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Abstract 
The ranking of MBA programmes by newspapers and magazines is common and usually 

contoversial. This paper discusses the use of the most popular method of making these 

rankings via a multicriteria model which uses the weighted sum of a number of performance 

measures to give an overall score on which selection or ranking may be based. The weights 

are a quantitative model of the preferences of those making the evaluation. Many methods are 

available to obtain weights from preference statements so that for any set of preferences a 

number of different weight sets can be found depending on the method used. Cognitive limits 

lead to inconsistency in preference judgements so that weights may be subject both to 

uncertainty and to bias. It is proposed that choosing weights to minimise discrimination 

between alternatives (not weights) guards against unjustified discrimination between 

alternatives.  

Applying the method to data collected by the Financial Times shows the effect of 

varying the level of discrimination between weights and also the effect of using a reduced 

data set made necessary by the partial publication of information. 
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A Portfolio Model for Performance Assessment: the Financial Times MBA 

ranking. 
 

 

Introduction 

Measures of the performance of organisations are commonly used either to initiate some 

improving changes in the organisation or to provide a guide for those wishing to buy the 

goods or services produced by it. These evaluations are often presented, however unwisely, as 

rankings or league tables. This is a particular example of the general multicriteria problem of 

selecting a number of alternatives depending on their attributes. A commonly used method is 

to find for each alternative the weighted sum of a number of performance measures or 

attributes:  

 

 yi  =  wjuj(xij)                   (1) 

           
j 

 

where yi is the score of alternative i;  i = 1,2 n 

 xij  is the value of attribute j for alternative i;  j = 1,2 m 

 uj(.) is a value function chosen so that high values are preferred 

 wj   0 is the weight reflecting the importance of or preference for attribute j 

 

and, by convention, 

 

 wj = 1        (2) 

  
j 

 

where weights are chosen to encode the judgemental preferences of decision makers. 

In what follows the function chosen for uj(.) is the familiar z transformation 

 

 uj(xij)  = zij  =  (xij - j)/ j       (3) 

 

where j and j  are the mean and standard deviation of the values of X for attribute j. This 

form of value function may be preferred to simply rescaling data for each attribute to the 

range [0,1] because it is less sensitive to changes in the set of alternatives.  

In principle neither the data, X, nor the weights, W, are known precisely – the first 

because of errors of sampling and measurement and the second because of the inescapable 

imprecision imposed by the cognitive limits of those providing preference information. This 

paper describes a reaction to the second problem; uncertainty and bias in weight evaluations. 

It is to be understood that bias is not meant pejoratively but rather to indicate systematic error. 
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Given the cognitive and other difficulties which necessarily attend the elicitation of 

preference statements and which may lead to biased estimates (Borcherding, Schmeer and 

Weber 1995; Tversky and Kahneman, 1974) it is customary to use some form of sensitivity 

testing to see if plausible variations in weight values might materially alter the result (see, for 

example, Barron and Schmidt, 1988; Mustajoki et al, 2006). Although these analyses provide 

an effective means of engagement of the user with the problem they do not reduce the 

desirability of formally incorporating into the structure of the evaluation model measures 

which reduce the effects of uncertainty and bias in the derivation of weights. The issue is one 

of justification. In particular, given some preference judgements the method whereby weights 

are found ought not to introduce any more information than is contained in those judgements. 

It is proposed that the variance of scores is an appropriate measure of discrimination and that 

the effect of information is to increase its value. 

Most evaluations receive no great publicity but of those that do the rankings which are 

routinely published of business schools and MBA programmes attract much attention. The 

data used by one of these, that provided by the Financial Times, is used here to demonstrate 

the derivation of minimally biased evaluations. 

The paper is organised as follows: a method for guarding against bias is proposed; 

following a brief discussion of MBA rankings and some of the issues which surround them 

the data used in this paper are given; finally, the method is applied and the results discussed. 

 

A portfolio model 

In making an evaluation weights are determined based on some preference information. It is 

usually the case that fitting weights to these judgemental data is a problem with positive 

degrees of freedom and so there exist no unique weights, only those which are optimal 

according to some criterion. In multicriteria analyses the motivation is often to maximise 

discrimination (e.g. Green and Doyle, 1995) by choosing weights which give maximum 

differences between scores. But is this right? 

