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Incorporating demand uncertainty and forecast error
in supply chain planning models™

R Fildes* and B Kingsman
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This paper develops a framework for examining the effect of demand uncertainty and forecast error on unit
costs and customer service levels in the supply chain, including Material Requirements Planning (MRP) type
manufacturing systems. The aim is to overcome the methodological limitations and confusion that has arisen
in much earlier research. To illustrate the issues, the problem of estimating the value of improving forecasting
accuracy for a manufacturer was simulated. The topic is of practical importance because manufacturers spend
large sums of money in purchasing and staffing forecasting support systems to achieve more accurate forecasts.
In order to estimate the value a two-level MRP system with lot sizing where the product is manufactured for
stock was simulated. Final product demand was generated by two commonly occurring stochastic processes and
with different variances. Different levels of forecasting error were then introduced to arrive at corresponding
values for improving forecasting accuracy. The quantitative estimates of improved accuracy were found to
depend on both the demand generating process and the forecasting method. Within this more complete
framework, the substantive results confirm earlier research that the best lot sizing rules for the deterministic
situation are the worst whenever there is uncertainty in demand. However, size matters, both in the demand
uncertainty and forecasting errors. The quantitative differences depend on service level and also the form
of demand uncertainty. Unit costs for a given service level increase exponentially as the uncertainty in the
demand data increases. The paper also estimates the effects of mis-specification of different sizes of forecast
error in addition to demand uncertainty. In those manufacturing problems with high demand uncertainty and
high forecast error, improved forecast accuracy should lead to substantial percentage improvements in unit
costs. Methodologically, the results demonstrate the need to simulate demand uncertainty and the forecasting

process separately.
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1. Introduction

Interest by researchers and practitioners in understanding the
consequences of uncertainty and forecast error for manufac-
turing and supply chain activities remains strong after over
25 years of activity (Dolgui and Prodhon, 2007). The topic
is important to practitioners because companies throughout
the supply chain spend large sums of money on purchasing,
implementing and operating forecasting systems and they
need to justify such expenditure and get the most out of these
systems. Academics have focussed throughout the period on
the effects of demand uncertainty on manufacturing systems
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(eg De Bodt and Van Wassenhove, 1983a; Jeunet, 2006)
and the Bullwhip effect in the supply chain (Forrester, 1961;
Lee et al, 1997), sometimes incorporating aspects of fore-
casting error (Chen et al, 2000a, 2000b). More recently, both
groups have become interested in collaborative planning and
forecasting where information is shared between compa-
nies to co-ordinate production and distribution. Although
some researchers have proposed analytical models to test
various hypotheses in these problem areas, they are inevitably
forced to make simplifying assumptions to ensure mathe-
matical tractability and therefore cannot deliver estimates of
key parameters, such as the value of collaboration or fore-
casting accuracy. In this paper we propose a framework for
simulating the effects of forecast error, focussing on a key
managerial issue: the value of improved forecasting accuracy
in a manufacturing system.

In order to estimate the value of forecasting, we have simu-
lated an MRP system for co-ordinating production and opera-
tions planning. Such systems typically assume a deterministic
environment with the emphasis on co-ordinating production
at all levels and the purchasing of components and materials
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so as to meet the planned Master Production Schedule (MPS).
The MPS provides the linkage between the demands of the
outside customers and the detailed planning and scheduling
of internal production supply facilities. The MPS, once deter-
mined, is passed onto the material requirements planning
system. Uncertainty can affect the performance of the MRP
system in a variety of ways. Random variations can occur in
internal manufacturing lead times, in purchasing lead times
or result from stochastic yield variations at production stages.
As these activities mainly fall within the span of control of
the company management, they can be managed to reduce
significantly the amount and impact of uncertainty. External
demand from customers is, however, normally outside the
company’s control, except for gross influences like promo-
tions, and is stochastically varying over time in most practical
situations. Thus the MPS has to be developed on the basis of
forecasts of demand.

The scheduled production will either be insufficient to
meet the realised actual demand, thus producing shortages, or
exceed the realised demand resulting in unanticipated stocks.
As several authors have pointed out, for example Vargas
and Dear (1991), the effect of demand uncertainty on manu-
facturing systems that rely on deterministic lot-sizing tech-
niques, such as MRP applications, is an important problem.
Although all researchers seem to agree with the early conclu-
sions of De Bodt and Van Wassenhove (1983a) and others that
demand uncertainty dramatically increases costs, the simple
questions, of how those costs increase with forecasting error,
their relationship to demand uncertainty and whether the form
of demand pattern and the forecasting model used are impor-
tant, remain unresolved.

In order to investigate this problem area researchers must
make a number of choices: (i) on the form of the MRP
system, including the number of levels and the interdepen-
dence within the production process, capacity constraints,
production/delivery lead times, and back-ordering rules; (ii)
the lot sizing rules (LSRs) to be considered and their appli-
cation at differing levels of the MRP system; (iii) the costing
of the various activities, finished inventory, work in progress,
ordering; and (iv) service level and buffering strategy. In
this paper we explore a number of important, previously
neglected, issues, including the form of the demand and fore-
cast functions, the levels of forecast error to be included
in the experimental design and the effects of forecast mis-
specification.

Researchers have tackled the problem of uncertainty and
forecast error in MRP systems in two distinct ways: firstly,
through case studies with changes in forecast errors arising
from the use of different forecasting methods (eg, Gardner,
1990; Lee et al, 1993; Enns, 2002) and, secondly, through
developing a simulation of the whole MRP system, including
the demand distribution and forecast errors (eg, Jeunet, 2006).
This paper adopts the second approach with the aim of devel-
oping a satisfactory framework for quantifying the effects of
forecast error and mis-specification.

As an illustration of the proposed methodology we examine
a single product two-stage production system using various
lot sizing rules applied within the MRP logic. The aim of
the model is to estimate the value of improved forecasting.
The methodology we describe, however, extends straight-
forwardly to more complex production systems with manu-
facturing uncertainty, collaborative planning (Aviv, 2001),
interdependent demand at the final product or component
level and capacity constraints (Xie et al, 2004). This paper is
in six further sections. We next consider demand uncertainty
and the corresponding optimal forecast. Section 3 describes
the simulated manufacturing system including costs and
LSRs while Section 4 describes the simulation experiment.
The substantive results of the simulation are presented in
Section 5 for differing levels of demand uncertainty. Section
6 considers the effects of different forms of forecast error
and forecasting model mis-specification (in addition to the
demand uncertainty). The paper concludes with a discussion
of the results, both substantive and methodological.

2. Demand uncertainty and forecast errors in supply
chain systems

Many studies have evaluated the performance of determin-
istic lot-sizing rules in manufacturing systems. The effects
of uncertainty on manufacturing systems, particularly final
demand uncertainty, have also generated considerable interest,
with Wemmerlov (1989) offering an early summary. It is
endemic to most organisations and can be reduced but not
eliminated by accurate forecasting. Failure to include uncer-
tainty in an analysis severely limits its practical implications.
The earlier research suffered from limitations that include a
lack of clarity in distinguishing between demand uncertainty
and forecast error (De Bodt and Van Wassenhove, 1983a; Lee
and Adam, 1986) and the trade off between cost and service
level, which itself depends on the cost structures assumed in
the problem (Vargas and Dear, 1991).

Although much of the research analysed a simple produc-
tion system (eg De Bodt and Van Wassenhove, 1983b; Lee
and Adam, 1986; Ritzman and King, 1993; Chen et al,
2000a) a few researchers have considered manufacturing
systems closer to the complexity observed in practice (eg
Vargas and Dear, 1991; Jeunet, 2006). The problem with
more complex studies is that the quantitative results are likely
to be specific to the distinctive features of the chosen produc-
tion system. Although not discounting the need to examine
complex systems we will follow the approach adopted by
Wemmerlév and Whybark (1984) and Wemmerlov (1989).
These studies examined a single product production system
in a rolling horizon environment and included a range of
LSRs. The conclusion of Wemmerlov’s research gave support
to De Bodt and Van Wassenhove (1983a)—that an inventory
system facing uncertain demand is fundamentally different
to one with a known demand and that results from the latter
case will not apply in most practical situations.
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Using Wemerlov’s framework permits us to generalise his
experimental setting. In an attempt to overcome the major
problem of service level associated with most of the previous
work, Wemmerlov (1989) partially controlled for service level
by using a buffer to ensure that it was 100%. In the research
described here we go further including service level as a
continuous variable. This permits us to evaluate the effects
of realistic improvements in forecasting accuracy on differing
levels of service and unit costs.

