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Optimal ROE loan pricing with or without
adverse selection
BV Oliver

1
and RM Oliver

2�
1
Sandia Corporation, Albuquerque, USA; and

2
University of California, Berkeley, USA

The authors describe the structural solution of the loan rate as a function of default and response risk
that maximizes expected return on equity for a lender’s portfolio of risky loans. Under the assumptions
of our model, the non-linear differential equation for the optimizing price is found to be separable in
transformed financial, response and risk variables. With an end-point condition where default-free
borrowers are willing to borrow at loan rates higher than the lender’s cost of funds, general solutions
are obtained for cases where default probabilities may depend explicitly on the offered loan rate and
where adverse selection may or may not be present. For the general solution, we suggest a numerical
algorithm that involves the sequential solutions of two separate transcendental equations each one of
which depends on parameters of the risk and response scores. For the special case where the borrower’s
default probability is conditionally independent of loan rate, it is shown that the optimal solution is
independent of Basel regulations on equity capital.
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Risk-based pricing

Risk-based pricing has developed considerable interest

in recent years as a way of offering lenders a rationale for

pricing loans to borrowers having different levels of default

and response risk—see, for example, Oliver (2001), Phillips

and Raffard (2009) and Thomas (2009). The simplest

characterization of the problem suggests that the loan rate

offered by a lender to a risky borrower should increase as

the risk of default increases in order to cover the expected

increase in default losses. At the same time, borrower pre-

ferences for lower prices must be recognized in developing

a theory for the determination of ‘optimal’ prices for loan

offers. One should have a reasonably clear idea of the

objectives of the lender that may include volume of busi-

ness and revenues, as well as expected return on equity

(ROE). In this paper, we are only concerned with maximi-

zing expected ROE.

When there is little or no competition in the market-

place, a lender or bank can set lending rates and terms of

an offer in isolation of other lenders. Within the credit

marketplace, lenders must recognize that borrowers are

influenced by the presence and attractiveness of competi-

tive offers. A full analysis of the interplay between many

lenders and many borrowers would take us into multi-

person and multi-objective game formulations where

partial information between lenders and borrowers may

be shared, much information is held privately and there

is the opportunity for substantial lender–borrower nego-

tiations before a loan is actually booked. Borrowers and

lenders have asymmetric information and lenders may only

be able to collect and process a limited amount of rele-

vant risk data for individual borrowers. Although one can

describe models where M borrowers continuously negoti-

ate with N lenders to uncover optimal strategies or market

equilibria, it is difficult to obtain insights for their solu-

tions. Not only does each lender have different information

about the risk and likely response of each borrower, but

he or she must also assess the effect of cooperative or

competitive policies that might be used. As offer terms and

risk assessments change over time, the strategies of com-

peting lenders may also change so that a model-builder

soon becomes involved in dynamic formulations of

substantial complexity that are unwieldy and yield little

insight for the pricing process.

In this paper, we consider a single lender and the

uncertain default risks and responses of multiple bor-

rowers; the lender is a decision maker who structures and

chooses an appropriate offer for each prospective bor-

rower. Each borrower may accept the offer, go elsewhere

or forego the loan. The lender’s decision is a deterministic

action taken against individual borrower risk and response

uncertainty, whereas the decision of each borrower is

viewed as the random outcome of an uncertain response to

each lender offer. We assume that the lender has or can
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obtain as many well-calibrated risk and response scores

about each borrower as are needed and that the objective

is to maximize expected ROE. Although not explicitly

discussed in this paper, mixed volume-ROE objectives are

reasonably easy to model and solve.

Pricing for optimal ROE without default risk

Before we explicitly incorporate default risk, let us review

the case where the lender attempts to find the best loan

price offer, r, assuming the borrower Takes the offer

with probability q(r). In other words, the only uncertainty

is the response to the offer, not the repayment of the

loan. To make a sensible offer, we predict the influence of

a loan rate decision on the borrower’s preferences and

how the probability of response influences the lender’s

expected ROE. This pricing problem is familiar to experts

in marketing and yield management, and focuses on price

as a decision variable to control profit rather than a way

to control risk. We now know that price simultaneously

influences both risk and profit.

