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Abstract. The goal of this paper is the development of a new mixed integer linear pro-

gram designed for optimally loading a set of containers and pallets into a compartmentalised

cargo aircraft. It is based on real-world problems submitted by a professional partner. This

model takes into account strict technical and safety constraints. In addition to the standard

goal of optimally positioning the centre of gravity, we also propose a new approach based

on the moment of inertia. This double goal implies an increase in aircraft efficiency and

a decrease in fuel consumption. Cargo loading generally remains a manual, or at best a

computer assisted, and time consuming task. A fully automatic software was developed to

quickly compute optimal solutions. Experimental results show that our approach achieves

better solutions than manual planning, within only a few seconds.

Keywords. Mixed integer programming, cargo aircraft, unit load devices, weight and

balance, moment of inertia, fuel economy.

1 Introduction

The goal of this paper is the development of a mixed integer linear program for the optimal

loading of a set of unit load devices (ULDs) into a cargo aircraft. A ULD is an assembly of

components consisting of a container or of a pallet covered with a net, whose purpose is to

provide standardized size units for individual pieces of baggage or cargo, and to allow for

rapid loading and unloading. This system is broadly used. Airbus, Boeing, Lockheed and

McDonnell-Douglas propose different versions of cargo aircraft built to transport ULDs. This

problem is of crucial importance to airline companies for at least two reasons. First, aircraft

loading is subject to strict safety constraints. Indeed, the stress imposed on the structure
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Côte-Sainte-Catherine, Montréal, Canada H3T 2A7, Gilbert.Laporte@cirrelt.ca

1



of an improperly loaded aircraft can result in the destruction of valuable equipment and

ultimately in the loss of lives. Second, improper loading decreases the efficiency of an aircraft

with respect to its altitude, manoeuvrability, rate of climb, and speed. An inappropriate

load could even prevent the flight from being safely completed or even from starting. At the

opposite, an optimal load should yield a lesser fuel consumption and, consequently, lead to

a decrease in costs and environmental impact.

The problem considered in this paper is the optimal loading of ULDs of different types,

contours and shapes in an aircraft. The set of ULDs to be loaded as well as the set of available

positions are known before planning starts. The solution should be such that the centre of

gravity (CG) of the loaded plane should be as close as possible to a recommended position

determined by safety and fuel economy considerations. A brief description of these concepts

may be found in Sabre (2007). In addition the loading should be concentrated or “packed”

around this central position. This is particularly important when the aircraft is not fully

loaded. We propose an original approach for handling this feature, based on the moment

of inertia. In addition to these basic constraints, a feasible solution must also satisfy other

requirements. Each position can only accept some specific types of ULDs, depending on

their contour, type and weight, the plane must be balanced longitudinally and transversally,

the total weight concentrated at each inch of the aircraft length and for each deck must

be less than given thresholds (combined weight constraints), the cumulative weight at each

inch from the front up to the middle of the plane must also be less than another threshold

function (cumulative forward constraint), and a two-level threshold is also applied to the aft

part (cumulative aft constraints). Because of the weight and CG constraints, the loading

problem is sometimes called the weight and balance problem.

We take under consideration the minimal set of constraints that must be satified by any

operator, and other common ones. Every different company may have to deal with additional

constraints related to the nature of the shipment, to the destinations, or simply company

policies. Since our approach is based on a general mathematical model, such constraints can

be readily handled if they can be represented by linear equations. The software we propose

is fully interactive. It combines the freedom of the classical manual approach based on the

loadmaster’s knowledge of practical constraints with the power of the optimizer.

The aircraft cargo loading problem is normally solved by loadmasters who use interactive

graphical tools with drag and drop capabilities. This means the loadmaster can generate

several potential solutions whose quality is assessed by a set of indicators. This works well in

practice but is time consuming. For example, an experienced loadmaster can load 40 ULDs

on a Boeing 747 in about 15 minutes. The solution typically satisfies the basic constraint

but may be suboptimal. Load planning is often executed at the last possible moment before
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the plane departure, which means that fine tuning is not always a practical option. This

is particularly true for express delivery companies such as FedEx, TNT and DHL whose

business model relies on timely operations. On any given day, the cargo loading problem is

solved tens of thousands of times worldwide (ICAO, 2009).

The scientific literature on aircraft cargo load planning contains a number of mathemat-

ical models and heuristics. There exist several variations of the aircraft cargo load planning

problem. We have identified three main cases. First, several papers consider how to opti-

mise the loading of freight inside ULDs (Chan and Kumar, 2006; Li, Tao and Wang, 2009;

Tang and Chang, 2010; Yan et al., 2008; Wu, 2010). A second important question is how

to select the ULDs or items to load in an aircraft or a fleet of aircraft. Papers on this

subject are split between military (Guéret et al., 2003; Heidelberg et al., 1998; Nance et al.,

2010; Ng, 1992) and commercial applications (Fok and Chun, 2004; Mongeau and Bès, 2003;

Souffriau et al., 2008; Tian et al., 2008). Finally, as we do, some authors optimise the

location of ULDs in an aircraft (see e.g. Amiouny et al., 1992; Mongeau and Bès, 2003;

Fok and Chun, 2004; Souffriau et al., 2008). Note that these cases are not exhaustive and

some papers fall within two categories. This literature also varies on at least four other

dimensions: the precise definition of the objective function, the nature of the shipments, the

constraints taken into account, and the solution algorithm.