The all too human desire to differentiate, to be decisive, can result in seeing differences 

where none are justified. Using methods which guard against this unjustified attribution of 

differences is therefore desirable. A similar concern arises in deciding probability 

distributions: that the probabilities are selected, unwittingly or not, in a way which biases the 

result towards a particular outcome. To guard against the effects of this bias Jaynes (1957) 

argued that a distribution should be sought which is minimally discriminating between the 

probabilities of alternative values of a variable. He did this by maximising the entropy of that 

distribution, - piln(pi), to give a distribution which is as flat as is consistent with any stated 

conditions which are to be respected. There remains the issue of just how such conditions (of 

mean and variance, for instance) are given: if firmly based on data there are no difficulties but 
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if they are  to some degree subjective they may themselves be prone to bias. Jaynes (2003, 

p373) is quite clear on this; he believes that distributions may be found via the entropy 

maximising formalism only if conditions are specified as a result of what is known, not what 

is believed (he was no subjectivist). However, even if conditions are to some degree the result 

of judgement, the maximum entropy formalism does ensure that, given those conditions, the 

means whereby probabilities are subsequently derived induces no further bias.  

In multicriteria evaluation the task is to find weights rather than probabilities, but the 

same considerations hold (Jessop, 1999) and maximum entropy methods have been used to 

find weights by maximising the entropy of the weight distribution (Barron and Schmidt, 1988; 

Gabbert and Brown, 1989; Soofi, 1990; Soofi and Retzer, 1992) . The conditions imposed 

may be that it is desirable to have weights which are close to some initial distribution or that 

weights should stay within some stated bounds or both.  

The entropy of weights, - wiln(wi), is not the only measure of the flatness of a 

distribution, the variance,  

 

 w
2 
 =  ( wi²  -  1/m ) / m        (4) 

                
i  

 

being an obvious alternative. The sum wi², is a related measure used for the analysis of the 

concentration of market shares (Herfindahl OC, 1950; Hirschman, 1964) and of species 

diversity (Simpson, 1949). When the mean is unaltered by the distribution of weights, as here 

because of (3), optimising this index is effectively the same as optimising variance. Theil 

(1972) discusses some differences between the Herfindahl-Hirschman index and entropy. An 

example by Jessop (2004) of the application of both to a multicriteria problem shows that the 

results obtained are very similar (see also Breiman et al, 1998, ch 4). It is therefore 

reasonable to use variance as a measure of the flatness of a distribution and to minimise 

variance as a way of ensuring that weights contain no more information than is implicit in 

whatever constraints are set which encode the judgements of the decision maker. But first it is 

necessary to decide just what one should be minimally discriminating about. It perhaps seems 

too obvious to state that we wish to be minimally discriminating between attributes and so to 

choose a set of weights which reflects this. The flattest (most uniform) set of weights is one 

for which the variance (4) is minimised subject to (2) and any other constraints which encode 

statements of preference. With no such extra constraints this gives a uniform distribution of 

weights ( w
2 
 =  0).  

However, the purpose of the model is to assess the performance of alternatives and not 

to investigate weight distributions per se. Weights are a means to an end: it is the scores, Y, 

and the discrimination between alternatives which they permit, which are important and so we 
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wish to minimise the effects of unwanted biases in weight assessment inasmuch as they effect 

these scores. This is done by minimising the variance of the scores. The variance may be 

expressed to emphasise the underlying structure of the problem as  

 

 y
2
  =     wi wj ij                       (5) 

            
i     j 

 

where ij is the covariance between the values of uj(.) for pairs of attributes i and j ( ii = i
2
  is 

the variance of the attribute i). This is just the model for the estimation of portfolio risk due to 

Markowitz (1952) in which the weights are proportions invested in different stocks and the 

covariance matrix describes the relation between the returns from pairs of stocks. In a 

multicriteria model  the covariance describes the degree to which performance against 

different criteria are correlated. Because of (3) i
2
 = 1 and so (5) may be rewritten as 

 

                                             n-1       n 

 y
2
  =  wi²  +  2       wi wj ij                     (6) 

             
i                        i=1     j=i+1 

 

It is clear that when minimising y
2
 the resulting weights are a compromise between those 

needed to minimise the variance of the weight distribution and those which best exploit the 

structure in the data by using the covariances. If there is no structure in the performance 

matrix, X, the performance measured by one attribute is unrelated to performance measured 

by any other ( ij = 0; i j) so that  minimising y
2
 will be the same as minimising w

2
. This is 

unlikely.  

