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ABSTRACT. This study addresses the problem of finding the range of efficiency for each Decision 

Making Unit (DMU) considering uncertain data. Uncertainty in the DMU coefficients in each factor 

(input or output) is captured through interval coefficients (i.e., these are uncertain but bounded). A two-

phase additive Data Envelopment Analysis (DEA) model for performance evaluation is used, which is 

adapted to include the concept of super-efficiency to provide a robustness analysis of the DMUs in face 

of uncertain information, assessing whether each DMU is surely efficient, potentially efficient, or surely 

inefficient for the uncertainty intervals specified. Another contribution is to present how a maximal 

stability hyper-rectangle can be computed for each DMU such that its efficiency status does not change 

when the coefficients vary within that interval. 
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Introduction 

Data Envelopment Analysis (DEA), originally developed by Charnes et al. (1978), is a nonparametric 

approach based on linear programming to evaluate observations representing the performances of all units 

(Decision Making Units - DMUs) under evaluation. Each DMU is characterized by the "consumption" of 

multiple inputs for the "production" of multiple outputs. The different DEA models seek to determine 

which of n DMUs form the efficient frontier (or envelopment surface) in Pareto-Koopmans sense. These 

evaluations result in a performance score that ranges between zero and unity that represents the “degree 

of efficiency” obtained by DMUs. 

In real-world evaluation problems, information is generally subject to several sources of uncertainty, 

resulting from data scarcity, difficulties of data estimation or data collection, or even to contradictory 

information from distinct sources. Therefore, decision aid models must cope with this data uncertainty by 

using models capable of providing robust conclusions, i.e., recommendations that are somehow 

“immune” to plausible data instantiations. The use of interval coefficients is a very flexible modelling 

tool for capturing this type of data uncertainty (i.e., the precise performances of the DMUs are unknown 

but bounded within an interval) since it does not impose stringent requirements about probability or 

possibility distributions. There are two main perspectives to deal with uncertainty in the context of our 

work. One, which is generally encompassed under the designation imprecise DEA (IDEA) (Cooper et al., 

1999, 2001a, 2001b), studies how to deal with imprecise data such as bounded data, ordinal data and ratio 

bounded data in DEA and results in a non-linear and non-convex DEA model. By using scale 

transformations and variable changes (Zhu, 2003), or only variable transformations (Despotis and Smirlis, 

2002), this non-linear model can be transformed into an equivalent linear programming problem. The 

other perspective, which is more related to the approach proposed in this paper, deals with computing 

stability intervals for uncertain coefficients so that results do not change (Zhu, 1996, 2001; Seiford and 

Zhu, 1998a, 1998b). 

This paper addresses this type of uncertainty in the context of a two-phase method developed by Gouveia 

et al. (2008), which was inspired on the additive DEA model proposed by Charnes et al. (1985) as well as 

the additive model with oriented projections presented by Ali et al. (1995). In Gouveia et al.’s model, the 

DMUs are treated as alternatives of a multiple criteria decision model (an additive multi-attribute utility 

model), each alternative being evaluated in a number of distinct criteria. The two-phase method provides 

an efficiency measure of each DMU by calculating a criterion weighting vector and, if necessary, 

obtaining the projected point.  

There are two main contributions in this work. One contribution is to present how the range of efficiency 

for each DMU can be computed in presence of interval values for the DMU coefficients in each 

input/output. This allows performing a robustness analysis of each DMU under evaluation, assessing 

whether each DMU is surely efficient, potentially efficient, or surely inefficient for the uncertainty 

intervals specified. Another contribution is to present how a maximal stability hyper-rectangle can be 

computed for each DMU such that its efficiency status does not change when the coefficients vary within 
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that interval. This is confronted with the idea of taking a super-efficiency score as a proxy of robustness, 

after adapting the original model of Gouveia et al. (2008) to consider the concept of super-efficiency.  

Following this introduction, section 2 briefly describes DEA models, with emphasis on the additive DEA 

model and the weighted additive model. In section 3, the concept of super-efficiency is reviewed. Section 

4 introduces the two-phase method of Gouveia et al. (2008) with the modifications to include the super-

efficiency concept. In section 5, the ranges of efficiency are computed and the robustness of each DMU is 

analyzed by considering a two-dimensional pedagogical example. In section 6, an example with real 

world data is provided for exploiting the insights from this robustness analysis. Concluding remarks are 

presented in section 7. 

 

Data Envelopment Analysis  

The set of n DMUs to be evaluated is )},...,1(:{ njjDMU = . Each DMUj consumes m different inputs 

),...,1( miijx = to produce p different outputs ),...,1( prrjy = . jX (the jth column of 
nḿX ) denotes the 

vector of inputs consumed by DMUj. A similar notation is used for outputs, Yj. The input data is 

represented by matrix
nḿX  and the output data by matrix

np´Y . 1 denotes the summation vector( )T1,...,1 .  

There are two main types of DEA models that provide a measure of relative efficiency for each DMU 

according to the returns to scale considered (Seiford and Zhu, 1999b): Constant Returns-to-Scale (CRS) 

models, such as the CCR model (see Charnes et al., 1978), and Variable Returns to Scale (VRS) models, 

such as the BCC model (see Banker et al., 1984) and the additive model (ADD) of Charnes et al. (1985). 

 

The additive model  

In CCR and BCC models we need to distinguish between input-oriented and output-oriented models. The 

additive model combines both orientations in a single model, which can be formulated as follows:  

ADD Xk,Yk( )( )                                                                 

min   zk = - 1s+1e( )                                                               

s.t.    Yl - s= Yk,                                                                    

         - Xl - e= -Xk,                                                                  

         1l =1,                                                                                 

         l ³ 0,    e ³ 0,  s³ 0.                          