We assume that the cost of borrowed funds to source

the loan is cD; if an offer is not Taken by the prospective

borrower, the available but ‘unused’ equity capital, E, is

invested in risk-free securities at the risk-free rate rF. We

also assume that the commercial borrowing rate for the

lender is greater than the risk-free rate but less than

the loan rate for the retail borrower, as it would not be

profitable for the lender to borrow funds at one rate and

then loan it to an individual borrower at a lower rate.

As we are silent about the possibility of default, the

expectation of ROE is

E½rEðrÞ� ¼ rF þ
1

E
ðr� cDÞqðrÞ r4cD4rF ð1Þ

Although the risk-free rate enters the expression for

expected ROE it does not affect the loan rate decision. It is

easy to show that the optimal lending rate is independent

of rF and must satisfy the first-order differential equation:

q� þ ðr� cDÞ
dq

dr

����
r¼r�
¼ 0 q� ¼ qðr�Þ ð2Þ

With small changes in the lender’s offer rate, the first

term on the left-hand side represents the additional

expected volume that would be obtained at the optimal

booking rate; because the derivative of the Take rate is

negative, the second term represents the net profit that

results from the decrease in volume caused by small

changes in loan rate. At the optimum these terms offset.

The optimal solution for r can also be expressed in

terms of a price-response elasticity, e. At the optimum

the profit from existing borrowers lost by decreasing the

price is compensated by the increased demand from new

borrowers so that the elasticity at the optimal price is

e�9
dq

q

r

dr

����
r¼r�
¼ r�

cD � r�
o� 1

r�4cD , �1oe� ¼ eðr�Þo� 1 ð3Þ

Our definition of response elasticity yields negative values

because we want to emphasize that response or demand

decreases with increases in loan rate or price—the custo-

mary definition in the economics literature is the negative of

our elasticity. It is clear from the assumptions of the model

that the optimal loan rate determined by this solution is not

risk dependent and cannot, in its present form, recognize

the effect of adverse selection. Rather it provides a single

‘optimal’ loan rate for certain repayment. The necessary

condition for an optimal solution in (3) can be rewritten as:

r� � cD

r�
¼ � 1

e�

The term on the left-hand side is called the premium

or contribution margin ratio. It is the premium of return of

the loan rate over the borrowing rate in units of loan rate

and is often referred to as the inverse elasticity rule

(Wilson, 1993; Phillips, 2005). Alternatively, the optimal

loan rate can be expressed in terms of an elasticity factor

times the borrowing rate:

r� ¼ eðr�Þ
1þ eðr�Þ cD4cD eðr�Þo� 1 ð4Þ

The mathematical structure of this formula tells us

that the optimal lending rate is the cost of borrowed funds

multiplied by a positive elasticity factor that depends

on the attractiveness of marginal increases in loan rate to

the retail borrower. The same result can be obtained when

elasticities are defined in terms of the premium between

lending and borrowing rates. In retail lending, the factor

that includes the elasticity terms is 41, which means that

the optimal retail loan rate is greater than the cost of

commercial borrowed funds. For example, if the elasticity

is �1.5, (4) tells us that r� ¼ 3cD; if �2, r� ¼ 2cD; if �3,
r� ¼ 1.5cD. Because both sides of the equation depend on

the optimal offer rate, it is clear that we must solve an

implicit equation in which the rate used to calculate the

elasticity coincides with the optimal rate. This observation

also suggests that experimental estimates of response

elasticity should be made in the vicinity of the optimal

loan offer. In general it is not possible to obtain analytical

solutions. The family of exponential and linear response

rates is an exception but, in our experience, these solutions

are hardly ever useful in business situations. As we find in

later sections, the elegant simplicity and structure of (4)

does not appear to carry over to those cases where both
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price-induced response and price-induced risk elasticities

appear side by side.