The inadequate incorporation of service level has led to
further confusion in past research: that of failing to distinguish
between the (unknown) bias in the forecast and a buffering
strategy of forecast inflation that aims to moderate the effects
of forecast errors by increasing the forecast (Lee and Adam,
1986), thereby providing an inventory buffer. Such a buffering
strategy has long been criticised as inadequate in manufac-
turing systems when compared to the alternative of using
safety stocks (Vargas and Dear, 1991). Here we use safety
stocks in the final product to ensure a variety of service levels.

2.1. Demand models used in supply chain research

Early authors when examining the effects of uncertainty on
manufacturing systems considered only limited models of
the demand generation process and forecast function. De
Bodt and Van Wassenhove (1983a, 1983b) compared various
LSRs when demand was generated by D; = u, + & where
{e;} is assumed independent and identically distributed,
N(0, 6®) and w, is constant. The demand forecasts were
derived using exponential smoothing. They concluded that
with any level of demand uncertainty greater than zero total
costs were increased by about 10%; the impact was highest
when ordering costs were low compared to inventory costs
(and the time between orders was therefore short). Also, the
choice of LSRs was unimportant. Mean demand was set at
200 and ¢ varied from O to 50 giving corresponding coeffi-
cients of variation from 0 to 0.25. The MRP system was such
that current demand was known and could be immediately
supplied. Unrealistically, there were consequently no stock-
outs. They also fail to match their generation process for
demand (random about a constant level) to their forecasting
method (exponential smoothing). This is a common mistake,
which compounds forecasting error with mis-specification
error (Newbold and Bos, 1989) and makes interpretation of
the results difficult since they constitute a mixture of the
mis-specifications and the various experimental effects.

Lee and Adam (1986) and Lee et al (1987) examined more
complex MRP systems. Demand was generated by D; =y, a
constant while the forecasts were seen as randomly distributed
around p,, as N(6, 0?) where ¢ is the bias in the forecast.
A wide range for the coefficient of variation was consid-
ered. Despite the range, the error standard deviation had little
effect on performance while the bias was evaluated as much
more important. The conclusion they drew that the bias was
the more important factor again arose from the limited cost

parameters considered. More recently, research has focussed
on bullwhip effects and supply chain coordination (see eg,
Chen et al, 2000a, b; Xu et al, 2001; Zhao et al, 2001,
2002). Despite these studies carefully specifying both the
data generating process (DGP) and the forecasting model,
one of their fundamental and unanalysed assumptions is
that the forecasting model used by the manufacturer is
mis-specified. Lee et al (2000) and Aviv (2001, 2002), in
contrast, match the two assuming a stationary autoregressive
process, an issue we return to in the next section.

A summary of selected earlier research to 2009 is shown
in Table 1 spanning the earliest studies that proved influential
in specifying the problem area to a range of recent contri-
butions across a wide range of manufacturing systems. This
clearly demonstrates the need for a methodology that incor-
porates the factors we have identified in the literature survey
into the experimental design: service level, cost structure, the
form of the demand generation process and the forecasting
process. Although individual papers have included some of
these experimental factors it still remains true, 25 years after
the original research, that the failure to establish an explicit
experimental design leads to confounding of these factors and
possibly mis-leading conclusions. This lack of generality is
particularly damaging when quantitative estimates of effects’
sizes are sought, which, as we argued earlier, are a manage-
rial necessity if a new forecasting system is being bought
or a Collaborative Planning, Forecasting and Replenishment
arrangement is being evaluated.

2.2. Independent demand and corresponding forecasting
methods

Although a plethora of different forecasting methods have
been proposed as suitable for forecasting independent
demand, recent large scale empirical studies have concluded
that a limited range of simple methods perform as well
as their more complex alternatives (Fildes et al, 1998;
Makridakis and Hibon, 2000). Particularly for monthly
or weekly data on item demand, autoregressive statistical
models should adequately characterise most of the situa-
tions encountered in practice. Two simplifications from the
typical series observed in practice have been made here:
extreme (or outlying) observations have been neglected and
the data are assumed to be both non-seasonal and with no
trend. For short lead times the former assumption is the
more constraining. The effects of these assumptions will
require further research. We therefore propose to analyse the
following demand model, where D; is the demand in period
t and ¢; is random white noise:
Di=0+pD;_1 +e —0Oe,y |p|<1,10|<1 ()
This model, which is a realistic generalisation of earlier
work, includes a wide range of data types that are commonly
observed in practice as the forecasting literature has estab-
lished. For ¥ = p =0 the model is just the ‘constant mean
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demand model’ (contrast the Lee and Adam’s formulation
described earlier) while for p = 1 and 6 <1 the model is
the ARIMA (0,1,1) model for which exponential smoothing
is the optimal (minimum mean squared error) forecasting
method. For p < 1 and 0 =0 the model is a stationary AR(1)
process and 9 is determined by the mean of the process. The
above model is the basis of the most common forecasting
methods used in production systems and here we consider
two cases: the AR(1|p = 0), a Random Noise series, and
AR(1]p = 0.9). The latter model was chosen to simulate
series close to non-stationarity and therefore close to a series
where exponential smoothing is near-optimal.'

The optimal (in the minimum mean squared error sense)
one-step ahead forecast of demand for period ¢, ,,; F;—1,, made
in period ¢+ — 1 after that demand is known, for the above
data generation process is given by taking expectations of
Equation (1):

opt Fi1s =0+ pD;_ — Oy 2)

The error term, e;_, is the forecast error observed in the
previous period, defined as the difference between the realised
demand at + — 1 and the previous forecast, and at time ¢
this is known. In general, of course, such an optimal forecast
would be unavailable to the scheduler, not least because the
parameters would have to be estimated from the data. In this
study we assume that the parameters are known exactly; the
only difference between the optimal forecast and the data
generation process arises because of the random error, e;.

The distribution assumed for ¢, includes a range of values
for the noise variance but the mean is assumed to be zero.
The reason for this choice is that a constant bias model (such
as that used by Lee and Adams, 1986) would be forecastable
over time. The noise distribution is assumed normal (although
demand and the forecasts of demand are constrained to be
positive). The general form for the forecast error variance for
an AR(1) model for k steps ahead is:

(1-p" ,
——a

1 —p?
For the Random Noise model, with p=0=0, the forecast error
variance is constant for all steps ahead. For the AR(p =0.9)
model the standard deviation increases with k.

The complete specification of this data generation process
depends on the values chosen for the noise variance. The
values used in the experiment represent a plausible range of
values for fast moving items according to surveys of fore-
casting accuracy reported in the literature (Fildes and Beard,
1992; Fildes and Goodwin, 2007; Fildes et al, 2009). For one-
step ahead (3 months ahead or less) forecasts, these studies
suggest a mean absolute percentage error of at least 20%,

3

vare; (k) =

LA referee queries why an ARIMA (0,1,1) model has not been consid-
ered. The focus of this already long paper is methodological and the
proposals carry over to this important case; however, further research into
more general demand processes is desirable.

often higher. For a normal distribution this roughly translates
into a coefficient of variation of 0.25. In the simulation exper-
iment we will therefore use values of the coefficient of varia-
tion ranging from O to 0.4. For e, assumed normal the range
of values of the noise standard deviation included in the simu-
lation experiment are therefore: 0, 50, 100, 200, 400 (around
a mean of 1000) with demand constrained to be non-negative.

