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Hyper-heuristics comprise a set of approaches that are motivated (at least in part) by the goal of
automating the design of heuristic methods to solve hard computational search problems. An underlying
strategic research challenge is to develop more generally applicable search methodologies. The term hyper-
heuristic is relatively new; it was first used in 2000 to describe heuristics to choose heuristics in the context of
combinatorial optimisation. However, the idea of automating the design of heuristics is not new; it can be
traced back to the 1960s. The definition of hyper-heuristics has been recently extended to refer to a search
method or learning mechanism for selecting or generating heuristics to solve computational search problems.
Two main hyper-heuristic categories can be considered: heuristic selection and heuristic generation. The
distinguishing feature of hyper-heuristics is that they operate on a search space of heuristics (or heuristic
components) rather than directly on the search space of solutions to the underlying problem that is being
addressed. This paper presents a critical discussion of the scientific literature on hyper-heuristics including
their origin and intellectual roots, a detailed account of the main types of approaches, and an overview of
some related areas. Current research trends and directions for future research are also discussed.
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1. Introduction

Despite the success of heuristic methods and other search

techniques in solving real-world computational search

problems, there are still some difficulties in terms of easily

applying them to newly encountered problems, or even new

instances of similar problems. These difficulties arise mainly

from the significant range of parameter or algorithm choices

involved when using this type of approach and the lack of

guidance as to how to select them. In addition, the scientific

community’s level of understanding of why different

heuristics work effectively (or not) in different situations

does not facilitate simple choices of which approach to use

in which situation. Another drawback of current techniques

is that state-of-the-art approaches for real-world problems

tend to represent bespoke problem-specific methods which

are expensive to develop and maintain. A key motivating

goal for this area (but by no means the only one) is the

challenge of automating the design and tuning of heuristic

methods to solve hard computational search problems

(Burke et al, 2003a, 2009; Ross, 2005). The main idea is to

develop algorithms that are more generally applicable than

many of the current implementations of search methodol-

ogies. When using hyper-heuristics, we are attempting to

find the right method or sequence of heuristics in a given

situation rather than trying to solve the problem directly.

Hyper-heuristics could be regarded as ‘off-the-peg’ methods

as opposed to ‘made-to-measure’ techniques. Therefore, an

important goal is to design generic methods, which should

produce solutions of acceptable quality, based on a set of

easy-to-implement low-level heuristics. A hyper-heuristic

can be seen as a (high-level) methodology which, when

given a particular problem instance or class of instances,

and a number of low-level heuristics (or its components),

automatically produces an adequate combination of the

provided components to effectively solve the given pro-

blem(s). The overall goal of this paper is to analyse and

discuss the hyper-heuristic literature to date.

The term hyper-heuristics was first used in a peer-

reviewed conference paper in 2001 (Cowling et al, 2000).

The ideas in this first paper were further developed and

applied to scheduling problems in Cowling et al (2001,

2002a, b, c). In these publications, a hyper-heuristic1 was

considered to be a high-level approach that, given a
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particular problem instance and a number of low-level

heuristics, can select and apply an appropriate low-level

heuristic at each decision point. An earlier single appear-

ance of the term can be found in a technical report

(Denzinger et al, 1996), where it was used in a different

context, to describe an approach that combines a range of

Artificial Intelligence algorithms for automated theorem

proving. This report only uses the term once and does not

propose a definition of hyper-heuristics. The basic idea of

automating the design and/or selection of heuristics is,

however, much older. It can be traced right back to the

early 1960s, as we will discuss in Section 2.

A number of introductory tutorial and review book

chapters on hyper-heuristics have been published over the

last few years. The first one appeared in 2003 (Burke et al,

2003a), where the authors discussed the idea of hyper-

heuristics and stressed one of the key objectives; namely, to

raise the level of generality at which optimisation systems

can operate. The chapter also gives a brief history of the

area and discusses in detail some representative examples

published at the time. A tutorial article was later published

by Ross (2005), which not only gives useful guidelines

for implementing a hyper-heuristic approach, but it also

discusses a number of relevant research issues and identifies

promising application domains. A more recent publication

(Chakhlevitch and Cowling, 2008) provides a classification

and discussion of recent developments in hyper-heuristics,

with an emphasis on real-world complex applications. The

chapter presents three useful criteria as a definition of these

approaches, which we rephrase here: a hyper-heuristic is (i)