The optimal premium due to leveraged investment of the

equity E is therefore

E½rEðr�Þ� � rF ¼
1

E
ðr� � cDÞqðr�Þ ¼

�cDqðr�Þ
Eð1þ e�Þ

e� ¼ eðr�Þo� 1; ð5Þ

which depends on the magnitude of the leverage, the cost

of funds borrowed by the lender, the Take rate and the

elasticity at the optimal price. If the elasticity factor in (5) is

slightly smaller than �1 and the equity E (capital reserve)

required to borrow funds for a unit loan is a fraction, say

10%, the denominator is small and the expected ROE on

loans can become very large as it is inversely proportional

to the equity level. Because the attractiveness of offers to

individual borrowers affects the fraction that book, the

expected return on the portfolio depends on response

elasticity of borrowers and prices.

Although there has been no explicit inclusion of borrower

default, one significant risk to the lender comes from the

competitive marketplace and the unfulfilled promise of indi-

vidual borrowers to repay their loans. In retail and commer-

cial lending applications, default risk must be explicitly

included in a pricing decision as there may be large losses

from accounts that default. ROE should therefore include

losses from uncertain defaults on assets, as well as the

expense of debt on the liabilities of the balance sheet.

Optimal ROE pricing for a loan portfolio

We now consider the acquisition of many different

borrowers, each with their own risk of default and response

to an offer r; we again use the notation E for equity capital,

r the lender’s loan rate and revenue from the borrower of

a unit loan that does not default, cD the lender’s cost of

borrowed funds that source the loan and lD for the lender’s

loss if the loan defaults, usually referred to as LGD (loss

given default). In deriving a mathematical expression for

the expectation of the random ROE, we note that the net

return for a lender who borrows money to source the loan

is r�cD for the Good (no default) borrower and �(lDþ cD)

for a Bad (default) borrower. In the case of default, the

lender must pay lDþ cD because obligations for borrowed

funds require full repayment with interest—that is, there is

no relief to the debt of a commercial lender or bank

because of the default of a retail borrower whose loan was

sourced by the borrowed funds. We denote the conditional

probability of non-default (Good,G) and default (Bad) for

a booked borrower who has taken the lender’s offer

pðGjT ; x; rÞ ¼ PrfGoodjTake;x; rg9pðx; rÞ
pðBjT ;x; rÞ ¼ PrfBadjTake; x; rg ¼ 1� pðx; rÞ ð6Þ

and the conditional probability of taking the offer as

PrfTakejx; rg ¼ pðT jx; rÞ ¼ qðx; rÞ ð7Þ

The unconditional expected return for the lender’s

portfolio (risky loans and risk-free assets) is the risk-free

yield for equity plus a premium for the loans to the

portfolio of risky borrowers who book at the risk-and

response-dependent loan rate offered to them. The

expected yield premium (above the risk-free rate rF) for

the portfolio of loans can be written as:

E½rEðrÞ� � rF ¼
1

E

Z
x2X

ðr� cDÞpðGjT ; x; rÞ

�ðlD þ cDÞpðBjT ; x; rÞ

 !

� pðT jx; rÞdFðxÞ r 2 R

¼ 1

E

Z
x2X

ðr� cDÞpðx; rÞ

�ðlD þ cDÞð1� pðx; rÞÞ

 !

� qðx; rÞdFðxÞ; ð8Þ

where F(x) denotes the profile of borrowers acceptable for

offers and hence for the booked portfolio. The interaction

and tradeoffs between the Take probability and the loan

rate are critical: if too large a rate is offered few borrowers

will take the offer, whereas if the rate is too low the offer

may appeal to many borrowers but may not be profit-

able for the lender. By lowering loan prices, market share

increases but expected returns from booked accounts

are not large enough to cover the borrowing costs and

increased default losses. Because of the presence of two

uncertainties (risk and response), attention shifts from

finding risk cutoff policies that acquire customer portfolios

with acceptable levels of risk to finding pricing policies

that achieve expected profit, volume and risk objectives in

an environment where a lender may be forced to compete

with other lenders attracting the same risky borrowers.

Surprisingly, some optimal prices also suggest cutoffs.

To reiterate the point made earlier a lender wants to find

the loan rate, r(p, q) that maximizes the expected premium

provided by the risky investments over the risk-free ones.