In the field of ULD location problems, the papers by Mongeau and Bès (2003) and

Souffriau et al. (2008) are the closest to our work. Even if this is not their first goal, they con-

sider the ULD locations in the aircraft and their impact on the CG. Moreover, as in this pa-

per, they do not attempt to fill the aircraft continuously by prohibiting empty spaces between

the items (see e.g. Amiouny et al., 1992) but they try to allocate the ULDs into predefined

positions. Hence they deviate from bin packing approaches encountered in some models.

Another common point is that they work with standardized ULDs. Other papers deal with

passengers (see e.g. Tian et al., 2008), bulk freight (see e.g. Amiouny et al., 1992) or mil-

itary items with specific properties. Finally, Mongeau and Bès (2003) and Souffriau et al.

(2008) propose exact methods, whereas all other papers we have examined describe heuristics

(see e.g. Fok and Chun, 2004). However, these two papers differ from our work on two im-

portant aspects. The first relates to the set of constraints they consider, even if their model

is clearly extensible. We have incorporated more realistic weight and balance constraints

including some that are specific to the Boeing 747, one of the most common cargo aircraft.

The second and most important difference lies in the definition of the objective function.

Their main goal before location is a selection problem. They try, using different criteria, to

determine an optimal subset of ULDs to load in the aircraft and leave the remaining ones for

a future yet undefined flight. Mongeau and Bès (2003) optimise the mass of goods loaded
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while Souffriau et al. (2008) maximize the total cargo value. This implies that the aircraft is

nearly always loaded at full capacity. However, there are often far fewer ULDs to load than

what the aircraft is capable to carry (see IATA, 2010). This last situation is not a simple

subcase of the first one. Indeed, when the aircraft is not loaded at full capacity, extra caution

must be taken. In particular, it is best to pack the shipments around the CG. We propose in

this paper an original approach based on the moment of inertia to tackle this problem. Note

that the fact that we do not consider the selection problem is not necessarily a weakness

even when the ULD list to load exceeds the aircraft capacity. Indeed, in practice, loading is

generally a two-step process based on different requirements. The commercial department

selects the ULDs to be shipped immediately, based on commercial priority criteria, and then

provides the reduced list to the loadmaster so that he may optimise the loading. Our pro-

posed system is therefore independent of the commercial dimension but is valid whatever

the commercial constraints are.

The scientific contribution of this paper is the development of an integer linear program-

ming model for the aircraft load planning problem. The model can handle all constraints

of the problem. We have also developed a software that takes as input all of the problem’s

data and feeds them to the CPLEX integer linear programming solver through the proposed

model. Tests were carried out on a set of real instances suggested by our partner, CHAMP

Cargosystems. It is shown that feasible and optimal solutions can be reached within a few

seconds only. Our solutions were compared to those obtained by an experienced loadmaster

and shown to be at least as good in every respect. Moreover, the software allows the load-

master to accept the solution or to iteratively restart the optimization after restricting any

ULDs to specific positions in order to take into account more complex problems.

The remainder of this paper is organized as follows. The next section contains an ex-

haustive description of our mathematical model. This is followed by some case studies and

by conclusions.

2 Mathematical model

Before presenting our mathematical model, we first discuss its various components.

2.1 Main variables and parameters

The model works with a set U of ULDs. The dimensions of a ULD may be retrieved from

its code. The three first characters of the IATA identification code (nine or ten characters)

provide the category, the base dimensions and the contour of the ULD. We will also use the
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weight wi of each ULD i. We consider that this weight is uniformly distributed inside the

ULD.

The second main component of the problem is the set P of positions. An aircraft is divided

into predefined marked positions on one or several decks. Each position j may receive at

most one ULD and allows only some ULD types. The longitudinal location of a position,

called the arm, is expressed in inches from a virtual point called datum, generally arbitrarily

set in front of the aircraft nose. Each position is defined by two values: the forward arm

and the aft arm. We also define the central arm value aj of position j as the mean of these

two values, i.e. the point where the ULD weight will be concentrated. Laterally, only three

cases may occur: either a position is on the left-hand side, on the right-hand side or it covers

the whole section. We denote by PL (resp. PR) the set of positions on the left-hand (resp.

right-hand) side.

At the start of the optimisation process, the loadmaster receives the list of ULDs with

their code and their weight, as well as the list of positions with their exact location and

the list of ULD types that may fit in each position. The goal is to assign each ULD to

one position, subject to some constraints. A natural way to model this problem is to define

binary variables xij equal to 1 if and only if the ULD i is allocated to position j.

2.2 Allowable positions

Because of their size, not all ULDs fit in all positions, which means that the corresponding

xij variables can be set equal to zero. However, to simplify the presentation of the model,

we do not remove these variables. Infeasible assignments are of course not considered in our

software.

