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This paper describes an approach in which a local search technique is alternated with a process which
‘jumps’ to another point in the search space. After each ‘jump’ a (time-intensive) local search is used to
obtain a new local optimum. The focus of the paper is in monitoring the progress of this technique on a
set of real world nurse rostering problems. We propose a model for estimating the quality of this new
local optimum. We can then decide whether to end the local search based on the predicted quality. The
fact that we avoid searching these bad neighbourhoods enables us to reach better solutions in the same
amount of time. We evaluate the approach on five highly constrained problems in nurse rostering. These
problems represent complex and challenging real world rostering situations and the approach described
here has been developed during a commercial implementation project by ORTEC bv.
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1. Introduction

Search methods which are focussed upon intensification

and diversification have been widely discussed in the

context of metaheuristic development (Voss et al, 1999;

Glover and Kochenberger, 2003). Intensification corre-

sponds, in some sense, to local search; the neighbourhood

of a solution is searched intensively for solutions which are

better or have better opportunities. On the other hand,

with diversification the goal is to escape from relatively

small neighbourhoods to solutions which may lead to

better final results. A heuristic that is motivated by the

trade off between intensification and diversification, is the

Iterated Local Search approach. It was applied to several

problems (see, for example, Stützle, 1998, 2006; Paquete

and Stützle, 2002). An overview of Iterated Local Search

can be found in (Loureno et al, 2003). The main loop of

the Iterated Local Search algorithm consists of a Perturb-

Improve-Evaluate cycle. The Perturbation is sometimes

called Kick, Mutation or Restart. The Improvement phase

is a Local Optimisation which usually ends if the local

optimum is reached. The evaluation is done using an

Acceptance Criterion.

Here we focus on the Acceptance Criterion, which we

also apply before the local optimisation ends: in some cases

the progress of the local optimisation is correlated to the

local optimum it will reach. This motivated us to introduce

a model that tries to predict a lower bound for the quality

of the local optimum that we will reach during local

optimisation. This model is employed to identify ‘bad’ local

optimisations, which are halted before the local optimum is

reached. We apply our approach in the context of nurse

rostering problems.

In Section 2, we discuss the nurse rostering problem.

Section 3 introduces our Iterated Local Search method and

presents a model for the progress. In Section 4, we describe

the experiments we performed; and in Section 5, we

describe the results for five data sets from the area of nurse

rostering. Finally, in Section 6, we discuss the results and

give some conclusions.

2. The nurse rostering problem

Automating the nurse rostering process removes a frust-

rating chore and results in higher quality rosters which

reduce hospital costs and increase employee satisfaction.

Constructing nurse rosters is however a far from trivial

problem (Lau, 1996). Owing to this complexity and

its practical relevance the nurse rostering problem has

attracted a large amount of research and a wide variety of

approaches have been used to provide solutions. These

methods include mathematical programming (especially

column generation-based techniques) (Warner, 1976;

Thornton and Sattar, 1997; Jaumard et al, 1998; Mason

and Smith, 1998; Millar and Kiragu, 1998; Eveborn and
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Rönnqvist, 2004; Bard and Purnomo, 2005a, b, 2007),

constraint programming (Darmoni et al, 1995; Weil et al,

1995; Cheng et al, 1997; Meisels et al, 1997; Abdennadher

and Schlenker, 1999; Chun et al, 2000; auf’m Hofe, 2000),

local search and metaheuristics (Dowsland 1998; Burke

et al, 1999, 2001a, 2007; Schaerf and Meisels 1999; Ikegami

and Niwa 2003; Bellanti et al, 2004; Aickelin and Li 2007),

evolutionary algorithms (Tanomaru, 1995; Aickelin and

Dowsland, 2000, 2003; Cai and Li, 2000; Jan et al, 2000;

Burke et al, 2001b; Dias et al, 2003; Özcan, 2005), case-

based reasoning (Beddoe, 2004; Beddoe and Petrovic,

2006, 2007) and hyperheuristics (Burke and Soubeiga,

2003; Burke et al, 2003). More are discussed in recent

surveys (Burke et al, 2004; Ernst et al, 2004). Although

many novel and effective algorithms have been published,

it is not possible to identify a dominant optimisation

method for nurse rostering. This can be partly explained by

the simple, practical reason of a lack of real world

benchmark data sets. Fortunately, this deficiency is

gradually being corrected and a variety of instances are

being compiled and shared (Curtois, 2008). The data sets

we test with in Section 5. are drawn from this collection.