 

 

The ADD model returns a non-positive value 
*
kz , which allows checking the relative efficiency of the 

DMU k under analysis.  If the value obtained is negative, then the DMU under analysis is operating 

inefficiently in some factors. This value is the symmetric of the sum of the distances in each dimension to 

the envelopment surface (L1 distance). 

If DMU k is inefficient (i.e., it does not lie on the efficient frontier defined by the set of DMUs) the model 
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identifies a projected point ( )kk YX ˆ,ˆ  on the efficient frontier. If the optimal value of the primal ADD 

model is zero the point ( )kk YX ,  belongs to the efficient frontier, that is ( )kk YX ˆ,ˆ  = ( )kk YX , . This is a 

necessary and sufficient condition for efficiency, Charnes et al. (1985).  

The projected point can be characterized, in an alternative way, as    sYeXYX kkkk  ,ˆ,ˆ , from the 

primal constraints. This ADD model measures the excess of inputs, e , and the deficit of outputs, s , in 

which the DMU k operates when confronted with the DMUs that operate on the efficient frontier. 

Ali et al. (1995) presented a variant of additive model with oriented projections, which is henceforth 

called weighted additive model. 

The envelopment formulation for this model is: 

ADDW Xk,Yk,uk, vk( )( )                                                 

min   zk = - uks+ vke( )                                                    

s.t.    Yl - s= Yk,                                                             

         - Xl - e= -Xk,                                                              

         1l =1,                                                                            

         l ³ 0,    e ³ 0,  s³ 0.                          

 

 

The parameters u
k
, v

k
(which are fixed before the model is solved) have play an important role that is 

clearly seen in the primal formulation. The vectors u
k
, v

k( )  are the coefficients of the objective function 

and thus define the relative weight attributed to one unit of each slack (for a discussion on the role of 

weights and value judgments in DEA (see Thanassoulis et al., 2004)).  The weight vectors provide and 

determine the directions of the projection. Setting u
k

= 1and v
k

= 1 in the primal weighted additive 

problem leads to the original additive model.  

 

Super-efficiency and sensitivity analysis in DEA 

Andersen and Petersen (1993) developed an extended DEA measure in which the basic idea is to compare 

the DMU under evaluation with a linear combination of all other DMUs in the reference set. This means 

that the production possibility set is reduced by not considering the DMU being evaluated, which allows 

efficient DMUs to become super-efficient and have different super-efficiency scores. In other words, the 

DMUs can increase the input vector (or decrease the output) to some extent while preserving efficiency. 

We can also perceive DEA models as projection mechanisms and the projections of the inefficient DMUs 

on the efficient frontier depend on the scales used to measure each input or output. Super-efficiency is 

very sensitive to the projection mechanisms and tends to favour “extreme” solutions (Bouyssou, 1999). 

The set of DMUs can be partitioned into two groups: frontier (efficient) DMUs and non-frontier 

(inefficient) DMUs. The frontier DMUs consist of DMUs in the set E (extreme efficient), set E’ (efficient 

but not an extreme point) and the set F (weakly efficient or frontier point but with non-zero slacks). The 
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super-efficiency model identifies the classification of a given DMU and, using some extensions of the 

super-efficiency model, a sensitivity analysis of the conclusions about efficiency can also be performed. 

However, under certain conditions the process of determining the super-efficiency score can lead to an 

infeasible linear program. Based on Thrall (1996), a necessary, but not sufficient, condition for 

infeasibility is that an excluded DMU is extreme efficient. Dulá and Hickman (1997) and Seiford and Zhu 

(1999a) reported a necessary and sufficient condition for infeasibility in an input-oriented CCR super-

efficiency model: the excluded DMU has the only zero value for any input, or the only positive value for 

any output, among all DMUs in the reference set. Infeasibility cannot arise in an output-oriented CCR 

super-efficiency model. Infeasibility also occurs in the BCC super-efficiency model, when an efficient 

DMU under evaluation cannot reach the frontier formed by the remaining DMUs via increasing the inputs 

(or decreasing the outputs). Infeasibility arises in either orientation whenever there is no reference DMU 

for the excluded one.  

Many DEA researchers have addressed the sensitivity of the results to data perturbations and the 

robustness of the efficiency scores resulting from these perturbations, based on super-efficiency DEA 

approaches. Continuing the work of Zhu (1996), Seiford and Zhu (1998a) developed a sensitivity analysis 

procedure to determine stability regions for possible increases in all inputs and for possible decreases in 

all outputs within which the efficiency of a specific efficient DMU remains unchanged. Seiford and Zhu 

(1998b) extended the method by Zhu (1996) and Seiford and Zhu (1998a) to the worst-case scenario, 

where the same maximum percentage data changes for deteriorating the efficiency of a DMU under 

analysis and the data changes for improving the efficiencies of the other DMUs simultaneously are 

calculated. In this work, the authors also concluded that the relationship between the infeasibility and 

stability of efficiency classification, discovered in Seiford and Zhu (1998a), remains for the simultaneous 

data variations case and for all basic DEA models. Generalizing these results, Zhu (2001) considered that 

the data perturbation in the DMU under analysis and the data perturbations in the remaining DMUs can 

be different when all the remaining DMUs improve their efficiencies at the expense of deteriorating the 

efficiency of the efficient DMU under analysis. Necessary and sufficient conditions for preserving 

efficiency were provided.  