A first set of constraints states that a position can accept at most one ULD. These

constraints are ∑

i∈U

xij ≤ 1 ∀j ∈ P. (1)

Finally, in some cases, larger ULDs cannot fit in classical positions. In this case, the

loadmaster may combine, exactly or partially, several positions into a larger one. The set of

possible new larger overlying positions are defined in advance and considered as independant

ones in our model. However, when an ULD is loaded in such a position, the underlying

positions cannot be allocated to other ULDs and, conversely, when an ULD is loaded in a

basic position, the overlying position is no longer available:

xij + xi′j′ ≤ 1 ∀i, i′ ∈ U, ∀j ∈ P, ∀j′ ∈ Oj , (2)

where Oj denotes the set of position indices underlying position Pj . This set is empty for

most of the positions and does not give rise to a constraint.

5



2.3 Full load

In our problem, the airline company has already decided which ULDs have to be loaded and

a position must be found for each of them:

∑

j∈P

xij = 1 ∀i ∈ U. (3)

2.4 Centre of gravity, moment of inertia and objective function

Balance control refers to the location of the CG of an aircraft. This is of primary importance

to aircraft stability, which determines in-flight safety and helps control fuel consumption. The

CG is the point at which the total weight of the aircraft is assumed to be concentrated. It

must be located within specific limits for safe flight. Both lateral and longitudinal balances

are important, but the prime concern is longitudinal balance, that is the location of the

CG along the longitudinal or lengthwise axis. If the CG is too far aft, the aircraft will

be unstable, and will have difficulty to recover from a stall. If the CG is too far forward,

the downward tail load will have to be increased to maintain level flight. This increased

tail load has the same effect as carrying additional weight; the aircraft will have to fly at a

higher angle of attack, and drag will increase. In practice, the CG must lie within a specific

area defined by the aircraft manufacturer. Within this range, the airline companies and

the pilots have some degrees of freedom. They may decide to set the CG more to the aft

to reduce fuel consumption. They can also locate the CG in a more forward position for

manoeuvrability reasons. Each company has his own policies about this and it is beyond the

scope of this paper to determine the best value for every situation (aircraft type, commercial

agreements, etc.). Solutions can be highly sensitive to small constraint variations. As stated

by Mongeau and Bès (2003), “to give an idea of the relevance of the problem: a displacement

of the center of gravity of less than 75 cm in a long-range aircraft yields, over a 10,000 km

flight, a saving of 4,000 kg of fuel.”

The CG is a function of the ULD weights and locations. The ULD location is given

by the arm of the assigned position aj . The deviation from an index datum (ID) value

representing the requested CG is given by

∑

i∈U

∑

j∈P

wi(aj − ID)xij/W, (4)

where W =
∑

i∈U wi is the total weight of the load. Minimising the absolute value of

(4) could be a good candidate for the objective function. However, we propose a different

approach. Since we know that the optimal requested value of (4) is zero, this objective may

be integrated as a constraint. Moreover, as mentioned above, companies may define different
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ID values for practical reasons. Slight deviations ǫ only have little impact and certainly do

not endanger the flight. This yields the constraint

− ǫ ≤
∑

i∈U

∑

j∈P

wi(aj − ID)xij/W ≤ ǫ. (5)

There is another reason to use this formulation. Experienced loadmasters start their

planning by loading first ULDs as close as possible to the CG and gradually move away

from it. This results in a load “packed” around the CG. Note that constraint (5) does not

ensure a good load distribution. It could yield feasible solutions with a balanced weight at

each extremity and nothing at the CG, which would exert an excessive stress on the aircraft

structure. Indeed, aircraft have a flexible structure and an inadequate load distribution

may cause fuselage deformation. While this problem may be reduced by defining weight

constraints on the different sections of the aircraft (see Sections 2.7 and 2.8), we have adopted

a different and original approach. In addition to constraints (5), we define a “packing”

objective function as a variation of (4). Each ULD Ui, weighted by wi, should be set in a

position Pj as close as possible to the ID:

min
∑

i∈U

∑

j∈P

wi(aj − ID)2xij . (6)

In other words, we optimise the moment of inertia under CG constraints. This is possible

since the objective function is clearly not conflicting with constraints (5).

2.5 Lateral balance

The basic aircraft design assumes that lateral symmetry exists. For each unit of weight

added to the left of the centreline of the aircraft (also known as buttock line zero, or BL-0),

there is generally an equal weight at a corresponding location on the right. The position

of the lateral CG is not normally computed for an aircraft, but the pilot must be aware of

the adverse effects that will result from a laterally unbalanced condition. This is corrected

by using the aileron trim tab until enough fuel has been used from the tank on the heavy

side to balance the aircraft. The trim tab deflects the aileron to produce additional lift on

the heavy side, but this also produces additional drag and the aircraft flies inefficiently. We

must therefore ensure that the lateral imbalance lies within reasonable limits. The threshold,

called delta weight D̄, is a simple function of W . The lateral imbalance constraint is then

given by

− D̄ ≤
∑

i∈U

wi(
∑

j∈PR

xij −
∑

j∈PL

xij) ≤ D̄. (7)
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2.6 Feasibility envelopes

Based on aircraft maximum structural capability, the aircraft manufacturer defines certified

limits for the CG and the operating weights. These are represented graphically by feasibility

envelopes (Figure 1). The vertical axis represents weight. The CG is measured on the

horizontal axis. Two equivalent notations exist for it. These are either based on an index

or as a percentage of the mean aerodynamic chord (MAC). The MAC is the chord of an

imaginary airfoil that has all of the aerodynamic characteristics of the actual airfoil. In the

sequel, we will work with the %MAC (the dashed lines with corresponding values at the

top) but we will also provide for information the index values (on the horizontal axis). The

shaded envelopes are those for a zero fuel weight (ZFW) indicator. The ZFW is the weight

of the empty aircraft including the staff, plus the weight of the cargo. One should ensure

that the ZFW lies within some allowed weight limits:

ZFWmin ≤ ZFW ≤ ZFWmax, (8)

while constraint (5) forces the corresponding CG to lie within the horizontal boundaries of

its envelope.