The nurse rostering problem can be challenging to model

due to large numbers of constraints and complex objective

functions. However, it is relatively simple to understand at

a more basic level: a set of shifts must be assigned to a set

of nurses over a fixed planning period subject to a set of

constraints. The constraints are related to the quality of the

nurses’ work patterns and ensuring sufficient numbers of

nurses are present at certain times of the day (coverage).

The objective function, which can be regarded as a set of

soft constraints with relative priorities, maximises the

nurses’ satisfaction with their schedules and/or minimises

the hospital’s costs through reducing the number of shifts

assigned.

The data sets we use in Section 5. contain a range of soft

constraints for each nurse such as:

K maximum numbers of weekend shifts;

K maximum numbers of night shifts;

K minimum numbers of consecutive days off and on;

K maximum numbers of consecutive days on or of certain

shifts;

K minimum and maximum numbers of assignments or

working hours per scheduling period and per week;

K undesirable shift rotations;

K ensuring either Saturday and Sunday are working days

or neither are working days (‘Complete Weekends’);

K requests for days on/off or shift pre-assignments; and

K ensuring two nurses are working or are not working at

the same time.

Formal definitions of these constraints can be found in

(Vanden Berghe, 2002; Burke et al, 2008) their implemen-

tations are also provided in the source code publicly

available at (Curtois, 2008). Coverage is a hard constraint

and levels of cover must not deviate above or below a fixed

level.

3. The algorithmic methodology

3.1. Iterated local search

The main motivation of the work described in this paper

was to build an effective and simple approach for

automatically building nurse rostering solutions to challen-

ging real world problems that are faced by ORTEC’s

customers. This simple methodology can be overviewed as

follows: After reaching a local optimum with respect to a

given neighbourhood structure, we ‘kick’ the best solution

found so far; so based on the best solution we jump to

another point in the search space. From here, we again

perform local search. If we reach a better local optimum,

we take this new solution as the starting point for further

investigation, otherwise we revert to the old local optimum,

and continue from there with a new kick. The approach

can be illustrated by the following pseudocode:

procedure ILS(varS�: Solution);
var S, S 0 : Solution;
begin
1: S � ’ LocalOptimum(S �);
2: while remaining time 40 do
3: begin
4: S ’ KickOf (S �);
5: S 0 ’ LocalOptimum(S );

6: if Cost(S 0 ) o Cost(S �) then
7: S � ’S 0 ;
8: end;
end.

Algorithm 1. Iterated Local Search

When employing an iterated local search, it is normal that

most of the calculation time is spent on local optimisation

with respect to the neighbourhood; in our experiments (see

Section 4) this time represents more than 99% of the

computational time. A possibility to improve the perfor-

mance of this method is to detect, somehow, that it is

useless to continue the local optimisation in line 5 of

Algorithm 1. A rather obvious way is to stop line 5 if, after

some fixed amount of time, a certain quality is not reached.

However, this is not satisfactory because of the uncertainty

surrounding how much computational time will be

required to reach that quality of solution.