Our approach differs from the sensitivity and robustness analysis presented by previous authors in several 

aspects. It has been developed for the additive two-phase model of Gouveia et al (2008). The uncertainty 

in the coefficients in each factor (input or output) is captured through interval coefficients and converted 

into utility scales (which are always to be maximized). An optimistic efficiency measure and a pessimistic 

efficiency measure are computed. Additionally, a tolerance threshold for each efficient DMU is 

determined, that is a maximum tolerance in the factor scores for which the DMU’s efficiency status 

changes. Using these two types of efficiency measures, we can classify the DMUs as surely efficient, 

potentially efficient, or surely inefficient. Unlike the standard super-efficiency models, with specific 

orientations, the model proposed in this paper projects the DMUs in any direction in a way that minimizes 

the distance of the unit under evaluation to the best of all units (excluding the one in evaluation), and 
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therefore no infeasibility concerns arise. 

 

Adaptation of the two-phase method to compute super-efficiency scores 

The two-phase method developed by Gouveia et al. (2008) is a variant of the additive DEA model with 

oriented projections (Ali et al., 1995), which uses concepts developed in the field of multiple criteria 

decision analysis (MCDA) under imprecise information (Athanassopoulos and Podinovski, 1997; Dias 

and Clímaco, 2000). 

We consider the DMUs as alternatives of a multiple criteria evaluation model, each one being evaluated 

in a number of distinct criteria. Each criterion corresponds to an input or an output factor in DEA models. 

A direction of preference is associated with each criterion: increasing for outputs and decreasing for 

inputs. The method uses an additive utility function to aggregate the utilities associated with each 

alternative, based on the Multi-Attribute Utility Theory (MAUT) (see Keeney and Raiffa, 1976). 

Adapting to this context, the purpose of MAUT will be to assess the utility of each alternative, 

considering that the larger the utility the better. MAUT is also aimed at simplifying the task of building 

the utility functions when evaluating the alternatives that are described by multiple attributes. In addition 

the decision maker's task is facilitated because he can focus the attention on one attribute at a time and 

then make the aggregation of attributes, rather than make judgments directly on the global utility (the 

concept of attribute in this theory is equivalent to our concept of criterion). This overcomes the problem 

of the scales associated with the ADD model, since all the input and output measures are translated into 

utility units. Moreover, the weights used in the aggregation gain a specific meaning: they are the scale 

coefficients of the utility functions. Weights are chosen to benefit each DMU as much as possible, rather 

than being fixed beforehand as in the model by Ali et al. (1995). Finally, the efficiency measure assigned 

to each DMU gains an intuitive meaning: it corresponds to a “min-max regret” (utility loss) measure. 

Considering that the alternatives are the DMUs to be evaluated according to q criteria, we assume that the 

utility of each alternative is given by an additive MAUT model    


q

c
jccj DMUuwDMUu

1

, where 

wc ³ 0,"c =1,...,q  and  wc =1
c=1

q

å (by convention). The scale coefficients qww ,...,1 are the weights of the 

utility functions. 

The use of this model requires that the original input and output scales have to be converted into utility 

scales and there are several techniques for questioning the decision maker, in order to construct the utility 

functions compatible with their answers (see von Winterfeldt and Edwards, 1986). Hence, after being 

converted into utilities all criteria are treated as outputs.  

Gouveia et al. (2008) proposed a two-phase method to incorporate preferences in the ADD model. In this 

study the two-phase method is adapted to consider the super-efficiency concept. For that purpose the 

following problem is solved:  
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d,w
min  dk

s.t.     wcuc DMU j( )
c=1

q

å - wcuc DMUk( )
c=1

q

å £ dk,   j =1,...,n, j ¹ k

          wc =1
c=1

q

å ,

          wc ³ 0,"c =1,...,q

  (1) 

 

The score  denotes the distance defined by the utility difference to the best of all alternatives 

(excluding the one under evaluation). The aim of our approach is, for DMU k, to calculate the vector w of 

utility function weights that minimizes the distance (the utility difference) of this unit to the best one 

(note that the best alternative will also depend on w), excluding itself from the reference set. Regarding 

the model of Gouveia et al. (2008), the only change is to exclude one constraint in which the DMU k 

under evaluation was compared to itself (which is achieved by introducing j≠k in problem  (1)). This 

change implies that  is now allowed to become negative. 

This approach is identical to that described in Gouveia et al (2008), and starts by finding the weights (the 

variables of problem (1)) that most benefit the DMU under consideration to have the worst utility loss 

(also a variable of problem (1)). Then, the “weighted additive” problem can be solved using the optimal 

weighting vector wc
* , resulting from (1), to compute the projected point in case of the DMU is inefficient. 

Phase 1: Convert inputs and outputs into utility scales. Compute the efficiency measure, , of each 

DMU, k = 1,…,n, and the corresponding weighting vector. 

Phase 2: If dk
* ³ 0 then solve the “weighted additive” problem (2), using the optimal weighting vector 

resulting from phase 1, , and determine the corresponding projected point of the DMU under 

evaluation.  

min
l,s

  zk = - wc
*
sc

c=1

q

å                                                  

s.t.    l juc DMU j( )
j=1, j¹k

n

å - sc = uc DMUk( ),  c = 1,...,q                                                       

         1l = 1,                                                                       

         l ³ 0,    s³ 0.                          