Figure 1: Feasibility envelope

Since the ULD positions do not appear directly in the ZFW definition, this is not a

relevant constraint for the optimisation process. We just have to check beforehand that the

ULD set to load is not too heavy and therefore that the ZFW lies within its boundaries.

However, the ZFW also appears indirectly in the model. Indeed, other indicators are based

on the ZFW and must lie for safety reasons in specific envelopes at some operating stages.

In particular, the takeoff weight (TOW) is defined as the ZFW plus the total fuel weight and

less the taxi fuel. The TOW must either lie in the takeoff envelope or in the dashed smaller

one when the ULD allocation cannot satisfy some constraints (see Section 2.9) or when the
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ZFW lies in the extended ZFW zone. This does not apply to all aircraft types but it does

to the largely operated Boeing 747.

2.7 Combined load limits

For structural design reasons, it is not allowed to put too much weight on given sections of

the aircraft. Different compartments are defined on each deck, and each has a total weight

limit. There is also a combined weight limit over all decks. These combined limits vary

according to the location in the aircraft, i.e. more weight is allowed in the middle, and less

at the extremities. The limit is a piecewise linear function of the distance with respect to

the datum (see Figure 2). These weight limitations are expressed in kg per inch. It is not

sufficient to ensure that the total weight over one section is under the limit. One must also

load the ULDs in such a way that at each inch of one section, the limit per inch is not

exceeded, i.e. the weight limit must be uniformly distributed over the section.

Figure 2: Feasible regions according to the maximum combined load limits

This last consideration complicates the model significantly. Applied directly, it would

mean that one constraint must be defined for each inch segment of the aircraft and for each

deck, which represents about 7000 constraints for a Boeing 747. Fortunately, since we have

made the assumption that the weight is uniformly distributed within each ULD, the load

weight is a piecewise linear function with breakpoints defined at each Pj limit. By sorting

all position limits, aft and forward, by distance from the datum, we can easily define a set of

areas starting at each limit location and ending at the next one. This should be done for the

main deck, the lower deck and both decks together, and hence we distinguish the three cases

by the index D. For deck D, the kth area is denoted by OD
k . Within each of these areas, for

the three cases, the weight is known to be uniformly distributed, even when considering the
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two decks together. Therefore, the “max kg per inch” constraints can be transformed into

a set of “max total weight per area OD
k ” constraints which are far less numerous. Note that

the breakpoints of the weight limit function may not coincide with the frontiers of the areas

OD
k . This implies that the weight limit is not always uniformly distributed over each OD

k .

We take care of this by adding the locations of the breakpoints to the list of positions limits

before sorting. As a result, we are no longer working with positions or complete ULDs, but

with areas often containing fractions of ULDs.

With Pj interpreted as an area of the aircraft, by defining and computing beforehand

the values ŌD
k as the maximal weight for area OD

k , and oDijk as the proportion of wi falling

in {OD
k ∩ Pj} when ULDi is set in position Pj, we can impose the constraints

∑

i∈U

∑

j∈P|Pj∩OD
k
6=∅

xijo
D
ijk ≤ ŌD

k ∀D ∈ D, ∀k ∈ O
D. (9)

2.8 Cumulative load limits

Instead of applying weight limits to consecutive slices of the aircraft, we now define limits

over overlaying areas. The problem is split into two parts: the aft body and the forward

body. The cumulative weight distribution from the nose to the centre of the aircraft must lie

below a forward piecewise linear limit function, and the cumulative weight distribution from

the tail to the centre of the aircraft must lie below an aft piecewise linear limit function. This

constraint is also called fuselage shear load on some aircraft. In practice, these constraints

are often satisfied when the combined ones are enforced. Note also that the combined and

cumulative constraints are more restrictive at the extremities of the aircraft than close to the

centre. They are therefore fully compatible with the minimisation of the moment of inertia.

When the aircraft is loaded close to its maximal capacity, they act as the objective function,

but they are not sufficient when this is not.

To model the cumulative load limits, the approach is similar to the one defined for the

combined weight limits. For the forward constraint, we construct as before a sorted list

with each position limit and the breakpoints of the forward cumulative limit function. We

consider both decks together but only the positions in the forward section. Each area is

defined as before, using the successive locations in the list. The same procedure is applied

to the aft section but by sorting in reverse order, from the tail to the centre of the aircraft.