In this paper, we propose a model for monitoring the

progress of the local search process that is independent of

the optimisation tool that is used. Our approach is to

underestimate the expected cost of the local optimum

we are moving to. Hence, in general, we are cautious in

stopping the local optimisition process.
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3.2. Modelling the progress

Suppose we are given a solution S, which is a result of

applying Algorithm 1 to the solution S0. We ask ourselves

the following question: What can be said about the

intermediate results? The local search attempts a lot of

small moves, and will execute a move if it decreases the

cost. The local search ends when none of all possible moves

reduces the cost. Let us assume that every tmilliseconds we

get an update of the result. Define tn¼ n � t for n¼ 0, 1,

2, . . . . We denote by Sn the resulting schedule at time tn,

and by cn the cost of Sn. In the notation of Algorithm 1, we

have that S0¼S, and Sn¼S0 if n is big enough. Since we

apply local optimisation, we know that cnþ 1pcn. We

denote by cN the cost of the local optimum that is reached,

that is cn for n large enough.

What can we expect about the time-dependency of the

cost? To be able to analyse the situation, we assume that

successful moves incur a cost reduction of one unit. The

moves are selected randomly, hence it seems reasonable

that the chance that a move at time tn is successful is

proportional to the difference cn�cN. Let l the propor-

tionality factor. For the expected value E(cn) of the cost cn
we obtain

EðcnÞ � c1 ¼ ð1� lÞðcn�1 � c1Þ:
Solving this recursion relation we obtain

EðcnÞ ¼ ðc0 � cÞð1� lÞn þ c1: ð1Þ
Several assumptions (not valid in practice!) underlie this

model:

1. The change of improvement is proportional to the

difference of the current cost and the end cost. If in the

set of all moves, there would be a unique move incurring

an improvement, this could be a correct assumption.

However, in practice this is not the case: easy violations

of soft constraints can be removed by several moves.

This implies that l decreases with time, which indicates

that our early estimates will be optimistic.

2. The cost change of a move is always the same. In

practice this is not correct. Even if all weights are equal,

a certain move could lift two violations (or more) in one

move. Soft constraint violations with high costs are

usually detected earlier, as a move can lift this high cost

at introducing small costs for other soft constraints.

Again this implies that early estimates will be optimistic.

3. All moves take an equal calculation time. In practice

this is not exactly the case, but if t is relatively big,

several hundreds of moves will occur between tn and

tnþ 1, and the number of these moves is with high

probability close to average.

A better understanding of the improvement process is very

hard to acquire, and not the purpose of this paper; our

purpose is to have some correlation between the predicted

progress and the realised progress. The realised progress is

usually very irregular, especially in the beginning of the

search process. In our opinion, it will be impossible to

characterise the random variables for the highly con-

strained nurse rostering problems we consider.

By interpolation of formula (1) we get the continuous

time formula:

cðtÞ ¼ AeBt þ C; ð2Þ

The relations between the parameters in the formulae (1)

and (2) are given by A¼ c0�cN, C¼ cN, and eBt¼ l. In
the sequel the continuous time formula will be used with

one more simplification: we will assume that C¼ 0, that is

we assume that the search process is on the way to obtain a

perfect schedule. Again this is an optimistic point of view.

Based on this assumption and the reported progress, we

estimate how long it will take before the search process will

improve the current lowest cost c� of schedule S�. We fix a

reference time T, and base our decision to stop the search

process, on whether the expected time t� to improve S� is
larger than this reference time T or not.

Let us describe our method in more detail. We assume

the cost c(t) develops according to the formula

cðtÞ ¼ AeBt: ð3Þ

If we know the progress up to time tn (for some positive

integer n), our first task is to estimate the parameters A and

B. For this we take the (natural) logarithm of formula (3),

and obtain the line

y ¼ atþ b; ð4Þ

with y¼ log c(t), a¼B and b¼ log A. From the progress

we have points (tk, yk) for k¼ 0, 1, 2, . . . , n and

yk¼ log(ck). For nX2 we can use the least squares method

to obtain a and b. More explicitly, a and b are determined

by the linear equations

a
Xn

k¼0
tk þ bðnþ 1Þ ¼

Xn

k¼0
yk: ð5Þ

a
Xn

k¼0
t2k þ b

Xn

k¼0
tk ¼

Xn

k¼0
tkyk: ð6Þ

Once we solved a and b from these equations, the

parameters A and B are given by a¼B and b¼ log A.