(2) 

 

If the optimal value  of the objective function in (1) is not positive, then the DMU k under evaluation is 

efficient. Otherwise it is inefficient and is the minimum difference of utility to the best DMU (i.e., the 

DMU with higher global utility). However, with the adaptation made to the original method we can also 

discriminate the efficient units. If < 0, then the DMU is in the set E (extreme efficient); if  = 0 and 

all the slacks are null in phase 2, then the DMU belongs to E’ (efficient but not an extreme point); if = 

dk
*

dk
*

dk
*

wc
*

dk
*

dk
*

dk
* dk

*

dk
*
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0 and not all the slacks are null in phase 2, then the DMU belongs to set F (weakly efficient or frontier 

point but with non-zero slacks).  

Using this measure, we can assess the extent to which an efficient DMU may worsen its utility while 

remaining efficient. This allows analyzing the robustness of the classification of a DMU as an efficient 

unit in face of uncertain information regarding factor coefficients. As  becomes more negative, we 

expect the efficient DMU to be more robust to changes in input and output levels. 

 

Robustness analysis and stability intervals 

Consider that the value 
cjp  (performance of DMU j in factor c) is uncertain but bounded within the range 

U

cjcj

L

cj pp p  . This implies ),()()( j

U

cjcj

L

c DMUuDMUuDMUu   if the factor c is an output, or 

),()()( j

U

cjcj

L

c DMUuDMUuDMUu   if the factor c is an input. 

Given interval performances on each factor (input or output), it is possible to compute an optimistic and a 

pessimistic efficiency measure dk
* for each DMU, k =1,…,n, using the first phase of the two-phase 

method. As an example, let us consider that all performances are bound to intervals

pcj
L = pcj 1-d( ) £ pcj £ pcj 1+d( ) = pcj

U
, with d  for instance equal to 5%, 10%, or 20%. For this work, we 

consider that all performances are applied the same toleranced , but we may consider that the tolerance is 

applied only to a subset of these (inputs or outputs). 

To present the methodology proposed in this paper, let us consider as an illustration the data in Table 1 

(displayed in Fig. 1). Taken from Gouveia et al. (2008), these data have been modified by adding DMU9, 

which is weakly efficient, to portray more possibilities. For this illustration let us assume that inputs and 

outputs are converted into “utilities” in a linear way (in practice these functions may be constructed with 

the clients of the study, reflecting their value system, see Almeida and Dias (2012)). So, for the plausible 

higher tolerance value considered (in this case   = 20%), and for each c =1,…,q, we choose a value 

 and , and then we compute the utilities for each unit 

using: 

uc DMU j( ) =

pcj - Mc
L

Mc
U - Mc

L
, if factor c is an output

Mc
U - pcj

Mc
U - Mc

L
, if factor c is an input

ì

í

ï
ïï

î

ï
ï
ï

, j =1,..., n,c =1,..., q
. 

  

dk
*

Mc
L

< min pcj
L, j =1,...,n{ } Mc

U > max pcj
U, j =1,...,n{ }
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Table 1: Test data 

DMU Y1 Y2 

1 10 2 

2 9 5 

3 6 7 

4 3 8 

5 4 4 

6 8 1 

7 5 6 

8 4 6.5 

9 2 8 

 M
c
L  

1 0 

 M
c
U  

12 10 
 

Considering the nominal values for each DMU and applying the two-phase method (1) and (2), we can 

build Table 2 and rank the DMUs in terms of optimal utility loss dk
* : 

DMU1 ≻ DMU2 ≻ DMU3 ≻ DMU4 ≻ DMU9 ≻ DMU8 ≻ DMU7 ≻ DMU6 ≻ DMU5. 

The lower the value of dk
*  the better, and if dk

*  is negative then the DMU is efficient (DMUs 1 to 4). 

DMU9 has dk
*= 0 but it is not strictly efficient, since one of the slacks is not null. The remaining DMUs 

have dk
*> 0 and hence are not efficient.  

The projections of inefficient DMUs were obtained considering the weighting vector that resulted from 

phase 1, in which the linear program (1) is solved for each DMU. Among the efficient DMUs (DMUs 1-

4) the first two have a larger margin to decrease their performance than the remaining ones. 

 
Table 2. Efficiency measure and other results for each DMU 

DMU dk
*

 
*

1w  

*

2w  s1
*

 s2
*

   

1 -0.091  1.000  0.000    

2 -0.074  0.579  0.421    

3 -0.032  0.355  0.645    

4 -0.020  0.216  0.784    

5 0.250  0.423  0.577  0.455  0.100  2=1

6 0.163  0.767  0.233  0.091  0.400  2=1

7 0.096  0.423  0.577  0.227  0.000  2=0.5; 3=0.5

8 0.085  0.268  0.732  0.000  0.117  3=1

9 0.000  0.000 1.000 0.091  0.000  4=1

 

To compute the optimistic efficiency measure we consider the best value of the intervals for the DMU 



10 

being evaluated and the worst value of the intervals for all other DMUs. The reverse is considered to 

compute the pessimistic efficiency measure. Let  j
L

c DMUu  denote the minimum utility that DMU j 

attains in factor c given its uncertain performance, note that  and

in the next expressions:            

uc
L DMU j( ) =

pcj
L - Mc

L

Mc
U - Mc

L
, if factor c is an output

Mc
U - pcj

U

Mc
U - Mc

L
, if factor c is an input

ì

í

ï
ïï

î

ï
ï
ï

, j =1,..., n,c =1,..., q
 

 