We denote by Fk (resp. Tk) the consecutive forward (resp. aft) areas. Again, the weight

is uniformly distributed in each of them. The variable fijk (resp. tijk) is the proportion of

wi falling in {Fk ∩ Pj} (resp. {Tk ∩ Pj}) when ULDi is set in position Pj . If F̄k (resp. T̄k)

denotes the maximal cumulative allowable weight for the section starting at the nose (resp.

the tail) and ending with Fk (resp. Tk), then we impose the constraints
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∑

i∈U

∑

j∈P|Pj∩
⋃k

c=1
Fc 6=∅

k∑

l=1

xijfijl ≤ F̄k ∀k ∈ F (10)

and
∑

i∈U

∑

j∈P|Pj∩
⋃k

c=1
Tc 6=∅

k∑

l=1

xijtijl ≤ T̄k ∀k ∈ T. (11)

Note that since each weight limit area includes the preceding ones, these constraints may

be efficiently constructed using a recursive procedure.

2.9 Restricted aft body cumulative load limit

Another original feature of our work is the implementation of a restricted version of the

aft body cumulative load limit. This is particularly useful for the Boeing 747. When all

the preceding constraints are satisfied, the aircraft may theoretically take off. However, it

is preferable to load the aft section so as to satisfy a more restrictive cumulative aft limit.

When this is not possible, the envelope for the takeoff weight is also reduced to the takeoff

envelope for the extended ZFW (see Figure 1).

Figure 3: Aft cumulative load limits

This restricted version of the cumulative aft limit is defined in the aircraft manuals. The

breakpoints of the load limit function are the same as those for the extended one. We define

the new limit values by R̄k instead of T̄k (with R̄k ≤ T̄k). Basically, the constraints can be

expressed as in (11) by simply replacing T̄k with R̄k. The difficulty is that these constraints

could be too strict. They should not be applied if they make the problem infeasible. We

define a new binary variable y expressing whether or not constraint (11) is applied for each

area k. The constraint is applied when y = 0 and relaxed otherwise. The relaxation is
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achieved by increasing the weight limit by a large unreachable value. A good and strong

candidate is W , the total weight of the load. The modified constraints are therefore

∑

i∈U

∑

j∈P|Pj∩
⋃k

c=1
Tc 6=∅

k∑

l=1

xijtijl −Wy ≤ R̄k ∀k ∈ T. (12)

Finally, we must guarantee that y takes the value zero whenever possible. This is obtained

by adding the penalty term L2Wy in the objective function:

minimise
∑

i∈U

∑

j∈P

wi(aj − ID)2xij + L2Wy. (13)

The coefficient L2W , where L denotes the total length of the aircraft in inches, ensures

that the penalty term will be larger than any value for the moment of inertia term whenever

y = 1. Priority is therefore given to solutions satisfying the restricted cumulative aft limits,

before minimizing the moment of inertia.

We could be even more restrictive by applying the restricted cumulative limit separately

to each Tk area. This means that instead of defining y, we would need to define one variable

yk for each area Tk. The objective function would then be adapted by taking the sum of

the yk instead of simply y. However, what matters in practice is to decide whether we have

to consider the extended zone of the envelope or not. This is a binary decision based on

the satisfaction of the limit for the entire deck, without taking into account the sub-areas.

Moreover, with an array of yk, the problem becomes much larger and its execution time

could be excessive.
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2.10 Summary of the model

In summary, the core of the optimisation model can now be expressed by the following mixed

integer programming CargoOpt model:

minimise
∑

i∈U

∑

j∈P

wi(aj − ID)2xij + L2Wy

subject to

xij = 0 ∀i ∈ U, ∀j ∈ P | Ui does not fit in Pj∑

i∈U

xij ≤ 1 ∀j ∈ P

xij + xi′j′ ≤ 1 ∀i, i′ ∈ U, ∀j ∈ P, ∀j′ ∈ Oj∑

j∈P

xij = 1 ∀i ∈ U

−ǫ ≤
∑

i∈U

∑

j∈P

wi(aj − ID)xij/W ≤ ǫ

−D̄ ≤
∑

i∈U

wi(
∑

j∈PR

xij −
∑

j∈PL

xij) ≤ D̄

∑

i∈U

∑

j∈P|Pj∩OD
k
6=∅

xijo
D
ijk ≤ ŌD

k ∀D ∈ D, ∀k ∈ OD

∑

i∈U

∑

j∈P|Pj∩
⋃k

c=1
Fc 6=∅

k∑

l=1

xijfijl ≤ F̄k ∀k ∈ F

∑

i∈U

∑

j∈P|Pj∩
⋃k

c=1
Tc 6=∅

k∑

l=1

xijtijl ≤ T̄k ∀k ∈ T

∑

i∈U

∑

j∈P|Pj∩
⋃k

c=1
Tc 6=∅

k∑

l=1

xijtijl −Wy ≤ R̄k ∀k ∈ T

xij ∈ {0, 1} ∀i ∈ U, ∀j ∈ P

y ∈ {0, 1}.