a higher level heuristic that manages a set of low-level

heuristics, (ii) it searches for a good method to solve the

problem rather than for a good solution, and (iii) it uses

only limited problem-specific information. The authors

regard the last criteria as the most crucial one. A recent

overview and tutorial chapter (Burke et al, 2009) discusses

methodologies to generate new heuristics from a set of

potential heuristic components, in which Genetic Program-

ming plays a prominent role. The chapter includes a

detailed description of the steps needed to apply this

approach, some representative case studies, a brief literature

review of related work, and a discussion of relevant issues

of this class of hyper-heuristic. Finally, Burke et al (2010d)

present an overview of previous categorisations of hyper-

heuristics and provide a unified classification and definition

that captures the work that is being undertaken in this field.

A hyper-heuristic is defined, there, as ‘a search method or

learning mechanism for selecting or generating heuristics to

solve computational search problems’.

The next section discusses the intellectual roots and early

hyper-heuristic approaches. Section 3 discusses our propo-

sal for classifying hyper-heuristics (Burke et al, 2010d).

Following this classification, we then provide a critical

discussion of the scientific literature covering heuristic

selection methodologies (Section 4), and heuristic generation

methodologies (Section 5). Section 6 briefly overviews

some related approaches that also seek to automate

the design and tuning of search algorithms. Finally, Section

7 highlights the main research trends in hyper-heuristics and

suggests some potentially interesting future research direc-

tions.

2. Origins and early approaches

The ideas behind hyper-heuristics are not new. They can

be traced back to the early 1960s, and can be found

across Operational Research, Computer Science and

Artificial Intelligence. We describe below some relevant

intellectual roots and early approaches developed before

2000. We have identified the following four types of early

approach:

2.1. Automated heuristic sequencing

Fisher and Thompson (1963) and Crowston et al (1963)

hypothesised that combining scheduling rules (also known

as priority or dispatching rules) in production scheduling

would be superior to using any of the rules separately.

This pioneering work should be credited with laying the

foundations of the current body of research into hyper-

heuristic methods. The proposition was for a method of

combining scheduling rules using ‘probabilistic learning’.

The main conclusions from this study are the following: ‘(1)

an unbiased random combination of scheduling rules is

better than any of them taken separately; (2) learning is

possible’ (Fisher and Thompson, 1963).

In the 1990s, these ideas were revisited: Storer et al

(1992, 1995) clearly stated the problem of designing a

good combination of problem-specific (fast) heuristics in

job-shop scheduling as a search problem, and defined

neighbourhoods within the heuristic space. The approach

discussed in Fang et al (1993, 1994) employed a genetic

algorithm to search a space of sequences of heuristic

choices in the context of open-shop scheduling. Later on,

Hart and Ross (1998) applied a variant of this idea to

dynamic job-shop scheduling problems. Hart et al (1998)

used a genetic algorithm-based approach to solve a real-

world scheduling and delivery problem. The approach

combined two genetic algorithms that evolved heuristic

choices, one to manage the assignment of orders, and the

second to schedule the arrival of deliveries. The approaches

discussed above were all ‘online’. That is, directed to find

good sequences of heuristics to solve a given instance of a

problem. In contrast, the work by Drechsler and Becker

(1995); Drechsler et al (1996) in the domain of electronic

chip design used an evolutionary algorithm to learn

(from a set of previous examples) successful heuristics that

can be applied to instances from a given problem after

a learning phase.
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2.2. Automated planning systems

Another body of work that inspired the concept of hyper-

heuristics came from the Artificial Intelligence community.

In particular, from work on automated planning systems

and the problem of learning control knowledge. In Gratch

et al (1993), Gratch and Chien (1996), the so-called

COMPOSER system was used for controlling satellite

communication schedules. The system can be characterised

as a hill-climbing search in the space of possible control

strategies. The approach is off-line in that a large supply of

representative training problems are required in order to

have an adequate estimate of the expected utility for various

control strategies. This methodology employed domain-

specific knowledge, and thus differs from modern hyper-

heuristic approaches. Moreover, a planning problem differs

from the general formulation of optimisation problems: the

objective in planning is to find a prescription for actions to

change the initial state into one that satisfies the goal.