 Let  j
U

c DMUu  denote the maximum utility that DMU j attains in factor c given its uncertain 

performance:  

uc
U DMU j( ) =

pcj
U - Mc

L

Mc
U - Mc

L
, if factor c is an output

Mc
U - pcj

L

Mc
U - Mc

L
, if factor c is an input

ì

í

ï
ïï

î

ï
ï
ï

, j =1,...,n,c =1,..., q  

To compute the optimistic efficiency measure d
k
opt * for DMU k the following LP similar to (1) is solved: 

min   dk
opt

s.t.    wcuc
L

DMU j( )
c=1

q

å - wcuc
U

DMUk( )
c=1

q

å £ dk
opt

,  j = 1,...,n, j ¹ k         

        wc = 1
c=1

q

å ,

        wc ³ 0,"c =1,..., q

 

To compute the pessimistic efficiency measure d
k
pes* for DMU k the following LP similar to (1) is 

solved: 

min   dk
pes

s.t.    wcuc
U

DMU j( )
c=1

q

å - wcuc
L

DMUk( )
c=1

q

å £ dk
pes

,  j = 1,...,n, j ¹ k         

        wc = 1
c=1

q

å ,

        wc ³ 0, "c = 1,..., q  

 

With this analysis we can assess the robustness of the DMU under consideration because despite being 

assessed in a pessimistic way it may keep its efficiency status. A DMU is said to be robust to changes in 

its factors if the DMU remains in the same status after the change. Therefore, the DMU is robustly 

Mc
L

< min pcj
L, j =1,...,n{ }

Mc
U > max pcj

U, j =1,...,n{ }
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efficient in the range of uncertainty considered. These results are displayed in Table 3.  

 

Table 3. Lower and upper limits for the utility loss d
k
opt *

, d
k
pes*é

ëê
ù

ûú
, for each DMU 

DMU 5% 10% 20% 

1 [-0.177;-0.005] [-0.264;0.082] [-0.436;0.255] 

2 [-0.138;-0.009] [-0.203;0.056] [-0.333;0.185] 

3 [-0.095;0.031] [-0.158;0.094] [-0.284;0.219] 

4 [-0.087;0.048] [-0.160;0.116] [-0.320;0.251] 

5 [0.199;0.301] [0.148;0.352] [0.046;0.454] 

6 [0.097;0.229] [0.018;0.295] [-0.145;0.428] 

7 [0.037;0.155] [-0.024;0.213] [-0.146;0.331] 

8 [0.024;0.147] [-0.038;0.209] [-0.161;0.332] 

9 [-0.080;0.080] [-0.160;0.154] [-0.320;0.283] 

 

DMUs 1 and 2 are efficient and remain in this state when a tolerance of 5% is considered. DMUs 3 and 4 

do not remain efficient for this tolerance value. For this tolerance, DMUs 1 and 2 are surely efficient, 

DMUs 3, 4, and 9 are potentially efficient, and DMUs 5-8 are surely inefficient. If the intervals of 

uncertainty are defined by a tolerance of 10% or 20%, then there are no surely efficient DMUs. 

Figure 1 shows the efficient frontier, given the nominal values. The pessimistic evaluation of efficiency 

for DMU1 considering the 5% tolerance is portrayed by the dashed line. The rectangles define the region 

of tolerance. In this case, DMU1 is in its worst performance level while the remaining units are at their 

best performance levels, and it remains efficient. 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

9 4
3

2

1
6

7
8

5

2u

1u0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 
Figure 1. The unit isoquant spanned by the pessimistic evaluation of DMU1 

 

Figure 2 shows DMU7's optimistic assessment considering a tolerance of 10%, which is portrayed by the 

dashed line. Hence, DMU7 is in its best performance while the remaining units are at their worst for this 

tolerance values and, with this type of analysis, theDMU7 that was in the set of inefficient units 

(considering the nominal values of DMUs) is now in the set of efficient ones. 
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Figure 2. The unit isoquant spanned by the optimistic evaluation of DMU7 

 

A different type of analysis that can be carried out is to compute the maximum tolerance  such that the 

efficient DMUs maintain efficiency, i.e., to compute a stability interval in terms of a parameter  

affecting all the factors: 

dmax = d : dk
pes*(d) = 0{ }  

 

This can be easily accomplished by a bisection technique (see Table 4) if the utility functions are 

monotonous. Table 5 shows that for a tolerance greater than 5.2% the DMU1 is no longer guaranteed to 

be efficient. For DMU2 the tolerance threshold for being robustly efficient is 5.6%. 

 

Table 4: Computing δ
max

 using a bisection technique 

Let d  denote the maximum tolerance value (in this paper d  = 0.2) 

Let e  denote the precision used (in this paper e = 0.001). 

d := 0; 

while (d  - d  ) <e  do 

d ' :=
d +d

2
 

if d
k
pes*

³ 0  then d := d '  

else d :=d ' 

end if 

end while 

δ
max

 :=d  
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Table 5. Efficiency threshold for the DMUs 1, 2, 3 and 4 

DMU 1 2 3 4 

δ
max

 5.2% 5.6% 2.5% 1.4% 

 

It is noteworthy that DMU1 had a measure of efficiency highest than DMU2, but in this analysis this 

DMU emerges as being the most robust as it maintains the range of efficiency for a higher level of 

uncertainty on performances. Concerning DMUs 3 and 4, the tolerance threshold for which they are 

surely efficient is lower. 

 

An example with real world data 

This section revisits an empirical example of Cooper et al. (2006) displayed in Table 6, aiming to 

illustrate the insights that can be obtained from the approach proposed in this paper. There are 12 

hospitals and 6 factors: number of doctors and nurses and the relative unit costs of doctors and nurses in 

terms of inputs, and two outputs identified as number of outpatients and inpatients (each in units of 100 

persons/month). In this case we also consider that the higher tolerance value is   = 20%, and for each c 

=1,…,q, we choose a value  and 
.
 