Given the importance which is often attached to published rankings of performance the 

attribution of differences is a matter of some practical moment, hence the need for well-

founded evaluations. The ranking of MBA programmes is a case in point. 

The various rankings and their importance both to business schools and their clients are 

outlined below. While the data gathered in these exercises are of value for the information 

they provide it is the aggregation of the data into rankings which receives the greater 

attention, as intended by the newspapers and magazines which publish them. Any such 

aggregation depends on decisions made about the relative importance of performance 

measures – weights – so that those schools not ranked as highly as they believe is their due 

see that the source of the perceived injustice is that the weights describe a set of values not 

shared by the school. This is inevitable if a single aggregate measure is to be constructed. But 

it is not the weights themselves but rather the discrimination implied by the rankings which is 

contentious and this raises two questions: first, why are results published ordinally as ranks 

(certainly in the example used in this paper) rather than as scores and, second, is the 
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difference in scores between any two schools large enough to justify the conclusion that one 

is inferior to the other, as different ranks do? About the first question one can only speculate 

that the motivation lies with the interests of the publisher. A partial response to the second 

question is that however the results are given it will help in their acceptance by schools and 

others if the scores are as fair as possible given the nature of the exercise and that part of this 

fairness is that the method should not unreasonably differentiate between schools. Using the 

portfolio model to minimise the variance of the scores does this. 

 

MBA rankings 

The performance of MBA programmes has been examined from the point of view of their 

relative strategic positions (Mar-Molinero and Mingers, 2007; Paucar-Caceres and Thorpe, 

2005; Segev et al, 1999) and their efficiencies as determined by frontier analyses such as 

DEA (Colbert, Levary and Shaner, 2000). However,  it is the published rankings which 

receive most attention, not least by business schools themselves. While it may be thought that 

business schools would welcome the publicity the very existence of the rankings  induces 

behaviours which may be unintended and, perhaps, undesirable (Policano, 2005). Although 

the evaluations are usually aimed just at MBA programmes applicants may use rankings as a 

proxy for reputation and prestige both of the programme and the school (Engwall, 2007).  

Siemens et al (2005) cite the findings of Dichev (1999) that there exists some 

unreliability in rankings which is likely to be due to errors in the data. Peters (2007), in 

summarising critiques of the ranking methodology, cites response rates from alumni, on 

which evaluations are based, as low as one percent. Such poor sampling undermines even 

those claims of data collection advanced in defence of rankings. Fortunately, the data used 

here are unlikely to be so flawed since the FT data are audited by KPMG, the only such data 

to be audited (Bradshaw, 2007).  

These are not trivial matters. For instance, Peters (2007) cites large increases in the 

number of applicants enjoyed by schools following improvements in their ranking. Other 

claims for rankings, for instance that they “are another important measure of customer 

satisfaction” (Thomas, 2007), also rely on defensible data collection and ranking 

methodology. Recognising the practical importance of published rankings Bickerstaffe and 

Ridgers (2007) give as one of the benefits that they have resulted in the accumulation of many 

data on which applicants and recruiters may in part base their decisions. The FT website 

provides the facility for the data to be used in just this sensible way.  

These and other current issues concerning business schools and rankings were 

examined in a recent issue of the Journal of Management Development (volume 26, no. 1, 

2007). 
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It should be borne in mind that any ranking reflects the view of the publisher and that 

this is articulated mainly in the choice of variables. For example, the MBA ranking provided 

by The Economist Intelligence Unit uses thirteen variables with a much greater emphasis on 

career support, networking opportunities and the like than the FT. The methodology is the 

same for both but the results quite different. It is not the case that one is superior to the other, 

just that they reflect different views. Similarly, with university rankings, those given by The 

Times, The Guardian and The Independent are concerned with UK universities and all include 

staff-student ratio, entry standards, some measure of expenditure per student and degree 

classification. They also have one or two measures of student satisfaction. The Higher, on the 

other hand, considers universities worldwide and uses six variables two of which, peer review 

and employer review, reflect constituencies of a very different kind than the usual relation 

between university and student. To the extent that these views may not be well founded the 

result is unreliable, although the views of peers may be useful to career academics when 

considering a job move and those of employers of more than passing interest to students. 