2.3. Forecasting error and mis-specification

Forecast error is usually taken as the difference between the
actual and the forecast value. However, this error combines
the randomness in the process generating the demands and
the errors arising from not using the optimal forecast; most
earlier researchers in this area have conflated the two. It is
only the latter that represents the potential value of improving
forecasting accuracy and the value of improved forecasting
derives from the difference between the optimal forecasting
method for a given DGP and whatever sub-optimal method
is used. The non-optimal forecasting system can now be
defined as:

Fi v ik=opt Fr—1,04x + @

for each of the DGPs so that the actual forecast equals the
optimal forecast plus Random Noise (assuming the same error
is made across lead times—other assumptions could be justi-
fied). It follows that the overall forecast error is:

Dk — Fro1 4k = €4k — Vs 5)

This distinction between randomness in the data generation
process and the consequential forecasting errors permits the
introduction of a wide range of forecasting error character-
istics, including bias and forecast model specification error.
Forecast mis-specification is a common feature of many rele-
vant studies (eg Chen et al, 2000a, b; Lee and Adam 1986).

In this paper we examine the case where v, has error stan-
dard deviation ko where x is chosen so that the overall error
standard deviation, /(1 + k?), takes values of 110, 120 and
150 of the minimum attainable, given by . The results from
introducing forecast error should look similar for different
levels of randomness in the data generation process alone
despite the two sources of error being independently simu-
lated. (This will not in general be true in the common case
where ¢; and v, are correlated due to a common cause of both
demand uncertainty and forecast error such as a promotional
campaign.)

Thus, there are two sources of uncertainty in the demand
prediction process. One, the forecasting error, can be reduced
by getting closer to the optimal forecasting method for the
underlying demand generation process (DGP). Clearly, as
there will be inevitable errors in identifying and estimating
the parameters of the DGP, it will never be possible to elimi-
nate such forecasting errors altogether. The second source, the
process error, is the random variation in the DGP itself. This
can be reduced only by attempting to manage the demand
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process, for example by attempting to change customers’
behaviour or through collaborative forecasting. The use of
specific ordering days in a week or month for different
groups of customers in inventory/distribution systems offers
an illustration. In order to guide management effort towards
process improvements it is important to distinguish as much
as possible between the impact of these two sources of uncer-
tainty on unit costs and service level. In the simulation study
that follows we examine the consequences for costs and
service level of different levels of demand uncertainty, in the
first instance, supplemented by forecast error in the second.

3. The production and lot sizing environment

The production system simulated here is composed of two
stages, a raw material (or component) having a purchasing and
delivery lead time and a manufacturing process (or assembly)
to make the final product from the material (or component),
requiring one or more periods to be completed. The major
areas of interest in the simulation experiment are the costs
of producing the final product and the customer service level
achieved, together with the effect of demand forecast errors
on the MPS. The research presented here follows most earlier
work in assuming that the only stochastic variation is in the
demand for the final products. It is assumed that internal
manufacturing lead times and purchasing lead times are fixed
and also that internal yields are always 100%. The compo-
nents are pushed up to the final level as scheduled. They
are not delayed because of the fact the demand for the final
product may change. All variation is absorbed into the stock
of finished items.

3.1. Planning horizon and action horizon

In uncertain environments, MRP is usually developed using a
rolling schedule. When using a rolling schedule, the produc-
tion schedule is re-planned at regular intervals. Decisions are
made taking into account the forecast demands over some
future fixed planning horizon. In each successive period,
lot-sizing decisions are made to minimise costs over the
planning horizon ahead from that period. Then orders for
raw material are placed and production occurs. An ordering
decision by the manufacturer now leads to the scheduled
arrival of that order some lead time into the future. Here it
is assumed that once orders have been placed, they cannot
be cancelled or altered in any way. Thus a portion of the
production schedule determined for the planning horizon
is frozen each planning cycle. This will include all those
periods with the scheduled arrival of an outstanding order
placed in previous periods. This frozen portion will be at
least the lead time, L, to produce the item through all of
the possible stages of purchasing and manufacturing. It may
also include a further action horizon, a length of time, of say
A periods, over which any recommended orders are made
firm orders, which cannot then be changed in later periods.
Given the assumptions of constant processing and lead times,

only the total length of the frozen period matters, and not
how the frozen period is decomposed into the maximum
manufacturing lead time and the action horizon.

The planner can only make changes to ordering decisions
for that part of the planning horizon beyond the frozen period,
the free planning horizon. The length of the free horizon
dictates the number of periods over which demands can be
batched into different lot sizes. The longer it is the greater the
possibility of reducing costs by allowing bigger orders where
advantageous. The total planning horizon is the frozen plus
free periods. The simulation model allows different values
for both the frozen and free horizons to be examined. The
experiments covered values of 2 (the minimum possible for
a two state production process), 5 and also 7 periods for the
frozen period to gain some understanding of any sensitivity
in the results. The free horizons considered were 12, 24 and
36, again to understand whether the results proved sensitive
to this choice.

3.2. Costs

The costs included in this experiment consist of the cost of
placing orders and the cost of holding stock. There are two
major measures of performance: (i) the average ordering and
stockholding costs per unit of demand, and (ii) the service
level achieved, defined as the proportion of demand satis-
fied immediately either from the opening stock or the current
period’s output.

As most of the deterministic LSRs aggregate the net
requirements over future time periods to give the lot sizes,
the expected time between successive orders is an appro-
priate method of ranking alternative sets of cost parameters,
the ordering cost and (end of period) stockholding cost.
This was determined from the order cycle given for the
classical Economic Order Quantity (EOQ), based on the
average demand per period implied by the demand genera-
tion processes used. It is often known as the Time Between
Orders (TBO) measure. The stockholding cost was set at
1 and the expected average period demand at 1000. Ordering
cost values were chosen to give TBO values, measured in
periods, in the middle of the ranges 1-2, 2-3, 3—4 and 4-5.
These values imply the order would be expected to cover 2,
3, 4 and 5 periods’ demands respectively. The corresponding
values for the ordering cost will then be 1750, 3500, 7000,
and 11500.

3.3. Service level and safety stocks

A service level performance measure has been used rather
than including stockout costs as part of the total cost, since the
latter are rarely known in practice. We adopted the approach
of letting the service level be a factor in the experiments.
This allowed us to examine the trade-offs between costs and
service level. Clearly, under the same cost parameters and
forecast error conditions, different LSRs result in different
performance costs and different service levels. To render the
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results comparable, the models were run with different levels
of target end of period final product stocks. If this target
level is a positive quantity then this is equivalent to holding
safety stock. Lower service levels are only possible by delib-
erately forcing the system on average to have stockouts. This
can be achieved by allowing backorders or lost sales up
to some pre-set level, that is, by making the safety margin
negative.

3.4. Lot sizing model for backorders and lost sales cases

As discussed above, the existence of an action horizon, A,
means that at any time, ¢, recommended orders to be placed
within the next A periods are made up of firm orders which
cannot be changed at a later time. Thus at time ¢, orders already
placed for periods #+1 to t+ A — 1 are outstanding orders that
were placed at an earlier time and cannot be altered in any
way. These orders will arrive a lead time L after they were
placed, in periods ¢t + 1+ L tof + A — 1+ L. Let us denote
the frozen interval as discussed above, the sum of the action
horizon and the lead time in periods, as F=A—1+L. Thus, lot
sizing decisions taken at time ¢ cannot affect the backorders or
lost sales arising over the frozen part of the schedule, periods
t + 1 tot +F, but start only for orders that will arrive in
periods  + F 4+ 1 onwards. The problem is therefore to find
the orders from this period ¢ + F + 1 onwards that minimise
the costs of meeting the forecast demand over the next F + P
periods where P is the free planning horizon. Let F, ;. be the
forecast of demand based on the forecasting method in use
(to which is added any desired buffer) for period ¢ + k made
at the end of period ¢, after the demand for period ¢ is known,
for k =1 to F+P. There are outstanding orders from earlier
periods, OO, scheduled to arrive for period t + k for k =1
to F. Let I, , be the known stock at the end of period . I, ;¢
is defined as the stock projected for the end of period # +k on
the basis of the forecast period demands, outstanding orders
and the ordering decisions made in period .