Based upon (3), we now can calculate the time t� such
that c(t�)¼ c� where c� is the cost of S�. For this we solve

t� from the equation

AeBt
� ¼ c�:

If Bo0, there is a unique solution for t�; if BX0 we take

t� ¼N.

The decision to stop the search process only will depend

on whether t� exceeds the reference time T or not. How the

decision is reached, is the subject of the next section.

362 Journal of the Operational Research Society Vol. 62, No. 2



AUTHOR C
OPY

3.3. Progress control

Above we described the problem that we want to consider,

and the model we use for the progress. In this section we

will describe the controller. We assumed that we have an

estimate for the time T needed to complete the local

optimisation. In practice we use for T the time spent in

line 1 in Algorithm 1. Apart from this, we introduced the

time-unit t, such that tn¼ nt; we assumed that for each tn
we have a measurement of the cost cn¼ c(nt). The progress
control will use the sequence (cn) as input; as time prog-

resses, more and more elements of the sequence (cn)

become available. Based on this sequence we calculate t�,
the time we expect that is needed to reach a result better

than S�, and depending on whether t�4T or not, we base

the decision to stop the local optimisation or not. If cn is

already below c�, we continue, independently of t�. For
calculating t� and taking this decision to stop we use three

parameters p, f, and m. The parameters are

(p) We use a rolling horizon: as time progresses, the cost

changes from the beginning become less interesting.

Therefore we decide to forget about early points, and

estimate the progress only based in the last p points. The

formulae in (5) are valid, but only the last p points are

used.

(f) We use a start-up time: in the beginning of the local

optimisation, we record whether t�4T or not, but we

allow the search process to proceed, independently

of it. The number of periods free of checks is denoted

by f. Hence the earliest moment that we can stop is tf. If

f¼N we perform ILS without progress control.

(m) We use forgiveness: we do not necessarily stop directly if

some tn
�4T, but only if this happened more than m times

in the last p checks (we use the same base of p points). If

m¼ 0, we do stop as soon as t�4T. Clearly we will never

stop before tm; hence it is useless to consider fom. If

mXp, we do not stop at all.

A combination of these parameters ( p, f, m), we call a

strategy. Our main objective is to investigate the influence

of a chosen strategy on the quality of the solution,

assuming that we have a limited time at our disposal.

4. Experimental set-up

4.1. Data

We use the Iterated Local Search as introduced in (Burke

et al, 2008). The data sets BCV-A.12.1, BCV-1.8.1, and

BCV-2.46.1 were scheduled with this ILS. A variant of this

algorithm is implemented in the advanced planning soft-

ware HARMONY, a tool developed by ORTEC for

workforce management and scheduling. The data sets

ORTEC01 and ORTEC02 were tested here. For a

description of the data sets we refer to Curtois (2008).

The data sets have the following characteristics:

In Table 1, the column ‘Employees’ contains the number

of employees in the data set, ‘Shifts’ the number of shifts to

be assigned. ‘Start’ is the cost of the starting point of our

experiments, and ‘Best’ the cost of the best solution known

to us. Finally t denotes the time span between tn and tnþ 1,

and instead of T, we record T/t, the number of times, that t
is contained in T.

For each of these five data sets, we have initial schedules

with cost as stated in the column ‘Start’ above; this is

S� after line 1 in the terminology of Algorithm 1. From S�

we constructed S1, S2, . . . ,S1000, which are the kicks of S�.
On these 1000 schedules Si, we performed the local

optimisation (line 5 in Algorithm 1), to obtain S0i. During

local optimisation, every t milliseconds, the actual cost of

Si is recorded; hence for each local optimisation we have a

cost sequence (c0, c1, . . . ). All sequences are of finite

length; the length of a sequence (the number of time units

t that local optimisation was performed) differs from

sequence to sequence.