However well or ill founded the views of, say, employers may be they are their views and 

presumably condition the decisions made on recruitment. Provided that the data collection 

process is not flawed the user of the data (though not necessarily of the ranking) needs to be 

clear what variables are used and how important they are. It is not the case that because 

different rankings do not agree that their results are invalid, rather that one needs to be clear 

about what they measure. 

 

The data 

The ranking of the top 100 full-time MBA programmes worldwide published by the Financial 

Times on 29 January 2007 is used to illustrate the application of the portfolio model. Data 

were collected from each school and from a sample of its alumni. Performance was assessed 

using twenty attributes. Details of the measures used and the collection of data are given in 

the newspaper. Table 1 shows the attributes and, in column a, the weights which were used. 

Aggregation to obtain an overall score uses the method described above in (1) to (3).  

It is a peculiarity of the published tables that while data are provided for twelve 

attributes the remaining eight are given only as ranks. This makes it impossible to replicate 

the FT calculations. To make some use of the data either the ranks may be taken as real values 

or the eight ranked attributes may be omitted. There seems to be a small advantage in favour 

of the reduced set in that it is at least possible to have some confidence in the data used rather 

than having to misrepresent ordinal data. The purpose here is to use an illustration rather than 

to provide a detailed re-examination of the calculations made by the newspaper. Column b of 

Table 1 shows the weights for the reduced set scaled to sum to 1. 
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It is worth noting that using (3) means that the worse and best performing alternatives 

will generally have different scaled values for each attribute. This is shown in Figure 1. 

Extremely good performance is rewarded not just because it is the best of the group but 

because it is comparatively rare. For example, the programme with highest alumni salaries is 

scored more than twice as highly as that with the highest percentage of alumni employed at 

three months. There is an analogous penalty regime for particularly poor performance. 

 

Results 

Judgemental input can take the form of either ranges for weights or a preferred ordering or 

both. To illustrate the effects of imposing a preference ordering the FT scheme  

 

 w1,w2 > w3 > w4 , w5 > w6 > w7, w8,w9 w10,w11 > w12     (7) 

 

was used as a base. The required differentiation between the six groups of weights was 

specified by setting the minimum difference between weights as a fraction of the higher, (wi-

wj) > a.wi or 

 

 (1-a)wi - wj > 0          (8) 

 

where wi and wj are in adjacent groups in (7) and wi > wj. Using these sixteen constraints and 

(2) and minimising y
2
 using (5) and the covariances shown in the upper half of Table 2 gives 

a quadratic programme which finds a set of weights and thereby scores on which a ranking 

may be based. Values a=0.2, 0.3 and 0.4 were used. Three other models were calculated for 

comparison: that minimising y
2
 without weight constraints (8); uniform weights minimising 

w
2
; the FT weights shown in column b of Table 1. The results are shown in Tables 3 and 4 

and Figure 2.  It is notable that the weakly ordered weights and the FT weights (C to F) give 

highly correlated values of y and w (Figure 2), showing that requiring a greater 

differentiation between weights necessarily increases the spread of scores and so the 

differentiation between alternatives. In addition, as a increases the weights more closely 

resemble the FT weights (Table 4). The weights E derived when a=0.4 are very similar to 

those given by the FT, though this requirement is much less onerous than having to give point 

estimates for the weights. The weights within each group in (7) are the same although this 

was not a requirement; the constraints only specified the ordering with respect to weights in 

an adjacent group. 

Figure 3 shows distributions of scores for those models which minimise y
2
 and for the 

FT weights. Although the interquartile range does not change much the scores of the higher 

scoring schools become more attenuated as the weights are increasingly differentiated. The 
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distributions of attribute values generally exhibit some skew (Table 1, column c): attributes 3 

and 7 notably negative; 1, 4, 10, 11 and 12 notably positive. It might be expected that the 

aggregation to form an overall score would mean that score distributions tend to Normality. In 

general they do in that the skew is much reduced (Table 3) though it becomes increasingly 

positive as weights are more constrained. Although results C and D are not significantly 

different from Normal (Kolmogorov-Smirnoff and Shapiro-Wilk tests with 5% significance 

level) the others are. Figure 4 shows an example. Weights increasingly favour the two 

variables describing alumni income, both of which have a positive skew, so that the 

distribution of scores itself shows increasingly positive skew.  