Without restrictions on regulatory capital or self-imposed

volume requirements, the ROE objective is

Max
rðp;qÞ2R

E½rEðrÞ� � rFð Þ ð9Þ

The optimum is achieved by selecting an appropriate

functional r(p, q)¼ r(p(x, r),q(x, r)) with the clear under-

standing that the risk and response probabilities are

themselves functions of the loan rate and a vector x that

characterizes the risk or preferences of an individual

borrower. The subset of x that carries the relevant

information for p(x, r), the probability of non-default, is

usually very different from the subset used in the prediction

BV Oliver and RM Oliver—Optimal ROE loan pricing with or without adverse selection 3



of response, q(x, r). For this reason one can seldom use the

simpler relationship q(p, r)¼ q(p(x, r), r) to formulate (8).

The role of adverse selection should be clarified as it

may or may not be present. In either case, the appropriate

conditional risk probability is the posterior one associated

with borrowers who Take the offer, and, because of private

information available to themselves or the markets but

not the lenders, may result in a different probability of

default than would be expected from those who do not

Take the offer, that is, the prior and posterior probabilities

of Good/Bad for Takes and Non-Takes differ. Because the

risk profile of booked loans is conditional on borrower

preferences and the probability of a default is conditional

on the loan being booked, the appropriate default pro-

babilities are the ones that apply to the booked sub-

population where the condition on a Take, T, is explicitly

recognized. If there is no Adverse Selection then the

posterior and prior probabilities of default are equal and

independent of the act of booking. If there is adverse

selection, the revised (posterior) probabilities for default

given a Take should be used in which case their effects are

naturally and correctly incorporated in the decision

problem. For further details on Bad adverse selection

and Good positive selection, see Oliver and Thaker (2012).

The formulation in (9) is a bit puzzling in that the

integration (summation in discrete models) obviously

removes the dependence on p, yet the maximization

operator outside the integral asks us to find the best

risk-dependent offer rate as a function of p and q. We

emphasize that the decision is the risk—and response-

dependent loan rate or price, whose mathematical structure

we seek as a function of our assessments of these risks—the

decision problem is no longer one of selecting an optimal

operating point or cutoff even though a cutoff may be

the natural consequence of some optimal pricing func-

tions. Depending on the competitive marketplace, the

offered loan rate directly affects borrower preferences, and

acceptance by the borrower directly influences the compo-

sition of loan assets and debt obligations undertaken by the

lender to source the risky loan portfolio.

Assume that r(p, q) is continuous and has continuous

first derivatives. The equation for the optimizing risk- and

response-based price is obtained by setting the partial

derivative of the expected ROE with respect to lending rate

equal to 0. The profile for Good or Bad in the booked

population is always non-negative. The necessary condi-

tion for a relative maximum is a first-order non-linear

differential equation:

q
qr

qðx; rÞ ðr� cDÞpðx; rÞ � ðlD þ cDÞð1� pðx; rÞð Þ ¼ 0 ð10Þ

Typically, one provides end-point conditions when non-

default of the borrower is certain but, in this problem,

an alternative is to specify the desired value for expected

unleveraged ROE premium. Notwithstanding the oft-used

argument for perfect arbitrage in efficient markets, it

should be noted that even when non-default is certain

a lender may, nevertheless, get limited acceptance to an

offer whose loan rate is higher than the risk-free rate. There

is ample evidence that individual borrowers will pay high

prices for convenience, a relationship with a lender or,

more importantly, lack of information on the availability

of better offers in the marketplace.

To simplify notation in (10), we substitute p for the

conditional probability of a Good given a Take and q for

the probability of a Take given an offer so that the diffe-

rential equation in (10) can be rewritten as:

ðrþ lDÞ
qðpqÞ
qr
� ðlD þ cDÞ

qq
qr
þ pq ¼ 0 ð11Þ

If the middle term (derivative of q) were not present the

solution would be separable in two factors, one depending

only on p, the other only on q. Fortunately, by using the

simple translation

r0 ¼ rþ lD; c0D ¼ cD þ lD; ð12Þ

separability can be ensured and thus provide a con-

siderable simplification in the solution. Using (12), (11) can

be rewritten in terms of primed rates as:

qðpqr0Þ
qr0

¼ c0D
qq
qr0

ð13Þ

The general solution is surprisingly simple:

r0pðx; r0Þqðx; r0Þ ¼ c0Dqðx; r0Þ þ C ð14Þ

In this expression C is a constant of integration whose

explicit value is independent of the three quantities r0, p(r0)
and q(r0); it can be determined from end-point conditions

on a guaranteed no-default loan or, equivalently, a require-

ment on desired expected unleveraged ROE. Returning

to the unprimed notation it is easy to show that the

mathematical structure of the optimal loan rate is

r�ðp; qÞ ¼ r�ðpðx; r�Þ; qðx; r�ÞÞ

¼ cD

pðx; r�Þ þ lD
1� pðx; r�Þ
pðx; r�Þ

� �

þ C

pðx; r�Þqðx; r�Þ

� �
0op; qp1 ð15Þ

We emphasize that conditional probabilities must be

evaluated at the optimal r�. Default and response risk

probabilities in the second term are additive to the lender’s

risk-neutral price in the first term on the right-hand side,

which means that the lender’s risk-neutral solution pro-

vides a lower bound for the optimal price as p(x, r�)q(x, r�)
product is positive and o1. This solution yields the

anticipated result that there is equality of optimal expected
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ROE in all p, q, r combinations and that the constant of

integration, C, is the unleveraged optimal ROE premium

for the entire portfolio. The latter can be shown by

substituting (15) into (8) and completing the integration.

Although it may be possible to express the general solu-

tion in terms of price-risk and price-response elasticities,

it is not clear to us how one can duplicate the elegant

structure in (4).

The structure of the optimal loan rate in (15) is illustra-

ted in the three-dimensional surface of Figure 1, where p, q

and r axes are identified by the labels. All points on this

surface yield the same expected ROE premium but there is

no guarantee that an arbitrarily chosen point on the

surface can satisfy a required theoretical or experimental

relationship between p, q and r. Once we separately specify

the mathematical structure of p(x, r) and q(x, r) and com-

pute their inverses we can illustrate how default and

response surfaces intersect the p, q, r surface in Figure 1 and

provide a sub-set of solutions.

Ability to pay: default risk conditionally independent of

loan price

When the ability of the borrower to repay is not in question

we can remove the explicit dependence of the probability of

default on loan rate in (13) by setting the derivative of p

with respect to r equal to 0. Thus, the simpler differential

equation for the first-order condition is now

qðr0qÞ
qr0

¼ c0D
p

qq
qr0

ð16Þ

In the integration of (16) we treat p as a constant

that, nevertheless, can vary over the range of risk levels

acceptable to the lender. Even when conditional indepen-

dence is not assumed in the more general case of (11),

a borrower’s probability of default is weakly affected by

the loan rate for large p (eg prime paper); one can also

show mathematically that terms proportional to qp/qr are
small for all r close to cD. For each fixed p the general loan

pricing solution is now

r0 ¼ c0D
p
þ C

pq
ð17Þ

As before, the solution requires a meaningful end-point

condition that fixes the loan rate when the probability of

default is 0 and repayment is certain, that is p¼ 1, but

where attractiveness of the offer to the borrower may still

be uncertain, that is 0oqo1. Thus, in this case, the

correction term to the familiar risk-neutral price of the

lender includes only the marketing effect of a risk-based

price for each risky borrower:

r�ðqðr�ÞjpÞ ¼ cD

p
þ lD

1� p

p

� �
þ C

pqðx; r�Þ

� �
ð18Þ

Compare this result with (15) where default depends

explicitly on the offer rate. What is interesting about (18)

is that Basel or other capital reserve requirements that

depend on the borrower’s probability of default do not

affect the optimal solutions, even when equity capital E in

(8) is replaced inside the integral by a risk-dependent E(p).

Because p is fixed and independent of r, equity E is also

independent of r.