Different service levels are generated by specifying the
target stock levels to be achieved at the end of every period
including buffers. Unlike the standard lot sizing procedure
for deterministic demands, the aim here is to ensure that the
projected start of period stock, plus the order scheduled to
arrive at the start of that period, less the forecast demand is
at least some specified stock (SS) level. If SS is positive then
it is a safety stock to guard against demand variations. If SS
is negative, then it is the maximum level of backorders that
can be planned to be carried from one period to the next or,
in the lost sales case, the maximum shortfall in meeting the
predicted demand for a period. So in the lot size planning in
period ¢, new orders should be scheduled to arrive in period
t +k, O, 4, to ensure that:

Livsk = Iripk—1 + OO0 4 + OF  — Fripi =SS

fork=F+1toF+P (6)

treating the forecasts as realised demands. The lot sizing
problem at the end of period ¢ can thus be expressed as
to determine the orders scheduled for arrival in period k,
Of, 4> that minimise the total costs of ordering and stock-
holding over periods ¢t + F 4 1 to # + F + P whilst satisfying
the above constraint for all periods. A fuller discussion is
given, for example, by Jeunet (2006) or Voss and Woodruff
(2006). For the backorders case see Fildes and Kingsman

(1997).

3.5. Lot sizing rules (LSRs)

Six alternative lot-sizing methods were evaluated in the simu-
lation, as given below, and include those commonly adopted
in organisations. Fuller descriptions are given in texts such
as Orlicky (1975) and Silver et al (1998). In all cases, the
currently uncovered net requirements over the free part of the
planning horizon, taking account of any backorders that have
accumulated, are firstly determined to give the demands to
be satisfied. The average period demand is the average of the
uncovered net requirements divided by the total number of
periods in the free part of the planning horizon. However, if
the net requirement in the first free period (or first few free
periods) is zero then this is ignored in the averaging. In this
particular case, no order will be placed and the simulation
moves on to the following period, updating the system with
the actual period demand.

Economic Order Quantity (EOQ): The lot size is set equal
to the standard Wilson Economic Order Quantity calculated
on the basis of the average period demand, as above. If the
EOQ is insufficient to meet the first period’s net requirement,
the lot size is made the smallest multiple of the EOQ that
achieves this.

Period Order Quantity (POQ): This converts the EOQ lot
size to the nearest integer number of periods demands, (again
based on the average period demand over the free part of the
planning horizon, as above).

Least Unit Cost (LUC): The lot size is increased to cover
succeeding periods until the item unit cost is at a minimum.
The item unit cost is the ordering cost plus the stockholding
costs for the lot divided by the lot size. If there is a tie, then
the smaller number of periods is taken.

Least Total Cost (LTC) or Part Period Balancing: This is
based on the concept that the least total cost occurs where the
ordering and stockholding costs are most equal. The lot size is
increased to cover succeeding periods until the stockholding
cost is closest to the ordering cost. Again, if there is a tie, the
smaller number of periods is taken.

Silver Meal Heuristic (SM): The objective is to minimise the
costs per period, so the total costs are divided by the number
of periods. If a period within the total covered by the lot has
zero net requirement then it counts as a period for the division.
Wagner-Whitin algorithm (WW): This procedure gives the
optimal solution for minimising the costs of meeting a
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given set of deterministic requirements over a given planning
horizon.

In addition, the simulation included the Lot-for-Lot method
and the incremental heuristic, mainly as a check of the
accuracy of the simulation programme (Silver et al, 1998).
However, the results for these methods are excluded from the
analysis due to their consistently poor performance.

4. The simulation experiment

Within the production system described in the previous
section, a number of arbitrary decisions have been made that
could affect our results. Demand has been generated over
20000 periods but the variability of demand itself suggests it
is wise to repeat the simulation experiment in order to estab-
lish the effect on demand, service level and the various costs.
Five replications were carried out and detailed examination
analysis of these runs showed that there was very little differ-
ence between the outcomes of each of the replications. The
safety stock was set as a buffering factor times the forecast
error standard deviation (FORDEV). An extended range of
buffering factors were chosen to ensure sufficient data over
service levels above 90% to deliver a good approximation to
the cost-service relationship. The service level recorded was
the average value over the five replications for that buffering
factor, and similarly for the unit costs. The buffering values
were chosen so as to cover service levels in the range 90%
t0 99.5%.

The random numbers used were generated using the Turbo
Pascal function ‘random’ based on fixed seeds, so that each
experimental run used common random numbers to reduce
variance (Law and Kelton, 2000). The normal distribution
generator was that proposed by Box and Miiller (1958).

In addition the effects of the following parameters on the
results have been examined:

(1) Frozen interval—the experiment was run with three
different frozen periods: 2 (the minimum possible given
the two period nature of the production process), 5 and
7. The results reported in this paper are only for a frozen
period of 5 to conserve space. The results for the other
frozen intervals are similar. Unsurprisingly, the shorter
the frozen interval, the lower the unit cost curve. The
ranking of the LSRs remained essentially unchanged
(average rank correlation over five replications = (0.97).
The change in the average unit cost is small, averaging
around 1%.

Because the frozen interval determines the first period
in which the schedule can be changed it also affects the
actual error standard deviation under which the plans are
set. The error standard deviation for the first period in
which the schedule can be changed, denoted by o(F+ 1)
where F is the length of the frozen interval in periods,

for both demand Data Generating Processes has been
set at the values 50, 100 etc using Equation (3). (Only
in the case of the autoregressive DGP does this lead
to a rebasing of the error standard deviation; for the
Random Noise Process the lead-time error standard devi-
ation remains constant whatever the lead time.)

(2) Planning horizon—the simulations were run with three
different free planning horizons, 12, 24 and 36 periods,
for some options. Note that the full planning horizon
is made up of the relevant frozen interval plus this
free horizon. The results were virtually identical with
an average correlation of 0.99 approximately. This was
expected because even the smaller free planning horizon
is more than twice the maximum TBO of between 4 and
5 periods. All the experiments reported are for a free
planning horizon of 24 periods except where noted for
the Wagner—Whitin algorithm.

(3) Simulation run length and warm-up period—the exper-
iment starts with zero stocks and zero demand over
the frozen interval. The actual simulation period was
for 20000 periods, having first ‘run-in’ the simulation
for a warm-up period of 72 periods. This is sufficient for
the frozen period plus the planning horizon considered
here. The warm-up period outcomes are excluded from
the analysis of the results.

(4) Verification—the programme was built up from a number
of test sub-programs covering the lot sizing rules, the
demand and forecast generation processes and the rolling
schedule calculations. Each was verified against manual
calculations.

5. The effects of demand uncertainty with optimal
forecasting

The results of the various simulations are presented in terms
of two key measures of performance as discussed earlier; the
mean unit cost and the mean service level for each combina-
tion of experimental factors, averaged over the J =5 simula-
tion replications.

Experiments were performed on two autoregressive
demand processes, the Random Noise DGP, AR(p = 0), and
AR(p =0.9).

Figure 1(a) presents some examples of the trade off curves
obtained for the various lot sizing rules with a Random Noise
DGP which show the mean unit cost graphed against the mean
stock-out (shortage) level (between 0% and 8%) for each of
the buffer values used in the experiments when there is perfect
foreknowledge of the future demands. This is the deterministic
demand case for which the LSRs were originally designed.
The results shown are for a TBO value of 4 and for two
values for the error standard deviation, 100 and 400. (It should
be remembered that a TBO =4 means that the average time
between orders is 4 periods, which is given by an ordering
cost of 7000 relative to a period holding cost of 1).
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Figure 1 Unit cost versus shortage level various lot sizing rules: time between orders 4 periods. (a) Perfect information. (b) Uncertain

demand.