4.2. Experiments

For different strategies ( p, f, m), we perform two types of

experiments, which we call experiment A and experiment

B; experiment A mimics the situation in which we use

progress control, whereas experiment B investigates the

effect of progress control on each of the schedules S1,

S2, . . . ,S1000 separately.

In experiment A, we select a permutation of S1,

S2, . . . ,S1000. On this permutation we apply the progress

control strategy. To explain the method, let us assume that

the selected permutation is

S76;S932;S283;S777; . . .

The search process will start with schedule S76, and at a

certain moment the progress control strategy decides that

continuing the local optimisation on S76 is not profitable.

Therefore we stop the local optimisation and start with

schedule S932. Here the same happens, and the search

switches to S283. Although in the end S283 gives a schedule

better than the best schedule S �, the progress control

strategy decides to stop and continue with S777. Here

finally an improvement is found. Hence, we need four

(partial) local optimisations (‘tries’) before an improvement

is found. For experiment A we record three numbers:

Table 1 Characteristics of the data sets

Name Employees Shifts Best Start t T/t

BCV-A.12.1 12 202 1360 3345 10 775
BCV-1.8.1 8 140 252 319 10 77
BCV-2.46.1 46 616 1572 1698 10 1953
ORTEC01 16 288 285 3026 500 282
ORTEC02 16 288 945 4816 500 296
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K Time: The time, measured in t milliseconds, it takes to

reach a schedule with cost lower than S�.
K Tries: The number of (partial) local searches executed.

K Decrease: The decrease in cost of the found improve-

ment.

We repeat experiment A for 1000 randomly selected

permutations, and for each strategy we calculate the

averages of the numbers above.

Experiment B simply runs the progress control strategy

on S1, S2, . . . ,S1000, and records the total time spent by

the strategy, as well as the total decrease in cost found

by the strategy. From this we calculate the improvement

per time unit. We present the improvement (‘Gain’) in

t seconds, that is in 1000t milliseconds.

4.3. Expectations

By changing one of the parameters of a strategy we can say

that the strategy becomes either more or less stringent,

which means that it will stop the local search earlier or

later. Clearly, decreasing m or f makes a strategy more

stringent. In general, decreasing p makes a strategy more

stringent, as the progress does not benefit anymore from

good results which were achieved in the past.

Applying progress control will result in stopping local

search runs that lead to improvements. Although we lose

time by stopping these ‘good’ local optimisations, we, of

course, hope to gain time by stopping ‘bad’ local optimi-

sations. The goal is that the time gain is bigger than the

time loss, but this might change when the strategies become

more and more stringent. So the average time needed to

reach a better solution will probably decrease in the begin-

ning and increase after some ‘optimal’ parameter value.

In addition, there is a side effect of applying our

strategies. The local optimisations that were wrongly

stopped are heuristically (probably) not strong. Therefore,

we expect the average score of the improvements found by

a more stringent strategy to be higher.

5. Results

In this section, we present extensive results for ORTEC02,

and summarise the results for the other four data sets. We

have chosen this data set, because it contains the least

number of ‘good’ local optimisations, and applying

progress control seems to be the most appropriate here.

However in Section 5.2, we will see that the progress

control in ‘easier’ situations is even more profitable.

5.1. Results for ORTEC02

To this data set, we applied the experiments as described in

Subsection 4.2 for p¼ 20, 25, 30, . . . , 65, f¼ 4, 6, 8, 10, 12,

and m¼ 2, 3, . . . , 10. First, we present three tables that

describe the average behaviour for one fixed parameter,

while the other two range over all possibilities. Here, the

columns ‘Time’, ‘Tries’, and ‘Decrease’ correspond to the

items in Subsection 4.2. The last three columns correspond

to the ‘Gain’ found in t seconds: we give the minimal,

average and maximal improvement among the varying

parameters.

In Table 2, the number of points p is fixed to the values

from 20 to 65, while f and m may vary. The row starting

with ‘—’ gives the results without progress control.