2.3. Automated parameter control in evolutionary
algorithms

Some early approaches to automatically set the parameters

of evolutionary algorithms can also be considered as

antecedents of hyper-heuristics. Several mechanisms for

modifying parameters during the run in an ‘informed’,

adaptive way were proposed early in the history of evo-

lutionary algorithms (Eiben et al, 1999). Another idea is that

of using an evolutionary algorithm to tune an evolutionary

algorithm. This can be done using two evolutionary

algorithms: one for problem solving and another one

(so-called meta-evolutionary algorithm) to tune the first

one (Grefenstette, 1986; Freisleben and Härtfelder, 1993). It

can also be done by using a single evolutionary algorithm

that tunes itself to a given problem while solving it. The

notion of ‘self-adaptation’, first introduced within evolution

strategies for varying the mutation parameters (Rechenberg,

1973; Schwefel, 1977), is an example in this category. Self-

adaptation in evolutionary algorithms means that some

parameters are varied during a run in a specific manner: the

parameters are included in the chromosomes and co-evolve

with the solutions. These approaches are related to the idea

of searching over a space of possible algorithm configura-

tions, and are, therefore, related to hyper-heuristics. For an

overview and classification of approaches to parameter

control in evolutionary algorithms, the reader is referred to

Eiben et al (1999, 2007).

2.4. Automated learning of heuristic methods

An early approach to the automated generation of heu-

ristic computer programs can be found in the domain of

constraint satisfaction problems (Minton, 1996). In parti-

cular, the pioneering work of Minton (1996) presents a

system for generating reusable heuristics for Minimum

Maximal Matching Problem. The system modifies given

elements of algorithm ‘schema’, which are templates of

generic algorithms. The general idea is to automatically

synthesise problem-specific versions of constraint satisfac-

tion algorithms. The user provides a set of training

instances that the system can experiment with during the

configuration processes, and thus adapt to the particular

instance distribution represented by the training instances.

This study is unique in the literature, as the automated

approach is compared against those produced by three

NASA programmers, producing competitive results, and

even often outperforming the human programmers. An-

other interesting learning approach in the mid-1990s was

termed ‘Teacher’ (Wah et al, 1995; Wah and Ieumwana-

nonthachai, 1999) (an acronym for TEchniques for the

Automated Creation of HEuRistics), which was designed

as a system for learning and generalising heuristics used in

problem solving. The objective was to find improved

heuristic methods as compared with existing ones, in

applications with little or non-existent domain knowledge.

The Teacher system employed a genetic-based machine

learning approach, and was successfully applied to several

domains such as: process mapping, load balancing on a

network of workstations, circuit placement, and routing

and testing.

3. A classification of hyper-heuristic approaches

As a framework for structuring this survey paper, we use the

classification of hyper-heuristic approaches proposed in

Burke et al (2010d) (Figure 1). This figure is reproduced

here for completeness. This classification considers two

dimensions: (i) the nature of the heuristics’ search space, and

(ii) the different sources of feedback information. According

to the nature of the search space, we have (i) heuristic

selection: methodologies for choosing or selecting existing

heuristics, and (ii) heuristic generation: methodologies for

Heuristic selection

Methodologies to select

Heuristic generation

Methodologies to generate

construction
heuristics

perturbation
heuristics

construction
heuristics

perturbation
heuristics

Online
learning

Offline
learning

No-
learning

Feedback Nature of the heuristic search space

Hyper-
heuristics

Figure 1 A classification of hyper-heuristic approaches,
according to two dimensions: (i) the nature of the heuristic
search space, and (ii) the source of feedback during learning
(Burke et al, 2010d).
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generating new heuristics from the components of existing

ones. A second level in this dimension corresponds to the

distinction between constructive and perturbative search

paradigms (Hoos and Stützle, 2004). Perturbative meth-

ods work by considering complete candidate solutions

and changing them by modifying one or more of their

solution components, while constructive methods work

by considering partial candidate solutions, in which one

or more solution components are missing, and iteratively

extending them.

A hyper-heuristic is a learning algorithm when it uses

some feedback from the search process. According to the

source of the feedback during learning, we can distinguish

between online and offline learning. In online learning

hyper-heuristics, the learning takes place while the algo-

rithm is solving an instance of a problem, whereas in offline

learning hyper-heuristics, the idea is to gather knowledge in

the form of rules or programs, from a set of training

instances, that will hopefully generalise to solving unseen

instances.