2.11 Tuning options

One of our main objectives is to reach a solution with a CG close to that required by the

loadmaster, the level precision being controlled by the constant ǫ. In the simulations, we

set this value at 0.01, which is rather strict. We could increase the precision by providing

a smaller value. Alternatively, in order to make comparisons with problems in which the

objective is to minimise the deviation between the CG obtained and an ideal value, we

could define ǫ as a positive variable and add the term L2Wǫ to the objective function. A

second possible direct adjustment to the model concerning the restricted cumulative aft body

constraint has already been mentioned in Section 2.9.
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It turns out that these two modifications do not improve the quality of the results but

only increase computation time. They will therefore not be integrated in our model even

if the first one is implemented in Section 3.2 to demonstrate the superiority of the inertia

approach.

3 Case studies

We have tested our mathematical model on a set of real-world data provided by our in-

dustrial partner CHAMP Cargosystems. The challenge is to find a feasible and optimal

position for every ULD within a minimal amount of time. By feasible, we mean a solution

satisfying all the constraints presented above. By optimal, we mean a solution where the

CG is at the location requested by the loadmaster and packed as much as possible. We

will therefore present in the subsequent sections, for a set of realistic cases, the computation

times, comparisons of execution times between our automatic approach and a manual one,

the deviation of the CG with respect to the value requested by the loadmaster, the moment

of inertia of the solution, and the weight and balance quality.

In order to generate these results, we have written a software in Java. The role of this

software is to prepare the data, to call the professional optimisation library IBM ILOG

CPLEX and to analyse the results. It has been compiled and tested under Windows XP and

under Linux (Ubuntu 10.04). The optimisation steps were performed on a personal laptop

computer (Windows XP, Dual-Core 2.5GHz, 2.8GB of RAM) and with CPLEX 12. Since

we must solve a mixed integer linear program, we have used the classical branch-and-cut

CPLEX solver with the default parameters.

We first solve a complex real-world case and analyse its solution. We then compare the

minimisation of the moment of inertia to the minimisation of the centre of gravity. The third

section contains a short presentation of other real-word cases which shows that our results

can be generalised. Considering Boeing aircraft in the simulations is not restrictive since the

ULD system is used in a similar way in other aircraft built by Airbus, McDonnel-Douglas

and Lockheed, for example.

3.1 The case of a Boeing 747

Our main case study contains a large number of ULDs (42 to be precise) and a high capacity

and largely operated aircraft, i.e. a Boeing 747. This case is used during the training of

loadmasters by our partner. A Boeing 747 is divided into 67 basic positions, plus 10 larger

ones overlaying some of the basic positions. We know the exact location and dimensions of

each position, as well as the list of ULD types that each may contain. The positions are
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represented by boxes in Figure 4. Some positions are on the main deck (first row) and others

are on the lower deck (second row). Note that the scale is respected for the length but not

for the width. Each position is identified by a code on the side of the box. This code gives an

indication on the location. The final letter ‘R’, ‘L’ or ‘P’ means respectively, the right-hand

side, the left-hand side, or an overlay. All aircraft parameters and limits were taken from

the manufacturer’s manual.

The combined weight limit function for all decks is shown by the horizontal lines in

the third row of Figure 4. The horizontal axis of the figure corresponds to the aircraft

longitudinal axis and uses the same scale as the positions. The vertical axis represents the

maximal number of kg per inch starting from zero, up to the maximal value written above

the left-upper corner. The same is done for the cumulative limits in the fourth row of Figure

4. This time, however, the limit is a continuous increasing function for the forward body and

a continuous decreasing function for the aft body. The restricted aft version is also plotted

below the aft extended one.

Figure 4: Optimal load obtained by the CargoOpt model

Figure 4 also illustrates the solution obtained by the software. Each shaded box is a ULD

with its type and weight. All constraints of the model are satisfied. The total load weight

on each side of the aircraft and for each deck is given on the right-hand side. The aircraft

has a lateral weight delta of only 1875 kg. This is of the same order of magnitude as the

lightest ULDs and far below the threshold. The aircraft can therefore be considered laterally

balanced. In the third row of the figure, the shaded area provides the level of the load weight

at each inch. It strictly remains below the thresholds and is very far from the limit at the

15



centre of the plane. At the opposite, we can observe that the heaviest ULDs are close to the

CG. Since there is no lower deck there, it is not possible to put more weight and reach the

limit. The cumulative weight from the nose to the centre and the cumulative weight from

the tail to the centre yield, respectively, an increasing line and a decreasing line in the fourth

row. These lines remain below the upper curves showing the cumulative limits. However,

for this difficult case, it is impossible to obtain a solution for which the aft body cumulative

weight remains inferior to the restricted threshold. This is a soft constraint, which means

that we have to work with an extended version of the envelope, but there is no problem

with this and the solution is perfectly acceptable. The only negative consequence is that

the solver has spent a few milliseconds of execution time just to know that the restricted

constraint should not be applied. The last constraint is about the envelope. The ZFW and

the %MAC are given at the bottom of Figure 4 and it can be verified that the corresponding

point lies within the envelope.

Concerning the quality of the solution, we may measure the deviation between the CG

obtained and that initially requested by the loadmaster. We would also like to check whether

the load is packed around the CG, which is measured by the moment of inertia. The quality

of the packing is difficult to evaluate since the aircraft if loaded at full capacity and is

therefore naturally packed for any feasible solution. Nonetheless, as mentioned above, we

can observe that the heaviest ULDs are close to the CG, which is already something usually

done in practice and corresponds to a good solution. In this case, the location of the CG

requested by the loadmaster is expressed as a percentage of the MAC value and is equal

to 28, i.e. the CG must lie at 28% from the front (LEMAC) of the mean aerodynamic

chord (MAC). To give an order of magnitude, the Boeing 747 MAC is about 328 feet long.