The extreme outlier at the low end of the rankings in C to E is much less pronounced 

with the FT weights F. This outlier is the programme with the extremely low z value of -6.8 

for attribute 3 (Figure 1). Comparing the E and F weights (Table 4) shows similar values for 

all except w3, which is only half the value in F that it is in E. This accounts for the improved 

performance. 

Table 5 shows the top ten programmes in all six evaluations. Of those evaluations with 

weight constraints (C to F) seven programmes appear in all four lists. It would seem that 

introducing just a little preference information gives a base structure to the evaluation which 

does not change that much as the constraints become more prescriptive. This is also shown by 

the correlations in Table 6. The correlation between the equal weights and FT weights (A and 

F) is particularly poor. Policano (2007) found this same result in his analysis of the US News 

ranking. The correlations between the base model, min y
2
, with no weight constraints (B) and 

other models are poor. It is not surprising that results with an increasingly sharp articulation 

of a preference structure should be dissimilar to that with none. The value of B is that it 

establishes an unconstrained minimum for y
2
 against which others may be compared. 

 

A comment on the 2008 data 

The rankings for 2008 were published on January 28th. The resulting correlations are shown 

in the lower half of Table 2. A full comparison with the 2007 data  is not possible because 

variable 6, aims achieved, was given as a rank rather than a percentage and so correlations 

with this variable cannot be calculated. This treatment is odd; aims achieved  was also given 

as a rank in 2003 and 2004 but not before then nor between 2005 and 2007. In 2001 only six 

of the twenty variables were given indirectly (as scaled indices rather than ranks) whereas 

now it is nine. It would be interesting to know why this is so. 

Although calculations similar to those for 2007 are not possible it can be seen from (6) 

that if the covariances (and so correlations) are not dissimilar neither will be the resulting 

value of y
2
. Figure 5 shows a graphical comparison from which it can be seen that the 
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structural relations between variables have not changed much and so neither would the result 

be expected to change much either. 

 

Clusters and gaps 

The purpose of an analysis is to determine which programmes have performance levels 

similar to that of others: scores have value only inasmuch as they distinguish between 

alternatives. A ranking is just an extreme application of this idea. Making these distinctions is 

difficult for two reasons. First, because the model (1) reduces a multidimensional description 

of each alternative to a single figure, the score. Had this not been done some form of cluster 

analysis would find groups of programmes which had similar form, similar profiles of 

performance across their vectors of attributes. Second, had the uncertainty due to sampling or 

due to weight specification or both been described statistically then the resulting probabilistic 

estimate of each score could be expressed as a confidence interval and statistically significant 

differences between scores found. Groups of statistically similar alternatives might then be 

formed, though the result  may be just a set of overlapping confidence intervals (The Royal 

Statistical Society, 2003) rather than clusters. This would still make it possible to say, for 

instance, that an alternative ranked fifth has a score significantly different from that ranked 

thirty fifth even though it is not possible to differentiate between alternatives which are 

adjacent or close. This is an important idea. 

Although neither approach is used in published rankings, the inability perfectly to 

discriminate is recognised. For example, the FT, in its ranking, identifies four groups: 16 in 

the topmost group and then groups of 16, 21 and 47. (It has to be said that these groupings are 

not apparent in the analyses here and so must depend on the variables which were excluded 

from this analysis.) Given that the distribution of scores is a positively skewed continuum 

(hence the increasing size of the groups) it is unsurprising that the differences between 

programmes in the low density tail tend to be greater than those in the higher density body, 

but to say that these larger differences are significant or remarkable leads to an inconsistency. 

For example,  in the FT rankings it must surely be the case that the gap in scores between, 

say, the  programmes ranked 60 and 80 is at least as big as that between the programmes 

ranked 53 and 54, yet the latter gap is seen as in some sense significant while programmes 60 

and 80 are part of an undifferentiated group. The argument – that if neighbours in a chain 

cannot be differentiated then no two members of the chain can be differentiated – is 

reminiscent of an incremental reasoning with roots in antiquity (see, for instance, Barnes, 

1982). It is an argument which is hard to support.  