 
Table 6: Test data 

  Inputs   Outputs 

 Doctor Nurse  Outpatients Inpatients 

DMU Number Cost Number Cost   Number Number 

1 20 500 151 100  100 90 

2 19 350 131 80  150 50 

3 25 450 160 90  160 55 

4 27 600 168 120  180 72 

5 22 300 158 70  94 66 

6 55 450 255 80  230 90 

7 33 500 235 100  220 88 

8 31 450 206 85  152 80 

9 30 380 244 76  190 100 

10 50 410 268 75  250 100 

11 53 440 306 80  260 147 

12 38 400 284 70  250 120 

M
c
L  

10 200 100 50   70 40 

M
c
U  

70 750 400 150   320 180 

 

 

For the purpose of this illustration, the performances of the 12 hospitals are converted into utilities, using 

Mc
L

< min pcj
L, j =1,...,n{ } Mc

U > max pcj
U, j =1,...,n{ }
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a linear transformation, as described in the previous section, and considering the tolerance d  = 5%, 10%, 

or 20%. 

Table 7 shows the efficiency measure, weights, slack and λ values, for each DMU considering the 

nominal values, resulting from the application of the two-phase method (section 4). From these results we 

can conclude that only three hospitals are working inefficiently. This efficiency measure allows to 

discriminate the efficient units using the super-efficiency concept and rank all DMUs: 

DMU11≻DMU5≻DMU1≻DMU2≻DMU12≻DMU10≻DMU4≻DMU9≻DMU7≻DMU6≻DMU3≻DMU8. 

The DMUs 11, 5, 1, 2, 12, 10, 4, 9 and 7 are efficient. With the slack values obtained by solving problem 

(2) and introducing the weight vector resulting from stage (1), we get the projections of inefficient 

DMUs. 

 

 

 

Table 7. Efficiency measure and other results, for each DMU 

DMU dk
*

 
*

1w  
*

2w  
*

3w  
*

4w  
*

5w  
*

6w  s1
*

 s2
*

 s3
*

 s4
*

 s5
*

 s6
*

   

1 -0.0949  0.261  0.000  0.274  0.000  0.000  0.466        

2 -0.0903  0.000  0.060  0.856  0.000  0.084  0.000        

3 0.0246  0.092  0.000  0.361  0.017  0.530  0.000  0.000 0.160 0.000 0.112 0.043 0.044 2=0.76;10=0.17; 12=0.04

4 -0.0125  0.000  0.000  0.461  0.000  0.415  0.124        

5 -0.0952  0.000  0.524  0.000  0.476  0.000  0.000        

6 0.0227  0.000  0.000  0.448  0.030  0.395  0.127  0.132 0.083 0.000 0.045 0.042 0.038 2=0.10;10=0.90

7 -0.0004  0.211  0.000  0.273  0.000  0.516  0.000        

8 0.0479  0.050  0.000  0.364  0.208  0.085  0.293  0.035 0.201 0.000 0.143 0.001 0.055 5=0.63; 11=0.07; ;λ12=0.30

9 -0.0103  0.477  0.171  0.000  0.000  0.094  0.257        

10 -0.0224  0.000  0.000  0.420  0.000  0.580  0.000        

11 -0.1929  0.000  0.000  0.000  0.000  0.000  1.000        

12 -0.0800  0.347  0.000  0.000  0.159  0.475  0.019        

 

Table 8 displays the results for each DMU considering the optimistic (for lower limits of the ranges) and 

pessimistic (for upper limits of the ranges) perspectives, using the first phase of the two-phase method 

with   = 5%, 10%, or 20%. 
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Table 8. Lower and upper limits for the utility loss d
k
opt *

, d
k
pes*é

ëê
ù

ûú
, for each DMU 

DMU 5% 10% 20% 

1 [-0.149;-0.043] [-0.206;0.007] [-0.321;0.092] 

2 [-0.140;-0.040] [-0.191;0.007] [-0.306;0.089] 

3 [-0.035;0.082] [-0.095;0.131] [-0.220;0.220] 

4 [-0.075;0.049] [-0.138;0.106] [-0.270;0.218] 

5 [-0.162;-0.037] [-0.229;0.021] [-0.362;0.137] 

6 [-0.066;0.108] [-0.156;0.192] [-0.336;0.360] 

7 [-0.081;0.075] [-0.164;0.142] [-0.331;0.268] 

8 [-0.018;0.115] [-0.084;0.181] [-0.217;0.285] 

9 [-0.072;0.051] [-0.135;0.111] [-0.280;0.230] 

10 [-0.118;0.072] [-0.275;0.217] [-0.407;0.327] 

11 [-0.288;-0.097] [-0.384;-0.002] [-0.574;0.189] 

12 [-0.163;0.002] [-0.247;0.082] [-0.420;0.231] 

 

According to the rank previously made and for a tolerance of 5%, DMUs 11, 5, 1 and 2 are surely 

(robustly) efficient. The DMUs 12, 10, 4, 9 and 7 do not remain always efficient for the same tolerance 

value.  For a tolerance of 10% only DMU11 maintains the efficiency status. 

Using a bisection technique we compute the maximum tolerance value for which the efficient DMUs 

maintain the efficiency status. Observing the stability interval limits shown in Table 9,and comparing 

with the rank established based on the nominal values of DMUs, we can conclude that the most robust 

DMU is DMU11, which coincides with the analysis based on super-efficiency. But the second most 

robust one is DMU1, which was ranked after DMU5 in the super-efficiency ranking. 