The ǫ precision required is 0.01. This is a very restrictive value since it yields in this case

a deviation of less than one centimeter with respect to the required CG. With a value of

27.997, the goal is achieved.

The third performance measure is computation time which is extremely good. Less than

two seconds were required to solve this instance. Computation time is therefore not a barrier

to overcome before being able to consider possible extensions to the model. This result may

look surprising given that such mixed integer problems are known to be extremely difficult

to solve, and heuristics are usually the only way to compute feasible solutions in a limited

amount of time. We believe that this is not the case here for at least two reasons. First,

the size of real-life instances is limited by the capacity of the largest aircraft. The Boeing

747 is one of the largest ones but it does not yield an intractable instance. Second, the

problem is well conditioned. As stated in the next section, the branch-and-cut process is

very efficiently driven by the inertia term in the objective function. Since optimal solutions
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Load Master CargoOpt

#ULDs 42 42

ZFW 279 539 kg 279 539 kg

% MAC 27.601 27.997

Inertia 3.1E10 3.1E10

Time 1200 s 2 s

Weight delta 5693 kg 1875 kg

Weight constraints Satisfied Satisfied

Restricted aft constraint No No

Table 1: Loading 42 ULDs into a Boeing 747 aircraft: main results

can be computed within only a few seconds, there was no need for us to develop heuristics.

Figure 5: Solution proposed by the loadmaster

Finally, we also provide a typical result obtained by a trained loadmaster working by

hand. The comparison is not entirely fair since some discrepancies may arise due to the

software and parameters used, e.g. we consider the position T on the right side while the

manual and other computer-assisted tools locate it slightly shifted to the centre. Moreover,

the loadmaster had to enforce one more constraint in this case: the final destination of five

ULDs was different from that of the 37 remaining ones and the loadmaster had to place them

close to each other in the aircraft. This constraint was not implemented in our approach but
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our solution happens to satisfy it. All results are summarized in Table 1 and in Figure 5.

Our solution is always at least as good as the loadmaster’s solution and was reached more

quickly, with less risk of error.

3.2 Moment of inertia vs. centre of gravity

In the previous results, it is difficult to measure the quality of the moment of inertia optimi-

sation. Indeed, the aircraft is loaded close to its maximal capacity and all feasible solutions

are therefore naturally packed. However, the number of ULDs to load is sometimes more

limited. According to the IATA’s quarterly report IATA (2010), the monthly average of

the freight load factor varied in 2010 between 52% and 58%. We present in this section a

case where we have to allocate only 26 ULDs in the 77 available positions of the aircraft.

In reality, 32 positions of the lower deck are inoperative for the case under consideration

for two reasons. First they are too small for the ULDs that have to be loaded. Second,

these positions are overlaid by 10 larger ones which are necessary for some large ULDs. If

we remove the last three positions of the lower deck that can only be used for bulk items,

we must load 26 ULDs in an aircraft with a real capacity of 42 positions. Other cases are

considered in the next section.

When minimizing the moment of inertia, a feasible optimal solution is again obtained

very quickly within less than one second. The resulting load is plotted in Figure 6. All ULDs

are packed around the CG and the heaviest ones are located in the middle. The moment of

inertia is equal to 5.3E9. To give an order of magnitude, with respect to the definition of

the moment of inertia moment in equation (6), the total load weight W is 63 810 kg and the

length L of the Boeing 747 is about 2 365 feet.

One can wonder what would have happened if we had not minimised the moment of

inertia, but the mean absolute deviation from the requested CG, which is a more obvious

choice. This comparison can easily be made without modifying the constraints of the model

CargoOpt, but by adapting its objective function. We only need to remove the moment of

inertia term from the objective function and minimise ǫ instead. Note that this last term is

optional in our model because constraint (5) ensures an adequate precision ǫ of 0.01. The

result of this test is given in Figure 7. One can see that the load is no longer packed. Also,

the moment of inertia is now equal to 1.74E10, more than three times the value obtained

when minimizing this objective. The first solution clearly reduces the stress on the structure

but also, since an object with a small moment of inertia is by definition easier to rotate, this

physical principle can be interpreted as an aircraft with a higher degree of manoeuvrability

and efficiency.

Another initially unexpected result is the time required to compute these two solutions.
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Figure 6: Optimal load planning when minimizing the moment of inertia

Figure 7: Optimal load planning when minimizing the centre of gravity

While the computing time is very fast in both cases, minimizing the moment of inertia is 16

times faster. It seems that the moment of inertia term in the objective function efficiently

drives the optimisation process, in contrast to the CG model which provides less information.

3.3 Additional cases

An important question is whether the good results presented above are representative. To

provide a partial answer, we have solved other real-world cases of different sizes. We still
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consider the same aircraft but with different loads. The zero fuel weights are of the same order

of magnitude as before and all the weight constraints, with the exception of the restricted

aft body for case E, are satisfied. Computational results are summarized in Table 2, where

columns B and E correspond to the cases presented above with some additional information.