A tentative finding from Figure 1(a) is that there is little
difference between the unit costs of the different LSRs for the
lower error standard deviation, apart from the EOQ, which
costs significantly more. The relative ordering of the unit costs
of the LSRs remains the same over the whole range of service
levels shown. The differences between the rules become larger
as the error standard deviation increases. The ordering of the
rules in terms of unit costs, lowest cost first, is WW, SM,
LTC, LUC, POQ and EOQ. However, these results give a base
level for comparison of the effects of demand uncertainty on
the performance of the rules. The WW rule, of course, gives
the optimal solution over the planning horizon at each period
in turn, allowing for the previous decisions although this is
not assured for a finite planning horizon (sensitivity tests
showed it optimal for a horizon of 90). The EOQ performs
worst because its order size is not constrained to be the
demand over a number of integer periods, leading to carry-
over stocks in every period. This is not new, being typical
of what has been found in previous studies (see Silver et al,
1998, for a summary and references on comparative lot sizing
performance).

Figure 1(b) shows the trade off curves obtained for the
various lot sizing rules for the same case as in Figure 1(a) but
now based on forecasts of the future demands each period.
The ordering decisions are based on the forecast of demands

over the planning horizon at each period in turn, not the
actual demands as for Figure 1(a). Note that in this case, the
unit costs become asymptotically large as the service level
tends to 100%. An immediate finding from Figure 1(b) is that
there is again a consistent difference between the different
LSRs over the whole range of service levels shown, but that
the differences are much smaller than those of Figure 1(a)
(the deterministic demand situation with perfect foresight).
The relative ordering of the unit costs of the LSRs is the
same for both levels of demand uncertainty but the differences
become smaller as the noise standard deviation increases. The
other preliminary finding is that ordering of the rules in terms
of unit costs is the reverse of what was found for the perfect
foresight case. The EOQ is always the best, whilst the WW
‘optimal’ algorithm is almost always the worse. However,
there is not a lot of difference between the rules other than
for the EOQ.

Graphs such as Figure 1 are an illuminating way of
presenting complex results, but, unfortunately, the service
levels resulting for each lot sizing rule and level of demand
uncertainty for the same buffering factor (and hence safety
stock) differ. Although one can draw general conclusions
from such figures, they do not allow the direct derivation of
a quantitative summary of the relative performance for all
costs structures and the different levels of the error variance
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Table 2 Ranking the rules by unit cost (measured by ranking each method for each TBO and level of noise uncertainty and
summing the ranks)

Random Noise data generating process

Autoregressive demand DGP

Deterministic demand—perfect Forecasting demand

Deterministic demand—perfect

Forecasting demand

information information

wWwW EOQ wWw LTC

SM LUC SM EOQ

POQ, LTC LTC, POQ, SM LUC POQ,

LUC LTC, POQ

EOQ wWwW EOQ SM, WW, LUC

for a particular DGP. The proposed solution to this diffi-
culty, new to this literature, is to model the trade off curves
quantitatively to give the relationship between the unit cost
and the service level (see Johnston et al, 1988) who propose a
similar concept. For each lot sizing rule, error standard devi-
ation, data generation process and cost structure (7BO), the
logarithm of the unit cost for the ith experimental condition
was taken to be a function of the out-of-stock level (equal to
100-service level):

log, (Unit Cost;)
= u+ f,(100 — Service Level,)
+,(100 — Service Level;)?
+5(100 — Service Level); +,(100 — Service Level;)?

+log, (100 — Service Level;) + ¢;. )

Various simpler alternative specifications were considered
such as a log-log function of mean service level but this more
flexible form was preferred as it gave a consistently better
description of the complex cost responses to the different
experimental conditions. The curves were estimated for
service levels greater than 90%. The maximum percentage
error in predicted unit cost is less than 0.1% with R*> =1
(approximately) in all cases. Different plausible functions
led to the same rankings of the various LSRs. The esti-
mated parameters depend on such aspects of the simulation
experiments as the frozen period, planning horizon etc.

Using these fitted curves, it is then possible to estimate the
unit costs for each lot sizing rule, TBO and error standard
deviation for any particular service level and so perform a
quantitative analysis of relative performances. Two target
service levels were selected, 99% and 96%, representing
high and a more modest but acceptable level of service
achievement.

An analysis of ranking the lot-sizing rules performance
by unit cost for each of the TBO and error standard devi-
ation combinations confirmed the earlier result on their
relative ordering, see Table 2. The ordering is as expected
when there is perfect information on future demand for both
DGPs. The optimal WW rule is first followed quite closely

by SM. The EOQ is always worst by far. The order of the
other three rules varies between the two DGPs. The ordering
is reversed when we have to forecast the demand using the
‘optimal’ forecasting method for the particular process. The
WW rule, the optimal for the deterministic situation is now
very much the worst rule. The EOQ, the worst by far in the
deterministic case, is best for the Random Noise DGP and
second best for the Autoregressive DGP. The LTC rule, which
was poor in the deterministic case, is now the best for the
Autoregressive DGP. Thus having to forecast demand and
plan on the basis of a rolling horizon in a stochastic demand
situation gives very different results to those found under
the deterministic demand situation for which the LSRs were
devised.

To assess the implications of these results we need firstly
to check if there is a significant difference between the
performance of the rules. In order to avoid any assumption
of normality, a non-parametric test, the Friedman Test for the
two-way analysis of variance by ranks, was performed to test
if there are significant differences in performance between the
six lot sizing rules and the effect of varying TBOs and error
standard deviation. The use of common random numbers,
while introducing dependence between unit costs for different
treatments, does not undermine either Friedman’s test or
the ANOVA tests considered later as the comparisons are
blocked (as in a paired t-test). The p-values of the Friedman
statistic indicated that overall there are significant differences
in performance (at 5%) between the different lot sizing rules
for the Random Noise Process but not for the Autoregressive
Process. There is somewhat more variation in performance
across TBOs compared to the error standard deviations,
though the differences are not pronounced.

Another way to measure the relative performances is to
calculate the ‘regret’ of using a particular lot sizing rule, that
is, the increase in unit cost compared to the best method
for that TBO, error standard deviation and service level. The
overall average regret values for each of the lot sizing rules for
each service level for the Random Noise and Autoregressive
Demand DGPs are displayed in Table 3. This confirms the
earlier deductions above.

It can be seen for the Random Noise DGP that the EOQ
rule always gives the best performance by far for both service
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Table 3 The overall average percentage regret by error standard deviation by Lot Sizing Rule

3a) Random Noise DGP

Lot sizing rules

Service level

96%

99%

Error standard deviation

Error standard deviation

50 100 200 400 50 100 200 400
EOQ 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1
POQ 6.8 49 24 0.9 4.5 39 2.0 0.5
LUC 6.6 4.0 1.3 0.3 52 39 1.5 0.3
LTC 6.8 49 24 0.9 4.5 39 2.0 0.5
SM 6.8 49 2.4 0.9 4.5 39 2.0 0.5
wWwW 6.8 49 24 0.9 4.6 4.0 2.0 0.6

TBO TBO
2 3 4 2 3 4 5

EOQ 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
POQ 8.4 2.9 2.1 1.5 5.9 2.1 1.7 1.3
LUC 59 33 1.8 1.1 4.8 29 1.8 13
LTC 8.4 2.9 2.1 1.5 5.9 2.1 1.7 1.3
SM 8.4 29 2.1 1.5 5.9 2.1 1.7 1.3
wWw 8.4 2.9 2.1 1.6 5.9 2.1 1.7 1.5

