We do the same and also augment these data with the
project status data taken from Sourceforge (Sourceforge,
Retrieved 1st March 2009). The results are shown in
Table BI.

When studying user interest in Table B1, one has to keep
in mind the findings of Crowston et al. (2006a) (Table 7,
p. 142) shown briefly in Table B2.

When one compares the values of user interest with those
in Table B2, it becomes clear that JAIM and Ivy-ssh have
not generated much user interest. On the other hand, if one
just observes the download and page view trends, then we

Impact of socio-technical core-periphery structures

C Amrit and] van Hillegersberg

229
Table B1 Some measures of project success taken from (Subramaniam et al., 2009)
Variables EIRC JAIM Ivy-ssh Eclipse JBoss Megameknet jEdit jython
plugin
profiler
User interest
Lifespan (days) 3229 1192 1066 2653 3018 2532 3475 3170
Log downloads (all time) 12.04 6.24 3.80 12.49 16.46 11.15 15.47 13.38
Log downloads (per day) 3.963 —0.84 —3.16 4.61 8.44 3.32 7.32 5.32
Downloads trend D D 0] D I D I I
Log Page views (all time) 12.69 6.84 2.19 13.25 16.83 7.72 16.86 15.46
Log Page views (per day) 4.61 —-0.24 —4.77 5.38 8.82 —0.11 8.70 7.40
Page views trend D D D D Oo/D o) S S
Project activity
Number of versions released 16 1 1 9 47 2 96 12
Development status 5,7 4 7 5 7 6 5
Developer interest
Average no. of developers (per year) 0.4 0.5 0.25 1.67 4.71 3.14 14.41 4.13

Download and Page view trend: D: Downward; O: Oscillating; S: Stable.
Development status: 1: Planning; 2: Pre-Alpha; 3: Alpha; 4: Beta; 5: Production/Stable; 6: Mature; 7: Inactive.

Table B2 Mean, median and SD values from Crowston et al. (2006a)

Variables Mean Median SD
Log downloads (all time) 11.29 11.87 3.38
Log downloads (all time) 4.32 4.44 2.24
Log Page views (all time) 13.85 14.15 2.14
Log Page views (per day) 6.45 6.74 2.12

observe that the projects EIRC, JAIM, Ivy-ssh, Eclipse
plugin profiler and Megameknet have downward (D)
trends, indicating waning user interest in the projects. On
studying the project activity in Table B1, we observe that
JAIM, Ivy-ssh and Megameknet have less than three version

releases. While observing the development status, one sees
that Ivy-ssh, Eclipse plugin profiler and Megameknet are
Inactive (7), while JAIM has the development status of beta
(4). Finally, looking at the average number of developers in
a year working on the project, we observe that EIRC, JAIM
and Ivy-ssh have less than one developer on an average
working on the project, whereas Eclipse plugin profiler has
less than two developers working on the project per year.
Aggregating the three measures of success as described
by Subramaniam et al. (2009), we notice that JAIM (though
still in beta) and Ivy-ssh are clearly not healthy, whereas
EIRC, Eclipse plugin profiler and Megameknet have poor
health and are inactive. On the other hand JBoss, jEdit and
Jython are clearly healthy and doing well. Here, we must
mention that the downturn in the page views for JBoss
could be because the project has shifted to another location.