 
Table 9. Efficiency threshold for the efficient DMUs 

DMU 1 2 4 5 7 9 10 11 12 

δ
max 9.2% 9.0% 1.0% 8.2% 0.0% 0.8% 1.1% 10.1% 4.9% 

 

This type of analysis can be better understood when accompanied by the graph in Figure 3 where the 

behaviour of d
k
pes*(pessimistic assessment) is illustrated. In fact DMU11has a better efficiency measure 

and maintains the efficiency for a greater level of uncertainty in performances (δ
max

 = 10.1%). It is also 

possible to see that despite some DMUs had a better level of efficiency, with respect to the nominal 

situation δ = 0%, they are overtaken by others with a lower efficiency measure when more uncertainty in 

the performance of these units is assumed.  This is the case of DMU10, which has a lower d
k
pes* for a 

tolerance of less than 5.4% and it is surpassed by DMU7 for higher tolerance values. 
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Figure 3. Values approximated by linear interpolation of d
k
pes*

 for DMUs 1, 2, 4, 5,7,9,10,11 and 12 

 

We can also observe that for linear utility functions the curve that represents the optimal value d
k
pes* is 

concave. In Appendix Awe prove that if all utility functions are linear, then the function that describes 

how d
k
pes*changes with  is concave. 

 

Concluding remarks and future work 

This work provides a robustness analysis of each DMU in presence of interval data.  A preliminary 

assessment of the robustness of each DMU is obtained using the first phase of a two-phase method with a 

modification to include the super-efficiency of efficient units. This method projects the DMUs in any 

direction in a way that minimizes the distance of this unit to the best of all (excluding the one under 

evaluation), and therefore no infeasibility occurs.  

Assuming that the values of the DMU performances in each factor (inputs and outputs) are not known 

exactly, but an interval of values for these performances can be established, it is possible to calculate an 

efficiency range for each DMU. The efficiency scores for the DMU under analysis are computed 

considering its coefficients in the most unfavourable/favourable bounds and all the other DMU’s 

coefficients in their most favourable/unfavourable bounds, in order to assess the DMU’s robustness. This 

process enables to classify the DMUs as surely efficient, potentially efficient, or surely inefficient. 

The maximum tolerance d such that the efficient DMUs maintain efficiency is also computed, by using a 

bisection technique. An illustrative example shows that, according to this robustness measure, the DMU 

with the highest super-efficiency score is not necessarily the most robust one, i.e., the one with widest 

stability intervals. 
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In future work we intend to include in the model a way to calculate this tolerance given different types of 

utility functions.  

 

Appendix A 

Let us suppose that the under analysis, DMU k, is improved by dz% while all other DMUs are changed 

by dz% in the opposite direction. The problem in phase 1 is, for this constant dz: 

Considering that c=1,...,a  are output factors and c=a +1,...,qare input factors, we have: 

min d
k
* dz( )  

s.t. wc

pcj  (1-dz)- Mc
L

Mc
U - Mc

L
c=1

a

å - wc

pkj  (1+dz)- Mc
L

Mc
U - Mc

L
c=1

a

å +

wc

Mc
U - pcj  (1-dz)

Mc
U - Mc

L
c=a+1

q

å - wc

Mc
U - pkj  (1+dz)

Mc
U - Mc

L
c=a+1

q

å ≤ d
k
* dz( ) ,jk  (1’) 

 wc.1=1 

  wc ³ 0 , d
k
* dz( ) free 

 

LEMMA 1.   

Let d
k
* dz( ) , wc

*be an optimal solution to (1’). If the performance of DMU k in factor c, pkj , is altered in 

dz +q( )%, with  in the set of real, then the optimal value to (1’) is at most 

dk
*

d
z( ) -

w
*
q

Mc
U - Mc

L
pcj + pkj( )

c=1

a

å +
w

*
q

Mc
U - Mc

L
pcj + pkj( )

c=a+1

q

å .  

PROOF 

 Problem with DMU k altered in dz +q( )%: 

min d
k
q dz( )

 

s.t. wc
q pcj  (1-dz -q )- Mc

L

Mc
U - Mc

L
c=1

a

å - wc
q pkj  (1+dz +q )- Mc

L

Mc
U - Mc

L
+

c=1

a

å

wc
q Mc

U - pcj  (1-dz -q )

Mc
U - Mc

L
c=a+1

q

å - wc
q Mc

U - pkj  (1+dz +q )

Mc
U - Mc

L
c=a+1

q

å ≤ d
k
q dz( ) ,  jk  (2’)  

wc
q .1=1, wc

q ³ 0 , d
k
q dz( )  free 

 

Let d
k
* dz( ) , wc

*be an optimal solution to (1’). Let  nkkB ,..,1,1,...,1   be the set of indices of 
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DMUs for which there is no slack in (1’). Note that  B , otherwise d
k
* dz( ) , wc