3b) Autoregressive (0.9) DGP

Lot sizing rules

Service level

96%

99%

Error standard deviation

Error standard deviation

50 100 200 400 50 100 200 400
EOQ 0.0 0.0 0.7 2.2 0.0 0.0 0.8 1.5
POQ 4.0 1.8 0.5 0.7 3.1 15 0.2 0.5
LUC 33 0.9 0.7 2.2 32 1.1 0.7 2.1
LTC 4.0 1.7 0.2 0.0 3.1 15 0.0 0.1
SM 4.0 1.8 0.7 1.2 3.1 15 0.5 0.7
WW 48 2.5 13 1.4 3.8 2.1 0.9 0.9
TBO TBO

2 3 4 2 3 4 5
EOQ 0.4 1.2 0.7 0.6 0.8 0.6 0.2 0.5
POQ 45 1.2 0.7 0.5 0.7 0.6 0.4 0.5
LUC 35 2.0 1.0 0.7 1.0 0.9 0.5 0.8
LTC 43 0.9 0.5 0.2 0.3 0.3 0.3 0.3
SM 45 1.7 0.9 0.6 0.8 0.7 0.5 0.5
WW 45 1.6 0.7 33 3.1 2.9 2.8 2.6

levels, with a regret of very close to 0%. The LUC rule is
slightly better than POQ, LTC and SM rules, which are again
slightly better than the WW rule. The size of the regret falls
as the error standard deviation increases and also as the 7TBO
takes higher values. The potential saving in choosing the EOQ
rule compared to any other is around 8% for a TBO of 2
but falls to only 1.4% for the highest TBO of 5, for the 96%
service level. For the lowest error standard deviation the regret
is 6.4% falling to only 1.4% for the highest value of 400.

The impact becomes smaller as the service level increases
from 96% to 99%. To summarise, the choice of lot-sizing rule
becomes less critical as the demand uncertainty increases and
as the average time between orders increases.

Comparing Table 3b with 3a shows that the regrets from
using the best rule in each case are smaller for the Autore-
gressive DGP than from the Random Noise DGP. The EOQ
is best for the lower error standard deviation whilst the LTC
rule is best for the two higher error standard deviation. The
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Table 4 The percentage increase of best LSR rule above the WW solution based on perfect demand information

4a) Random Noise DGP

TBO Service Level
96% 99%
Error standard deviation Error standard deviation
50 100 200 400 50 100 200 400
2 15.8 20.7 40.3 102.9 26.5 35.6 64.2 146.3
3 79 109 22.8 60.3 15.1 20.6 38.5 88.6
4 4.1 6.0 13.2 37.2 9.1 12.6 23.8 56.1
5 2.3 3.6 9.0 26.3 6.3 8.6 16.9 40.6
Average 7.5 10.3 21.3 56.7 14.2 19.3 35.8 82.9
4b) Autoregressive (0.9) DGP
TBO Service level
96% 99%
Error standard deviation Error standard deviation
50 100 200 400 50 100 200 400
2 18.3 31.1 71.4 180.0 31.7 51.6 106.6 243.2
3 9.1 159 38.0 108.1 17.6 20.1 60.6 150.6
4 4.6 8.5 22.7 67.7 10.6 174 37.8 97.1
5 2.7 5.5 15.4 48.1 7.2 124 27.1 69.9
Average 8.7 15.3 36.9 101.0 16.8 27.6 58.0 140.2

EOQ rule is best for a TBO of 2 but the LTC takes over for
higher TBOs of 3, 4 or 5. The autoregressive results show that
generally the percentage regret from using the wrong rule is
less than 2%. Thus unlike the Random Noise DGP, the choice
of LSR to use for the Autoregressive DGP is unimportant
except for very low (and unrealistic) error standard deviation
and TBOs.

A possible explanation of the relative performance of the
various lot sizing rules is that for a given set of forecast
demands, the standard lot sizing heuristics cumulate demands
over an integer number of periods. This avoids the deliberate
creation of carry-over stock as occurs with the EOQ rule.
The differences between the forecasts and the actual demands
will create unplanned carry-over stock and also periods with
small net requirements. Thus, the existence of demand uncer-
tainty negates the advantage of the rounding to match period
demands of the lot sizing rules in the deterministic demand
situation. The EOQ rule carries an implicit safety stock also.
Consequently, when the final product demand has to be fore-
cast, using the EOQ for lot sizing works effectively. Once fore-
cast errors are acknowledged, there will always be carry-over
stock from period to period, so any method that concentrates
on minimising costs is perhaps not as effective as examining
costs per unit acquired.

To summarise the results, the choice of lot-sizing rule, for
both processes, becomes less critical for increases in demand
uncertainty, the average time between orders and the service

level, and becomes close to inconsequential for higher TBOs
and service levels.

It is also valuable to assess the increase in cost arising
when forecasting uncertain demand compared with the costs
resulting from known demand. This is illustrated in Table 4
where costs are compared to those calculated with perfect
foresight of the (stochastically) generated demand pattern for
both DGPs. This shows the percentage increase in unit cost
for the best lot sizing rule above the unit cost for the corre-
sponding WW cost, based on the deterministic case of perfect
foresight (disaggregated for the different TBOs and error stan-
dard deviations). The bottom row of the Table shows the
average increases over 7BO values from 2 to 5. The increases
are much higher for the 99% service level than for the 96%
service level. The values derived indicate a complex pattern
of behaviour, with the standardised unit cost increase rising
as the time between orders lengthens, the error standard devi-
ation increases and the service level increases. There is again
an economically significant difference between the two DGPs.
The cost increases due to the uncertainty in the demand are
much greater for the Autoregressive DGP than for the Random
Noise DGP. The average of the 96% and 99% service levels
can be used as an overall indicator of the effect of changes
in the error standard deviations. The rate of increase in unit
cost as the error standard deviation increases is approximately
exponential, at 16% and 29% for the Random Noise and the
Autoregressive DGP, respectively.
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These results contradict De Bodt and Van Wassenhove’s
(1983a) often repeated conclusion that with any level of
demand uncertainty greater than zero, costs were increased
by about 10%. In fact, their result is an artefact arising
from the attempt to eliminate service level as a factor in
their experiments. This more complex and conditional result
points to the circumstances where uncertainty matters most:
particularly when the time between orders is short, service
levels are high and the demand is positively autoregressive.
Essentially, the ordering processes allow errors to mount
up with a positive autoregressive process in contrast to a
negative autocorrelation process.

6. The value of forecasting and the effects of
mis-specification

Now the above results are indicative of the value of fore-
casting. Transparently, changes in the demand uncertainty
leads to significant changes in the unit cost when service
level is kept fixed. However, this does not directly answer
the question posed in the introduction: what is the value of
forecasting? Whilst to most practitioners, the forecast error
is the difference between the actual and the forecast value,
as we pointed out in Sub-section 2.3, this error combines
the randomness in the process generating the demands and the
errors arising from poor forecasting. The overall error is the
difference of the two errors (see Equation (5)) and assuming,
as we do, that the process and forecast errors are uncorrelated,
its variance is the sum of the two variances. It is only the
forecast error component that represents the potential value
of improving forecasting accuracy.

Figure 2 shows the effects on the unit cost/shortage
level trade-off curves of increasing the forecasting error by
20% and 50% compared to when the forecast is optimal
(ie v;. = 0). This is further contrasted with the curve based
on perfect foresight information. The illustrative graph of the
results shown is derived using the EOQ lot sizing rule and for
a TBO of 3 periods for different standard deviations in the
data generation process. The picture remains the same for the

various TBOs. It shows the substantial increase in unit cost (for
a given service level) as we move from perfect information
through the different levels of forecast error, and in particular,
the proportionate benefits across all service levels of improved
accuracy.

In order to quantify the value of forecasting, the logarithm
of unit costs has been modelled as a function of possible
explanatory factors as given in Table 5. As before, the model
was of the log, (average unit cost) form. The data set modelled
was for mean service levels lying between 93% and 99.9%
to avoid distortions at the extremes of the data. This range
includes those values of practical interest.