MBA rankings will remain. They appear simple and many find them useful. The 

purpose here was not to examine rankings but only to describe a method which could be of 

use in finding the weights which they, and others, might use. 
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Conclusion 

This paper is concerned with finding a set of weights which are a justifiable articulation of the 

judgements implicit in making a ranking. Taking the broadly statistical view of the portfolio 

model shows clearly the relation between the information contained in the weights and in the 

scores on which ranks are based. Given the imprecision inherent in any expression of 

preference it is important to guard against undue discrimination between alternatives. It is this 

focus on results (scores) rather than on the weights themselves which is the basis of this 

method. 

Weights are seen as expressions of priority so that, at least, a rank ordering of weights 

is possible. Using this as a constraint in an optimisation which enforces caution reconciles 

apparently conflicting requirements: to be opinionated and yet to reach minimally biased 

conclusions.  

It is the rank order of weights and the relative differences between them which largely 

determine the result. As Table 4 shows, the greater this relative difference the more the 

minimally discriminating weights resemble the FT weights. Even so, the results obtained 

(Table 5) are different from those found by the FT. The ranking of the top ten using the 

reduced data set but FT weights (result set F) contains eight of the FT top ten, but even using 

a small relative difference between weights (C) it contains six. It is the information contained 

in the unrecoverable eight variables that makes the difference. 

It is usual (though not in published rankings) that weights may be altered in a 

sensitivity analysis to see the effects of  imprecision and whether plausible differences in 

weights have a large effect. It would certainly be helpful if some such results could be 

published so that real differences in performance could reliably be identified. In recognition 

of the problem most publications contain some statement to the effect that differences 

between scores may not be significant. Further analysis would, of course, undermine the 

existing simple ranking and it is easy to see why newspapers and magazines would not find 

this helpful.  

The success of the multicriteria model is due in part to its modularity. This enables 

users to consider sub-problems rather than the whole so that the elicitation of weights is a task 

the results of which are used in computing scores. In this framework weights may assume an 

unnecessary importance. Finding weights which minimise the variance of scores goes some 

way to reintegrating the modular framework. The same set of judgemental constraints will 

give different weights with a different problem. This seems odd only if the weights 

themselves are invested with a significance other than their role of encoding judgements: it is 

the judgements themselves and the results which are key. In particular, the problem provides 
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the context in which the judgements are articulated as numbers: changing the context will 

change the numbers while retaining the judgements. 

Evaluations must be believed, at least to the extent that they act as a guide. Using a 

method which minimises the effects of bias helps to justify the analysis. The consumer of the 

results ought to be reassured that the method of calculation does not itself contribute to 

apparently significant (important, at least) results but rather that all the information contained 

in the scores is a function of preference statements and data and nothing else.   
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Figure 1. Distributions of attributes. For each attribute the thicker line shows the spread of the 

middle 50 values, the thinner line the middle 90, and the circles the highest and lowest five 

values. The vertical line shows the median. 
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Figure 2.  Standard deviations of scores and weights (see Table 3). 
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Figure 3. Distributions of scores. Dashed lines join the quartiles. 
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Figure 4. Comparison of E scores with Normal distribution. 
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Figure 5. Correlations in 2007 and 2008. The diagonal line shows equal values. The box 

shows correlations insignificant (p 0.05) in both years. 
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  FT weights   

 attribute full set subset   skew 

  a b  c 

1 Weighted salary (US$’000) 0.20 0.299  1.02 

2 Salary increase(%) 0.20 0.299  0.27 

3 Faculty with doctorates (%) 0.05 0.075  -3.67 

4 International faculty (%) 0.04 0.060  1.17 

5 International students (%) 0.04 0.060  0.65 

6 Aims achieved (%) 0.03 0.045  -0.80 

7 Employed at three months (%) 0.02 0.030  -2.64 

8 Women faculty (%) 0.02 0.030  0.23 

9 Women students (%) 0.02 0.030  -0.19 

10 International board (%) 0.02 0.030  1.17 

11 Languages (number) 0.02 0.030  2.60 

12 Women board (%) 0.01 0.015  1.50 

      

13 FT research rank 0.10    

14 International mobility rank 0.06    

15 FT doctoral rank 0.05    

16 Value for money rank 0.03    

17 Career progress rank 0.03    

18 Placement success rank 0.02    

19 Alumni recommend rank 0.02    

20 International experience rank 0.02    

  1.00 1.000   

 

Table 1.  The FT data: variables and weights.      
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 1 2 3 4 5 6 7 8 9 10 11 12 