*would not be 

the optimal solution (it would be possible to have a smaller d
k
* dz( ) . So,  

wc
*pcj

Mc
U - Mc

L
c=1

a

å -
wc

*pcjdz

Mc
U - Mc

L
c=1

a

å -
wc

*pkj

Mc
U - Mc

L
c=1

a

å -
wc

*pkjdz

Mc
U - Mc

L
c=1

a

å -  

wc
*pcj

Mc
U - Mc

L
c=a+1

q

å +
wc

*pcjdz

Mc
U - Mc

L
c=a+1

q

å +
wc

*pkj

Mc
U - Mc

L
c=a+1

q

å +
wc

*pkjdz

Mc
U - Mc

L
c=a+1

q

å = dk
*

d
z( ),"j Î B  

wc
*pcj

Mc
U - Mc

L
c=1

a

å -
wc

*pcjdz

Mc
U - Mc

L
c=1

a

å -
wc

*pkj

Mc
U - Mc

L
c=1

a

å -
wc

*pkjdz

Mc
U - Mc

L
c=1

a

å -  

wc
*pcj

Mc
U - Mc

L
c=a+1

q

å +
wc

*pcjdz

Mc
U - Mc

L
c=a+1

q

å +
wc

*pkj

Mc
U - Mc

L
c=a+1

q

å +
wc

*pkjdz

Mc
U - Mc

L
c=a+1

q

å < dk
*

d
z( ),"j Ï B 

 

Let 

D
j

= wc
* pcj  (1-dz -q )- Mc

L

Mc
U - Mc

L
c=1

a

å - wc
* pkj  (1+dz +q )- Mc

L

Mc
U - Mc

L
+

c=1

a

å

wc
* Mc

U - pcj  (1-dz -q )

Mc
U - Mc

L
c=a+1

q

å - wc
* Mc

U - pkj  (1+dz +q )

Mc
U - Mc

L
c=a+1

q

å

= dk
*

d
z( ) -

wc
*
q

Mc
U - Mc

L
pcj + pkj( )

c=1

a

å +
wc

*
q

Mc
U - Mc

L
pcj + pkj( )

c=a+1

q

å .

 

 

Therefore, 

 

"j Î B, D
j

= dk
*

d
z( ) -

wc
*
q

Mc
U - Mc

L
pcj + pkj( )

c=1

a

å +
wc

*
q

Mc
U - Mc

L
pcj + pkj( )

c=a+1

q

å .

"j Ï B, D
j

< dk
*

d
z( ) -

wc
*
q

Mc
U - Mc

L
pcj + pkj( )

c=1

a

å +
wc

*
q

Mc
U - Mc

L
pcj + pkj( )

c=a+1

q

å .

 

 

Thus, d
k
q dz( ) = dk

*
d
z( ) -

wc
*
q

Mc
U - Mc

L
pcj + pkj( )

c=1

a

å +
wc

*
q

Mc
U - Mc

L
pcj + pkj( )

c=a+1

q

å and wc
q

= wc
*is an 

admissible solution to (2’), and it is found an upper bound for the optimal value of (2’). Whereas 

the optimal value to (2’) is denoted by dk
*
(d

z
+q ), then, 

dk
*
(d

z
+q ) £ dk

*
d
z( ) -

wc
*
q

Mc
U - Mc

L
pcj + pkj( )

c=1

a

å +
wc

*
q

Mc
U - Mc

L
pcj + pkj( )

c=a+1

q

å . 
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 

Using LEMMA 1. we are now able to prove that the  d
k
* dz( ) is a concave function of  dz, as it was our 

purpose. 

 

PROPOSITION 1. 

d
k
* dz( ) , the solution to LP (1’), is a concave function of dz 

 

PROOF 

Let 
zyx

 ,,  be possible values for the tolerance applied to the performances of each factor, 

considering any DMU k, such that A=dy -dxand dz = tdx + t 1- t( )dy , with t Î 0,1] [. 

Given proposition 1, if we consider =-(1-t)A, we have: 

dk
*
(d

z
- (1- t)A) £ dk

*
d
z( ) +

wc
* 1- t( ) A

Mc
U - Mc

L
pcj + pkj( )

c=1

a

å -
wc

* 1- t( ) A

Mc
U - Mc

L
pcj + pkj( )

c=a+1

q

å and, on the other hand, 

if we do=t.A, we have: dk
*
(d

z
+ t.A) £ dk

*
d
z( ) -

wc
*t.A

Mc
U - Mc

L
pcj + pkj( )

c=1

a

å +
wc

*t.A

Mc
U - Mc

L
pcj + pkj( )

c=a+1

q

å , 

with A=dy -dxand dz = tdx + t 1- t( )dy , t Î 0,1] [. 

So, considering dx
 =  d

z
- 1- t( ) A and  d

y
= d

z
+ t.A  and given what was stated earlier, we get 

dk
*
(d

x
) £ dk

*
d
z( )+

wc
* 1- t( ) A

Mc
U - Mc

L
pcj + pkj( )

c=1

a

å -
wc

* 1- t( ) A

Mc
U - Mc

L
pcj + pkj( )

c=a+1

q

å and

dk
*
(d

y
) £ dk

*
d
z( ) -

wc
*t.A

Mc
U - Mc

L
pcj + pkj( )

c=1

a

å +
wc

*t.A

Mc
U - Mc

L
pcj + pkj( )

c=a+1

q

å .  

 

Considering now the definition of concave function and the upper limits obtained, we have: 

 

t.dk
*

d
x( ) + 1- t( ).dk

*
d
y( ) £ t dk

*
d
z( ) +

wc
* 1- t( ) A

Mc
U - Mc

L
pcj + pkj( )

c=1

a

å -
wc

* 1- t( ) A

Mc
U - Mc

L
pcj + pkj( )

c=a+1

q

å
é

ë

ê
ê

ù

û

ú
ú
+

(1- t) dk
*

d
z( ) -

wc
*t.A

Mc
U - Mc

L
pcj + pkj( )

c=1

a

å +
wc

*t.A

Mc
U - Mc

L
pcj + pkj( )

c=a+1

q

å
é

ë
ê

ù

û
ú = dk

*
d
z( )

 

 

It follows that the function d
k
* dz( ) is concave. 
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