The MAC percentage achieved with CargoOpt is close to the one required and is more

precise than the one obtained manually by the loadmaster. All weight and balance con-

straints are satisfied. In particular, the lateral imbalance weight is small. The sixth line

of the table gives the optimised moment of inertia. The next one is the moment of inertia

when we only minimise the deviation between the %MAC and the %MAC required, and not

the moment of inertia. As mentioned, the difference between these two values may be large

when the number of ULDs to load is small with respect to the number of available positions.

Visually, we always observe in the first case that the ULDs are packed around the CG, with

the heaviest ones in the central positions. It is not clear whether one can do better. At

the opposite, when minimizing only the CG, some ULDs may be distributed all along the

aircraft with empty spaces between them. When the number of ULDs is large, the aircraft

is packed in a natural way and there are very few differences between the two approaches.

Some observations about computation times are worth making. When minimizing the

moment of inertia, as we suggest in our model, we always obtain optimal solutions within

a few seconds. Minimizing only the CG deviation, as it could have been alternatively done,

is slower, especially when the number of ULDs is very small or very large. We believe that

the slow execution times when the number of ULDs is large are due not directly to the

number of ULDs, but to the total weight that must be loaded. In these extreme cases, the

cumulative aft body restricted constraint is tighter and the inertia term again has an even

more important positive effect on the execution time. In case E the latter constraint cannot

be satisfied.

A B C D E F

#ULDs 23 26 30 42 42 45

W 60 418 kg 63 810 kg 59 360 kg 103 975 kg 120 112 kg 107 674 kg

% MAC (CargoOpt) 27.992 28.007 28.000 27.996 27.997 27.998

% MAC (LM) 26.1 27.5 27.3 28.1 27.601 28

Inertia (CargoOpt) 4.4E9 5.3E9 7.3E9 1.8E10 3.1E10 2.5E10

Inertia (CG optim) 1.6E10 1.7E10 1.4E10 2.6E10 3.3E10 2.6E10

Time (CargoOpt) 1.4 s 0.8 s 1.0 s 1.5 s 2.0 s 2.9 s

Time (CG optim) 116.6 s 13.0 s 1.9 s 441.9 s 1.2 s 155.7 s

Weight delta 1 990 kg 580 kg 2 135 kg 1 025 kg 1 875 kg 666 kg

Table 2: Optimal load planning of a Boeing 747 aircraft for different real-world cases
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These six real-world cases were provided by our industrial partner and were not specif-

ically designed for our experimentations. In order to check the results further, we have

also randomly generated loads of different sizes and types. Since these experiments did not

provide different results and insights, we have decided not to include them in this paper.

3.4 Interactive software

The software we propose is a fully interactive graphical tool. It computes optimal allocations

and displays the solution graphically. Moreover, the loadmaster can restrict ULDs to specific

positions by drag and drop according to his personal experience and to the real requirements

to be fulffiled. This is an iterative process. At each step, the loadmaster defines the restricted

set of ULDs and initiates the optimization process for the others. At the end of each step,

he can accept all or part of the solution, move some ULDs, restrict new ones to specific

positions, and finally restart the optimization process until a suitable solution has been

found. A major advantage of this approach is that it allows the consideration of additional

constraints, e.g., a specific ULD that should be loaded close to a door for quick unloading,

and it relies on the loadmaster’s experience for constraints that cannot be handled by the

model. This interactive approach is possible because of the short computation times needed

to solve the model.

4 Conclusions

Our goal was the development of a mixed integer linear program for the optimal loading

of a set of containers and pallets into a compartmentalised cargo aircraft. We had three

goals in mind. First, the model should integrate a set of realistic constraints ensuring that

the aircraft is allowed to take off and fly safely. Control of the longitudinal balance, lateral

balance, feasibility envelopes, combined weight and cumulative weight have been successfully

included. Particularly, we have also considered a restricted version of the cumulative aft body

weight constraint which is important for the case of the Boeing 747 aircraft. This complicates

the model with a disjunctive constraint and a new variable.

Second, we looked for a feasible and optimal solution. The aircraft must be loaded so

as to set the CG as close as possible to the CG requested by the loadmaster. This is really

important for the aircraft stability but also for the reduction of cost and environmental

impact. Indeed, the CG is the main parameter available at this level to control the fuel

consumption. This is achieved by our software with a very high precision. Another very

important concept we have proposed is the minimisation of the moment of inertia, which

implies that the load will be packed around the CG. We have shown empirically that our

21



approach leads to a reduction of the stress on the aircraft structure and to a significant

improvement of the aircraft manoeuvrability.

Manual load planning is time consuming and costly, especially for express courier op-

erators, but it remains a common practice. Our third objective was therefore to propose

a way to accomplish this task efficiently. The software we have developed provides an op-

timal solution within a few seconds. Our software only requires the list of ULDs and the

aircraft parameters to compute a solution. This contrasts with most current systems which

are mainly interactive.

Acknowledgements

This work was initiated as part of a research project with CHAMP Cargosystems. Special

thanks are due to Vincent Eggen, John Martin and David Felten. The paper, however,

only expresses the views of the authors. Sabine Limbourg thanks the CIRRELT and HEC
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