Consider the special case of optimal pricing for expected

return on assets (ROA) in the absence of affordability

issues. The lender does not borrow (cD¼ 0) and excludes

the leveraging effect of equity by setting E¼ 1. If we

consider the watershed case where the risk-neutral lender

wants to achieve an expected ROA equal to the risk-free

rate, we set C¼ rF so that the optimal price in (18) becomes

r�ðqðx; r�ÞjpÞ ¼ rF

pqðx; r�Þ þ lD
1� p

p
ð19Þ

Simply stated: multiply the LGD by odds of a Bad to

cover expected default losses and add to it the risk-free rate

discounted by the product of the uncertainties. This result

in (19) can be compared with Equation (3.4.8) in Thomas

(2009). Multiplying (18) or (19) by the probability of

Good/Bad outcomes for those who Take gives the desired

ROA for each account, as well as the booked portfolio.

A referee has correctly pointed out that the necessary

condition in (10) applies to each prospective individual

borrower in a continuum of rates, preferences and default

risks. What should the lender do in the case where prices

Figure 1 Constant optimal ROE surface as a function of
(p, q, r).

BV Oliver and RM Oliver—Optimal ROE loan pricing with or without adverse selection 5



are being offered in a small, finite number of segments

or price/risk tiers and the alternatives represent choices in

two or more discrete dimensions? If the overall objective

is to maximize expected ROE, (15) tells us that without

additional risk constraints the optimal expected ROE of

all segments must be equal; thus, a discrete formulation

should simultaneously balance tradeoffs of risk, borrower

preferences and volume within each tier or segment! One

can think of (15) as the defining price-risk-response rela-

tionship for the ‘centre’ of the tier segment and use it to

design the boundaries rather than the other way round

where tier boundaries are arbitrarily specified and an

optimal pricing relationship is then sought. In other words,

use the solutions of the continuous model to guide one’s

thoughts about discrete price, risk and response tiers. If, on

the other hand, the tiers are predetermined and the opera-

tional situation requires a discrete formulation, then one

should start at the beginning and optimize an objective

(with appropriate monotinicity and end-point conditions)

that represents the counterpart to (8) expressed in terms of

discretized pi, qj, rk and financial parameters.

Action-based response and risk scores

It is common practice to use risk and response scores to

make predictions of default and whether a potential

borrower may or may not Take a lender’s offer. In most

scoring applications the characteristics that play a part in the

assessments are a mixture of discrete and continuous vari-

ables. In the procedures that follow we assume risk and

response scores are linearly dependent on the continuous

decision variable, r, whereas the behavioural and demo-

graphic characteristics in the x vector may be a mixture of

continuous and discrete variables. In (20) and (21) below,

b(K) is a scalar slope representing the change in score per unit

change in loan rate; a discrete version can be easily repre-

sented by a vector b(K) in the event one uses a finite segmen-

tation of loan rates. The action-based response score for

Takes and Non-Takes can be expressed in log odds form as:

sqðx; rÞ ¼ aqðxÞ � bqr bq40 ð20Þ

and the action-based default risk score has the general form:

spðx; rÞ ¼ apðxÞ � bpr bp40: ð21Þ

We introduce a minus sign to emphasize the feature,

observed experimentally, that both scores decrease with

increasing r; this is not to say that the action-based scores

in (20) and (21) are always less than baseline scores that

would have been obtained in the absence of r. It should be

emphasized that the intercept term a(K)(x), which is

different for each individual borrower, is not itself a

calibrated log odds score; the value provided by (21) may

be larger or smaller than the baseline score. For further

details see text following Equation (34) in Oliver and

Thaker (2012). The probability of a Take is given by

qðxjrÞ ¼ PrfTakejx; rg ¼ 1þ e�sqðx;rÞ
� ��1

ð22Þ

and the probability of non-default is given by

pðxjrÞ ¼ PrfGoodjx; rg ¼ 1þ e�spðx;rÞ
� ��1

ð23Þ

An important reminder is that the forecast horizon for

the predictions in (22) and (23) must be synchronized with

the period used to describe the interest rates, economic

returns and the ROE model in (8). We have assumed in

our models that rates, returns and predictions of default

are described in units of a common period, say a year.

If the analysis uses probabilities based on a 2-year horizon,

for example, then one must appropriately scale ROE rates

and yields.