Looking at the column ‘Decrease’, which is the decrease

in cost after one successful run, we see that all averages are

approximately 40% higher than running without progress

control. These averages are remarkably close together; they

vary from 447 to 458. Moreover, the time needed to reach

this local optimum decreased from 945 without progress

control to an average of 802 for p¼ 35, an increase of speed

of 15%. In the last three columns, we see that the ‘Gain’

per t¼ 500 s increased from 343 without control, to 592 for

the best parameter setting within p¼ 30. Note that for

pa40, the other parameters have a big influence on the

minimal gain. For p¼ 40 we see that the minimal Gain is

still 525. So even the worst setting for p¼ 40 gives an

improvement in Gain of more than 50%!

In Table 3, we see a similar improvement in decrease of

cost. We see that for fX8 the minimal and average gains

are the highest. Hence it seems to be a good idea to

introduce such a free period. This reflects the fact that the

local search is usually very irregular (with big jumps) in the

beginning.

From Table 4, we cannot conclude much on how

forgiving we should be; this table yields that the maximal

value 592 is in the same cross section as 296, which is

almost the lowest value. Moreover, raising m implicitly

implies raising f, which explains why for big m the minimal

Gains are quite high.

Table 2 Experiments for p on ORTEC02

p Time Tries Decrease Gain

Min Ave Max

— 945 4.8 324 — 343 —

20 869 18.4 457 292 514 568
25 831 16.0 458 328 539 583
30 810 14.4 457 360 551 592*
35 802 13.3 452 361 543 584
40 817 12.8 449 525 528 571
45 834 12.4 447 374 515 554
50 856 12.2 453 361 506 545
55 873 11.9 454 348 496 527
60 878 11.6 458 338 495 528
65 891 11.3 457 343 487 521
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From the tables, we can conclude that the highest Gain

for the considered parameters is obtained for p¼ 30, f¼ 10,

and m¼ 2 (see the � items); in this case the Gain per 500 s is

592. For these parameters, we obtain (experiment A):

Time¼ 786.2, Tries¼ 13.3, Decrease¼ 482.

The cost decrease in experiment A over these 1000

experiments is 481 800, and the total time needed was

786.2 � 500 s. The improvement per 500 s is therefore

481 800/786.2¼ 613 for experiment A, while the improve-

ment per 500 s is 592 (the Gain) for experiment B.

5.2. Results for all data sets

For the other data sets, we performed similar tests.

However, as opposed to the previous results, we will use

a set-up time here: starting a new run costs 0.5% of the

expected calculation time T. This is consistent with what

we explained before: performing a kick costs less than

1% of the total calculation time. In this way, we prevent

strategies from picking out the very best local optimisa-

tions for free. Moreover the improvement in t seconds will
be calculated from experiment A, as it gives a better

indication for the number of times that the set-up should

be accounted for. So, the Gain presented in Table 5 is the

total decrease in cost (column 8), divided by the total time

spent (column 5), multiplied by 1000 to switch from

milliseconds to seconds. We present the results for the best

found strategy, and add four more columns, which describe

how often the best strategy takes the correct decision. Here

‘Good’/‘Bad’ means that the local optimisation reaches/

does not reach a better optimum, and ‘stop’, respectively

‘cont.’ indicates whether the strategy allowed the local

optimisation to run till the end, respectively not till the end.

Several remarks can be made about these results. The

first remark is that progress control is useful to undertake

in all cases. The increase in Gain ranges from 35% for

ORTEC01 to almost 300% for BCV-2.46.1 and BCV-

1.8.1. The second remark is that the harder the case, the

more forgiving we should be. The period free of check ( f )

should in general not be very high. Only ORTEC02 waits

9 time units before doing a first selection; at t9 310 out of

1000 tries are stopped. In this respect BCV-2.46.1 is rather

extreme; although the average time for a local optimisation

is 1612 time units, 764 out of 1000 tries are stopped at t3.

Note that in BCV-2.46.1 an average of 21 local

optimisations are stopped, before the local optimisation

is continued till the end to obtain the new local optimum.