In the model specification the service level has been
included in the same form as was used to estimate the 99%
and 96% service levels in Section 5, Equation (7). The results
show that the factors LSR and Cost (as measured by TBO)
are significant. Unsurprisingly, the largest reduction in vari-
ance is due to the Cost (TBO) parameter. The noise standard
deviation of the data generation process, STD, and the forcast
error standard deviation (FORDEYV), were included linearly.
The inclusion of the variances STD* and FORDEV?, as well
as the standard deviation lead to improved predictions for
the larger values of the overall deviation. The RMSE is low
suggesting a satisfactory model (with inter-quartile ranges of
approximately 5% for the error) with R? of 99%. Details of
the associated analysis of variance summary table are omitted
as the inevitable consequence of using such a large data set
is that almost all factors are found to be ‘significant’. Almost
all earlier research has usually confused ‘significance’ with
economic importance whilst what managers need to estimate
is the latter.

Graphical analysis plus the inclusion of additional cross-
product terms such as the often insignificant interactions
between the overall error standard deviation and LSR and
TBO suggested that the model was broadly adequate and
the error distribution was approximately normal but it failed
to capture all the non-linearities induced by the interaction
of STD, the standard deviation of the DGP, and the cost
structure, 7TBO. However, including such interaction terms

Figure 2 Unit cost versus shortage level as it is affected by forecast error levels based on EOQ: time between orders of 3 periods.



496  Journal of the Operational Research Society Vol. 62, No. 3

Table 5 Possible explanatory factors in a model of Log,(Cost).

Qualitative factors Quantitative factors

Lot sizing rules (LSR)
Cost structure (7BO)

FORDEV?

Noise standard deviation of the DGP: (STD) and its variance, STD?
Standard deviation of the forecast uncertainty—measured as FORDEYV and its variance,

An interaction term, PROD = STD*FORDEV

Forecast error level (FORDUM)
Interaction of (LSR and TBO)

and (LSR and STD) Equation (4).

Overall error standard deviation, OVERALLDEV = SQRT (STDx%2+FORDEV%x2)
The out-of-stock level, SERV—measured as: (100-Service Level), and transformed as

Table 6 Testing the difference between Lot Sizing Rules—the contrasts

Contrast Estimated effect (% difference in unit cost)
All data No forecast error With forecast error

EOQ versus POQ —0.74%* —2.80%* 0.09
EOQ versus LUC —0.80** —2.65%* —0.06
POQ versus LUC —0.06 0.15 —-0.15
EOQ versus LTC —1.28%* —2.80%* —0.61**
EOQ versus SM —0.80%* —2.80%* 0.00
EOQ versus WW —0.84%* —2.85%%* —0.03
EOQ/LUC versus rest —0.52%* —1.50%* —0.11
EOQ/LUC/ POQ versus rest —0.69%* —1.51%** —0.33%*
SM versus WW —0.04 —0.06 —0.03

**Represents a contrast significant at less than 1%.

has no effect on the qualitative conclusions we draw and little
effect on the quantitative estimates we make since the coef-
ficients are small. The final specification adopted included a
dummy variable to distinguish between the situation with zero
FORDEV (FORDEYV = 0) equivalent to optimal forecasting
and non-zero forecast error. Its interaction with LSR was also
included.

The key interaction to include is that between the cost
parameter and the overall uncertainty, preferred to both the
process STD and the FORDEYV. This shows that the impact
of the overall deviation lessening as the time between orders
(TBO) increases. Essentially the shorter the time between
orders the more sensitive the system is to demand uncertainty
and forecast error. The impact of the FORDEV is larger,
compared to the process error, though there is a qualitative
reduction in cost in moving from the zero FORDEV to the
non-zero case, ie small amounts of forecast error lead to
overall improvements in performance.

The above model was used to evaluate the performance of
the different lot sizing rules on unit cost. Overall EOQ, POQ
and LUC performed best (although the estimated cost differ-
ence is small, typically less than 1%) as shown in the column
‘Estimated Effect’ in Table 6. However, this overall result
disguises a more complex picture that becomes apparent if
the analysis is carried out only for those points with zero
FORDEV on the one hand and positive deviation on the
other. While overall EOQ is not the uniform best performer,

for zero FORDEYV it is significantly better than its competi-
tors (confirming Tables 2 and 3) whilst the best performers
with forecast error were EOQ, POQ and LUC which differed
significantly from the rest. Whatever the error standard devia-
tion, there was no significant difference found between Silver-
Meal and Wagner-Whitin.

Estimating the value of forecasting requires some assump-
tions about the size of the overall uncertainty that arises in
practice and also how it is divided between the noise in the
process generating demand and the forecast errors incurred
from using a non-optimal forecasting method. Only the second
source of error is lessened by improved forecasting. It was
stated in Section 2 that, in practice for short term forecasting,
weekly or monthly up to three steps ahead, the standard error
of the forecast for faster moving items would not usually
exceed 40% of the mean demand. Improvements in fore-
casting of around 20-50% in the overall forecast error are
possible by implementing appropriate forecasting techniques
to match the particular characteristics of the demand data
used in the MRP system (Fildes et al, 1998, 2009). Thus, it
would be indicative of possible savings in unit cost to consider
the improvements expected for values of 200 and 400 in the
overall uncertainty, derived from different mixes in process
noise and forecast error. Using the above response model
specification in Table 5, the estimated percentage change in
cost is independent of cost, LSR and service level. Using a
first order Taylor’s approximation for the response function
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Table 7 The effects of forecast model mis-specification.

Data Generating Process

Forecast noise AR(0) (%) AR(0.9) (%)
Forecasting Generating Process AR(0) 0% 15.4 46.1
20% 26.4 Quadrant I 50.0 Quadrant II
50% 39.3 54.8
AR(0.9) 0% 25.6 25.1
20% 67.6 Quadrant IV 46.7 Quadrant I1I
50% 107 67.4

Note: % loss compared with perfect information, averaged over the ‘better’ lot sizing rules, EOQ, POQ and LTC, averaged over TBOs 3 & 4, for

process uncertainty of 100 and 200 and both service levels.

as a function of A, the percentage improvement in unit cost
for an 1% improvement in forecasting accuracy is given by:

P FORDEV
TBO.OVLDY Gy ERALLDEV

+ﬁfardev + Zﬁﬁ)rdevsqFORDEV + ﬁprodSTD)

x FORDEV x h ®)

where FORDEYV is the forecast error, and OVERALLDEYV is
the overall uncertainty. The f coefficients have the obvious
meaning with By overarpey Tepresenting the interaction
term. In quantitative terms frogpry dominates the cost
improvement from improved accuracy but the formula shows
the size of the forecast error, measured by FORDEV x h is
also critical. The approximation underlines the importance
of the FORDEYV relative to the process noise. In effect major
improvements in cost can be achieved where the overall
uncertainty is high and a major component of this is forecast
error. However the table highlights the difficult of making
major gains. The conclusions from the AR(0.9) analysis were
similar with a higher sensitivity. An alternative approach
to the problem of estimating the value of improved fore-
casting accuracy is by using the raw simulation results and
comparing the unit cost of dropping from 50% forecast error
to 20% to 0% for a fixed service level. This approach gives
higher estimates of the forecast sensitivity with median fore-
cast sensitivity at the 96% service level of 11% and 19% for
demand uncertainty of 200 and 400, respectively. A higher
service level of 99% adds another 2 percentage points. For the
AR(0.9) process the effects of forecasting improvement are
uniformly larger with approximate unit cost improvements
of around 6.5 percentage points above the AR(0) benchmark
values given above.

6.1. Mis-specification

In practice, simple forecasting methods are usually applied
without any prior analysis of the appropriate underlying
model of the DGP. The effect is to introduce both forecast
error and mis-specification error. As noted in the introduction

such mis-specification is a common feature of various supply
chain models discussed in the literature including recently,
for example, Chen et al (2000a) and Zhao et al (2001). A full
discussion of its effects would ensure the paper was overly
long. However, we have considered two cases, where the
DGP is the Random Noise model and the forecasting model is
the AR(0.9) and vice versa. Table 7 gives the results averaged
over the two service levels and lot-sizing rules EOQ, POQ
and LTC which ensured the ‘better’ LSRs have been used.