Numerical solutions in terms of scores

In solving the implicit equations in (15) or (18) there

may be uninteresting mathematical solutions whose rele-

vance to realistic lending rates has to be argued. For

example, when we use log-odds risk and response score

models there are occasions where one of two roots must be

discarded on the grounds that the larger root represents

a predatory loan rate or where the probability of response

is so small that it leads to an inefficient solution with the

same optimal ROE but lower probability of Take.

In the first model we studied in (1) there is no need for a

risk score as there is no default risk. On substituting the

Take probability in (22) into (4) the optimal loan rate is

seen to be the solution of a transcendental equation in z

z ¼ aþ bez; ð24Þ

where z9bqr; a ¼ bqðcD þ CÞ; b ¼ bqCe
�aq : C has the

interpretation of the additional interest rate (basis points)

that a lender must add to his borrowing cost to fund a loan

with a borrower who is certain to honour his loan contract

and, at the same time, represents the expected unleveraged

ROE premium over the risk-free rate. With a cost of funds

equal to 3%, E¼ 0.08, C¼ 0.025, aq¼ 3.5, bq¼ 30 (for the

response score parameters) we find that the solution

for the optimal loan rate is r� ¼ 0.0595, q(r�)¼ 0.822 and

E½rEðr�Þ� � rF ¼ 0:313 . Note that E¼ 0.08 (equity capital

as a fraction of funds borrowed) corresponds to a leverage

ratio of 12.5 which, with the optimal loan rate, yields an

expected ROE about 10 times the 3% cost of funds.

A more important case occurs when the borrower has

the ability to repay the loan obligations under any loan rate

offer; the risk score and the probability of default are,

a priori, dependent on behavioural and demographic data

but independent of r, although, a posteriori to a borrower’s

response, the probability of default may implicitly depend

6 Journal of the Operational Research Society



on loan rate. Substituting the assumptions of (20) and (22)

into (18) yields

rðp; qÞ ¼ cD

p
þ lD

1� p

p

� �
þ C

p
1þ e�ðaqðxÞ�bqrÞ
� �

ð25Þ

The solution for optimal r with p fixed is again a tran-

scendental equation of the form z¼ aþ bcz, where

z ¼ bqr; a ¼
bq
p

C þ cD þ lDð1� pÞð Þ;

b ¼
Cbq
p

e�aq
ð26Þ

As discussed earlier, p can assume all values representing

acceptable default risks for the lender, for example all

values above the lender’s preliminary Accept/Reject

cutoff. In (25) the probability of a Good, p, is conditionally

independent of r so that an optimal solution, r�, does

not have a feedback effect that then alters the chosen

p value. Finding a root is straightforward because only one

transcendental equation is solved.