6. Discussion and conclusions

From the results in Table 5, we can see that progress

control is a good thing to do: looking at the ‘Gain’ in Table

5, we see improvements for the data sets of 101, 187, 195,

35, and 82%, respectively. When we implement this

approach in practice, several questions arise. We consider

some of these questions here.

K How to obtain T?

In Algorithm 1, we start with a result, which is not yet

locally optimal. We assume that the first local optimisa-

tion in line 1 is a good indication for the time needed to

reach local optimality in the later attempts.1 However,

the method is not very sensitive for the exact value of T.

Sometimes it is better to decrease T. For example,

decreasing T for BCV-1.8.1 from 77 to 6 increases the

Gain from 130 to 159.

K How to obtain t?
Applying progress control takes little time. Applying it

300 times in an average run (like in the ORTEC data

sets) costs far less than 1% of the time required. Smaller

timescales, like in the data set BCV-2.46.1, open the

possibility of discarding many runs in very short time.

Beforehand it is unclear whether this can have a positive

effect; can we say something about a local optimisation

if only 1 or 2% of it was executed? We think that the

employment of our optimistic estimates leads us to an

answer of yes; if the progress cannot reach our not so

Table 3 Experiments for f on ORTEC02

f Time Tries Decrease Gain

Min Ave Max

— 945 4.8 324 — 343 —

4 943 18.9 447 292 472 588
6 891 14.9 465 388 506 588
8 818 12.1 465 485 541 590
10 815 11.4 463 485 539 592*
12 763 9.9 431 478 529 580

Table 4 Experiments for m on ORTEC02

m Time Tries Decrease Gain

Min Ave Max

— 945 4.8 324 — 343 —

2 906 17.9 447 296 489 592*
3 906 17.7 448 292 489 584
4 886 15.5 451 334 496 584
5 871 14.2 459 420 510 575
6 826 12.4 466 491 535 573
7 808 11.5 461 488 541 588
8 805 11.0 462 486 538 584
9 815 10.8 460 482 531 577
10 792 10.0 441 478 527 568

1In the cases we studied T defined in this way is ample. This is in

agreement with our idea that the progress control should be optimistic.
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severe limits in the beginning, it is better to stop right

away. Whether we have to look after 2, 3, or 9 time units

seems to be quite arbitrary.

K How to obtain a good strategy?

Obtaining the optimal strategy will be very hard. How-

ever, good strategies are not so hard to find. Tables 2–4

are meant to indicate this; any reasonable strategy will

be better than doing nothing. Looking at the columns

‘Good cont.’ and ‘Bad cont.’ in Table 5, we can

understand why progress control is so successful. Of the

local searches that reach the end, the percentages of

good local optimisations for the five data sets are 97, 88,

100, 58, and 62%.

These percentages are a clear improvement. This, paired

to stopping many tries after a very short time, explains

the benefits of progress control.

The parameter settings to use can be obtained in a static

way, or in a dynamic way. The static way means that the

iterative local search is fed with some representative data

sets, and the best parameters are determined before-

hand, much in the way we did here.

The dynamic method assumes that we will do many

(say, at least 50) local optimisations. Then we could

decide that out of every 100 tries, we perform the first 10

without progress control, and determine what would

have been the optimal parameters. Note that in this case

we also get a good indication for T. These parameters

can be used for the next 90 attempts.

The problems we presented here are heavily constrained.

Consequently, a kick can create a situation which the

local optimiser cannot improve. We believe that this

behaviour is one of the main reasons for the success of

progress control presented here. This aspect of the iterated

local search means that there is a strong correlation

between the expected improvement time t� and the quality

of the end result.

It is clear that many refinements can be made to the

basic idea of progress control as presented here. In the

form it is now, we can imagine that it is also applicable to

other types of heavily constrained problems where iterated

local search is applied. For the customers of HARMONY

a clear gain in performance was achieved with calculations

times often significantly reduced.
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