1  0.29 0.23 0.28 -0.05 0.58 0.18 -0.35 -0.02 0.25 0.15 -0.05 

2 0.31  0.13 -0.21 -0.24 0.46 0.15 -0.11 -0.08 0.04 0.10 -0.13 

3 0.28 -0.14  0.13 -0.21 0.31 0.13 -0.22 -0.01 -0.01 -0.06 -0.19 

4 0.27 -0.09 0.27  0.55 -0.05 0.06 -0.21 -0.09 0.57 0.35 0.11 

5 -0.02 -0.12 0.00 0.55  -0.24 -0.14 0.05 0.00 0.59 0.43 0.21 

6       0.16 -0.16 -0.09 -0.05 0.02 -0.16 

7 0.15 0.09 0.02 -0.08 -0.11   -0.17 -0.29 -0.01 0.05 -0.08 

8 -0.35 -0.30 -0.06 -0.17 0.17  -0.09  0.33 -0.17 -0.08 0.27 

9 -0.02 0.02 -0.14 -0.10 -0.16  -0.04 0.21  -0.04 -0.14 0.10 

10 0.20 0.11 0.04 0.45 0.57  0.09 -0.03 0.01  0.55 0.14 

11 0.16 0.22 -0.10 0.34 0.36  -0.13 -0.14 -0.11 0.50  0.03 

12 -0.06 -0.06 -0.11 0.21 0.28  0.04 0.17 0.04 0.18 0.03  

 

 

Table 2.  Correlation matrix for attributes. Significant values (p 0.05) shown in bold. 

    Upper half shows correlations in 2007, lower half in 2008. 
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 standard deviations  skew 

objective w y   

A min. w
2
: equal weights 0.000 0.370  0.35 

B min y
2
: no weight restrictions 0.044 0.327  -0.23 

C min y
2
: a=0.2 0.033 0.405  0.48 

D min y
2
: a=0.3 0.053 0.441  0.54 

E min y
2
: a=0.4 0.075 0.490  0.61 

F FT weights 0.098 0.545  0.77 

 

 

Table 3. Results of weight & score determinations showing standard deviations of 

distributions and also the skew of the distributions of scores (see Figure 2). 
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weights C D E F 

w1,w2 0.144 0.185 0.235 0.299 

w3 0.115 0.130 0.141 0.075 

w4 , w5 0.092 0.091 0.084 0.060 

w6 0.073 0.064 0.051 0.045 

w7, w8,w9 w10,w11 0.059 0.045 0.030 0.030 

w12 0.047 0.031 0.018 0.015 

 
Table 4. Weights. 
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rank A B C D E F 

1 12 12 12 11 11 11 

2 5 36 5 5 2 2 

3 13 9 13 2 1 1 

4 7 5 11 1 5 10 

5 15 28 7 12 4 4 

6 11 15 1 13 12 12 

7 1 42 2 4 10 9 

8 36 3 15 7 13 5 

9 3 51 4 10 9 6 

10 24 10 9 9 7 8 

 

 

 

Table 5. MBA programmes ranked 1 to 10 under different weight specifications. The 

identifying numbers in the table show the position in the FT published list. 
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 A B C D E F 

A  0.912 0.953 0.894 0.820 0.753 

B 0.887  0.810 0.743 0.667 0.600 

C 0.955 0.854  0.987 0.953 0.867 

D 0.898 0.789 0.985  0.989 0.924 

E 0.803 0.690 0.935 0.978  0.970 

F 0.723 0.609 0.901 0.951 0.980  

 

 
Table 6. Correlation between scores obtained in six evaluations. The upper matrix shows 

Pearson’s correlation and the lower Spearman’s rank correlation. 
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Captions 

 

Figure 1. Distributions of attributes. For each attribute the thicker line shows the spread of the 

middle 50 values, the thinner line the middle 90, and the circles the highest and lowest five 

values. The vertical line shows the median. 

Figure 2.  Standard deviations of scores and weights (see Table 3). 

Figure 3. Distributions of scores. Dashed lines join the quartiles. 

Figure 4. Comparison of E scores with Normal distribution. 

 

Figure 5. Correlations in 2007 and 2008. The diagonal line shows equal values. The box 

shows correlations insignificant (p 0.05) in both years. 
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