Table 7 illustrates the effects of using a mis-specified model
(typically the case in previous research) compared with using
an optimal model for the particular case. The table is split into
four quadrants, the first under the heading AR(0) repeats the
unit cost where the DGP is an AR(0) process and the optimal
forecasting model specification has been used to model the
DGP (but with three levels of forecast error, 0, 20 and 50%,
of the demand uncertainty). The fourth quadrant shows the
results where the DGP is again the AR(0) but the forecasting
model that is used is AR(0.9) (again with the three levels
of noise). Quadrants II and III are similar but the DGP is
AR(0.9), so for example, quadrant IT shows the results of
using a Random Noise forecasting model when the true (but
unknown) DGP is autoregressive. Thus there is a loss of 46%
if a Random Noise model is used when the true process is
autoregressive compared to 15.4% if the correct model had
been correctly used.

The results strongly confirm the lack of symmetry in the
two specification errors in that the regret from choosing
the Random Noise Process decreases as the forecast noise
increases, but the reverse is true if the autoregressive process
is chosen. Ideally, whatever the level of forecast error and
DGP the forecaster would prefer to know that the forecasting
model he uses is better than the alternatives. However, here
no dominant strategy is available for selecting a forecasting
model although choosing the simpler AR(0) model seems the
more effective for higher levels of forecast error. An anal-
ysis of the more detailed results show the specification error
effects on costs increases with TBO, process uncertainty and
service level.

These illustrative results suggest that earlier research
studies (which make assumptions equivalent to mis-specifying
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the forecasting model adopted) are likely to have mis-stated
the effects of demand uncertainty, potentially substantially,
and their conclusions will be dependent on the nature of the
mis-specification assumed in the research design.

7. Discussion and conclusions

In this research we have demonstrated a methodology for inte-
grating aspects of manufacturing research with forecasting.
The methodological issues we have explored aimed at high-
lighting deficiencies in previous research designs: the confla-
tion of demand uncertainty with forecasting error uncertainty
and model mis-specification, the use of 100% service levels
to draw conclusions and the pervasive use of analysis of
variance when the issue of significance can easily be dealt
with through increased sample size, thus neglecting the much
more fundamental question of the practical importance of the
results. The size of key endogenous variables (eg the effects
of forecast error on cost) is important, when choosing a fore-
casting system or developing an information sharing arrange-
ment as in other policy areas (Ziliak and McCloskey, 2004).
The substantive aim of the research has therefore been to show
how to estimate the value of improved forecasting and to flesh
out the claims made by software suppliers and forecasters
alike that accurate forecasting is critical to many manufac-
turing operations.

Various stylised facts spring from the substantive analysis
we have presented.

e Unit cost (expressed as a percentage of the unit cost based
on perfect foresight) increases exponentially with demand
uncertainty in contrast to De Bodt and Van Wassenhove
(1983a) assertion. The discrepancy with this study appar-
ently arises from their focus on service levels of 100% only.

e In the more general framework established here, the best
lot sizing rules when demand uncertainty exists are very
different to those based on deterministic demand which
assumes perfect foresight. This strengthens, for example,
Wemmerlév and Whybark’s (1984) conclusions. For lot
sizing research to make a contribution to improved manu-
facturing, uncertain demand must be explicitly considered
in a realistic context that includes a variety of experi-
mental factors, in particular service level. The benefits of
choosing the ‘best’ rule are typically low. Applying the
results from deterministic lot sizing research is clearly inad-
equate (Wemmerlov, 1989). The focus in earlier research
on 100% service gives misleading results as to the effects
of uncertainty and forecast error on unit cost and service
level. (Previous results on comparative lot sizing hold true
however.)

e The benefits of improved forecasting increase with overall
uncertainty but this depends on the relative sizes of the
stochastic variation in the demand generation process and
the forecasting errors. These benefits are substantially
greater than the effects arising from the choice of lot sizing

rule. Potential savings are over 10% for higher levels
of demand and forecast uncertainty and realistic levels
of forecast improvement. Sensitivity to forecast error is
higher for the autoregressive process.

e Mis-specification in the choice of a forecasting model leads
to increased forecast error and increased costs. There is no
best method of forecasting; it will in general depend on
the ‘true’ but unknown demand generation process. There
is no dominant strategy of forecasting model selection as
measured by regret, despite the common practice in both
research and organisational forecasting practice of using a
generic model such as exponential smoothing in all applica-
tions. The benefits of forecast model selection will depend
on the noise in the data.

Taking the results as a whole, they show that while it is
sometimes important to consider the choice of lot sizing rule,
attempts to reduce the forecast errors are likely to prove more
valuable, as the lot sizing choice is relatively straightforward
depending on TBO. As discussed in Section 5, the EOQ is the
best choice for the Random Noise Process but LTC performs
somewhat better for the autoregressive DGP. This reduction
in forecast error can be achieved both by moving closer to the
optimal forecasting method for the problem and also by trying
to reduce the variation in the data generation process itself.
There are, however, developments in lot sizing that recognise
the stochastic nature of demand (eg Babai and Dallery, 2009)
which could have different performance characteristics.

The value of improvements in forecasting depends quite
critically on the cost structure of the manufacturing process.
The emphasis in recent developments in production and oper-
ations management, whether called achieving world class
manufacturing, lean production methods or Just In Time (JIT)
production, has been on the benefits of reducing lot sizes, so
the values for lower TBOs may be better indicators of the
impact of demand uncertainty. If manufacturing is improved
to make lower lot sizes more economic for production, then
this results in the costs of satisfying customer demands being
even more sensitive to uncertainties in demand, whether due to
inherent process variation or to inadequate forecasting. Thus,
it is important to manage the demand generation process as
well as to take actions to make lower lot sizes more economic
in order to improve the overall performance.

A number of substantive research questions remain, in
particular whether the results generalise to other (more
complex and realistic) supply chain processes, in partic-
ular through the inclusion of capacity constraints, correlated
demand and JIT procedures. Case research is needed here.
In addition, little of the research done on forecasting has
addressed the types of data generation processes observed
in manufacturing systems which may well be severely non-
normal, perhaps with intermittent demand, outliers and
changes in trend (Gardner, 1990; Fildes et al, 2009). The
importance of this issue, totally neglected in earlier lot sizing
research, has been demonstrated in the results for the more
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realistic autoregressive process, which show a higher sensi-
tivity to forecast error. We would expect that the types of
specification error commonly arising when automatic fore-
casting systems are used, would lead to increased advantages
to more accurate, properly specified forecasting models. The
key question remaining is what improvements in forecasting
accuracy are realistically achievable. As this paper has shown,
the benefits to success in achieving such improvements are
worth the effort.

Postscript: The last twenty years has seen increasing
research on uncertainty in supply chain planning, particu-
larly on aspects of the problem such as the bullwhip effect.
The primary emphasis in most of the research has been on
mathematical tractability and ‘significance’. It has also failed
to distinguish between forecast error and uncertainty. The
result has been few findings of any managerial importance.
For example, we may not be too surprised to know that
collaboration through information sharing between retailer
and supplier is sometimes valuable. Worse still, some of the
general conclusions such as the inevitability of the bullwhip
effect are wrong, the product of an inadequate or overly
specific research design. This failure of the research commu-
nity to combine practically valuable modelling of the supply
chain with high profile academic research is important to
all researchers who face increased pressure to publish in
the ‘top journals’. These journals are dominated by research
paradigms that emphasize mathematics at the expense of
relevance and grounding in observed practice. In short, more
practice, more empirical modelling that includes forecast
error -and less reliance on spurious mathematical simplicity
are required. It is a call that OR researchers have heard since
OR’s founding as an academic discipline in the 1950s. And
it is still worth repeating. I’'m confident that Brian Kingsman
would have agreed with me.
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