Figure 2 is a three-dimensional plot of the same ROE

surface shown in Figure 1 but where two planes for two

different fixed values of the probability of non-default

(p-axis) and the inverse of a log odds score ribbon for the

probability of a Take (q-axis) in (25) are superimposed on

that surface. As in Figure 1, all (p, q, r) values increase

in the direction of the arrows; the range of values in p

are (0.85, 1), in q are (0, 1) and in r are (0, 0.25) with the

origin having the value (0.85, 0, 0) at the rear of the

three-dimensional cube. The loan rate is the vertical axis

and numerical values of (p, q, r) are identified on selected

corners of the three-dimensional cube. The intersection of

the constant ROE surface in Figure 1 with the r�q ribbon

(from (20) and (22)) results in a two-dimensional curve,

denoted by ABC. This ABC curve is denoted by a thicker

line extending behind the first semi-transparent p¼ 0.97

plane. This plane represents a default rate of 3% and has

two intersections (roots) with the ABC curve. Both roots

provide the same expected ROE but the larger root for r�

provides the less efficient solution with a smaller, almost

negligible, volume and the smaller root corresponds to

a higher q and larger expected volume. As p is reduced the

two roots get closer and closer together on ABC until,

finally, they coalesce into a single root that defines a point

of tangency and ‘risk cutoff ’ at B with the second, opaque

p¼ 0.94 plane. Planes representing still smaller values of p,

and higher default rates, have no intersection with ABC

and hence no solution satisfying the required end-point

condition at p¼ 1 or the C value desired for optimal expec-

ted ROE. In summary, the surface in Figure 1 representing

(15) is independent of borrower preferences whereas the

response ribbon provides a risk cutoff at point B that

differs with each individual borrower. With optimal pricing

the notion of a global risk cutoff for all borrowers may no

longer be valid. When we examine values of p¼ 0.99, 0.97,

0.94 (default rates of 1, 3 and 6%, respectively) with

response score parameters aq¼ 3.5, bq¼ 30, we find that

the loan rates maximizing expected ROE are r� ¼ 0.066,

0.081 and 0.119, respectively. These compare with the

earlier example for the optimal loan rate of 5.95% when

there is certainty in repayment.

Numerical solutions are more difficult to visualize when

both risk and response probabilities in (15) depend on the

loan rate, r. Fortunately, one can state the general solution

in terms of the parameters of the log odds scores in (20)

and (21) and thus obtain a considerable simplification in

calculating numerical values for r�. This yields an optimal

loan rate that is a solution of the triple exponential

transcendental equation

f ðr�Þ ¼ �r� þ C0 þ C1e
bpr
�

þ C2e
bqr
� þ C3e

ðbpþbqÞr� ¼ 0; ð27Þ

where the constant of integration is C (without a subscript)

and the four coefficients Ci, with subscripts i¼ 0,1,2,3,

depend on C, the score intercept terms (ap and aq), the
slopes (bp and bq) of the response and risk scores in (20)

and (21), as well as the financial parameters for the

commercial borrowing rate, cD, and the LGD, lD:

C09C þ cD ;

C19ðC þ cD þ lDÞe�ap ;
C29Ce�aq ;

C39Ce�ðapþaqÞ ð28Þ

Analytic closed-form solutions can be obtained for a few

uninteresting special cases but not, as far as we know, for

r

p
q

(0.85,1, 0.25)

(0.85, 1, 0)

(1, 1, 0)

(p, q, r) =
(1, 0, 0.25)

(1, 0, 0)

A

B

C

Figure 2 Optimal loan rate r with 3 and 6% default
probabilities.
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the score-based formulations that are used in the credit

industry. Because we know that the p (risk) and q (response)

functions can be specified in terms of their scores, optimal

loan rate solution(s), when they exist, correspond to the

intersection of three distinct surfaces. For each individual

borrower specified by (x, r) there are two ribbons (surfaces)

represented by the inverse functions �r ¼ p�1ðx; �pÞ and �r ¼
q�1ðx; �qÞ that may or may not intersect (15).

We have found that numerical solutions of (27) are

considerably simplified by designing an algorithm that

sequentially solves two distinct single-exponential trans-

cendental equations in r. Solutions for the optimal loan

rate are obtained by recursively solving two equations of

the form of (24), each with its own set of parameters that

correspond to the fixed p and fixed q cases described

earlier. First, p(r) is fixed and the coefficients of one

transcendental equation are expressed in terms of finding

a q-dependent root as shown in Figure 2. This new value

of r yields a value of q(r), which is then held fixed while

a new p-dependent root for r is sought; the iterative process

is repeated until there is convergence in the root. In our

experience five decimal root accuracy (1 basis point in the

interest rate) is obtained with a small number of iterations

(o10) of each transcendental equation. As an illustrative

example for the case where both risk and response surfaces

are derived from log odds scores, we use data from

previous examples except that log odds risk scores are

substituted for fixed p values. With risk scores parameters

given by ap¼ 3.5 and bp¼ 2, we obtain r� ¼ 0.085,

p(x, r�)¼ 0.966, q(x, r�)¼ 0.722 for loan rate, default and

response probabilities.

It should be noted that the scorecard-based calcula-

tions require extensive computations, which, besides the

preparation of the two scorecards and the posting of

four additional column numbers opposite each record,

require the solution of (27) and (28) for each borrower.

What might appear to be a formidable and intractable

set of calculations requiring extensive databases is well

within the reach of existing high-speed computation

platforms.

We appreciate the thoughtful critiques of both referees

who encouraged us to improve our graphical presentations,

the geometrical interpretation of solutions and insights on

pricing effects on both ROE and lender preferences for

more efficient choices.
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