These categories reflect current research trends. How-

ever, there are methodologies that can cut across

categories. For example, we can see hybrid methodologies

that combine constructive with perturbation heuristics (see

eg Garrido and Riff, 2010), or heuristic selection with

heuristic generation (Krasnogor and Gustafson, 2004;

Maturana et al, 2010; Remde et al, 2012).

4. Heuristic selection methodologies

4.1. Approaches based on constructive low-level heuristics

These approaches build a solution incrementally. Starting

with an empty solution, they intelligently select and use

constructive heuristics to gradually build a complete

solution. The hyper-heuristic framework is provided with

a set of pre-existing (generally problem specific) construc-

tive heuristics and the challenge is to select the heuristic

that is somehow the most suitable for the current prob-

lem state. This process continues until the final state

(a complete solution) has been reached. Notice that there is

a natural ending to the construction process when a

complete solution is reached. Therefore, the sequence of

heuristic choices is finite and determined by the size of the

underlying combinatorial problem. Furthermore, there is

the interesting possibility of learning associations between

partial solution stages and adequate heuristics for those

stages.

Several approaches have recently been proposed to

generate efficient hybridisations of existing constructive

heuristics in domains such as timetabling, cutting and

packing, production scheduling, constraint satisfaction,

and vehicle routing problems (see Table 1). Both online

and offline approaches, and different high-level strategies,

or learning mechanisms have been investigated. The

following subsections survey the approaches according to

the application domain.

4.1.1. Educational timetabling. There is a well-known

analogy between a basic version of a timetabling prob-

lem and the graph colouring problem. Nodes can

represent events and edges represent conflicts between

events. Using this analogy, some timetabling algorithms

in the literature are based upon graph colouring

Table 1 Application domains of heuristic selection methodol-
ogies based on constructive low-level heuristics

Application domain Reference(s)

Production scheduling Fisher and Thompson (1963)
Storer et al (1992, 1995)
Dorndorf and Pesch (1995)
Fang et al (1993, 1994)
Norenkov and Goodman (1997)
Hart and Ross (1998); Hart et al
(1998)
Vázquez-Rodrı́guez et al (2007a, b)
Ochoa et al (2009b)
Vázquez-Rodrı́guez and Petrovic
(2010)
Cano-Belmán et al (2010)
Garcia-Villoria et al (2011)

Educational timetabling Terashima-Marı́n et al (1999)
Ahmadi et al (2003)
Cheng et al (2003); Asmuni et al
(2005)
Ross et al (2004); Ross and Marı́n-
Blázquez (2005)
Burke et al (2005a, 2006b)
Burke et al (2007c); Qu and Burke
(2009)
Ochoa et al (2009a)
Li et al (2011)
Pillay and Banzhaf (2007); Pillay
(2008)
Sabar et al (2011)

1D Packing Ross et al (2002, 2003)
Marı́n-Blázquez and Schulenburg
(2007)

2D cutting and packing Terashima-Marı́n et al (2006, 2007,
2009)
Garrido and Riff (2007a, b)
Lopez-Camacho et al (2010

Workforce scheduling Remde et al (2007, 2009, 2012)

Constraint satisfaction Terashima-Marı́n et al (2008)
Ortiz-Bayliss et al (2010)

Vehicle routing Garrido and Castro (2009);
Garrido and Riff (2010)
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heuristics. These heuristics are criteria to select the next

node to colour. Early approaches using evolutionary

algorithms to evolve instructions for constructing an

examination timetable rather than inducing the actual

timetable were proposed in Ross et al (1997) and

Terashima-Marı́n et al (1999). The idea was to use a

non-direct chromosome representation based on evolving

the configuration of constraint satisfaction methods for

examination timetabling problems.

Ahmadi et al (2003) use a variable neighbourhood search

algorithm to find good combinations of parameterised

heuristics in examination timetabling. Several constructive

heuristics are proposed based on a weighted decision

function and the basic graph colouring heuristics. Low-

level heuristics are used for exam selection, period

selection, and room selection. The approach is used to

solve real-world instance from the University of Notting-

ham, UK. A follow-up paper (Cheng et al, 2003) proposed

a mixed-initiative approach to integrating human expertise,

which supports the usefulness of hyper-heuristics in real-

world problem-solving scenarios.

Asmuni et al (2005) investigate the use of a fuzzy system

in solving course timetabling problems. The events

(courses) to be scheduled are ordered by combining graph

colouring heuristics. The fuzzy weight of an event is used to

represent how difficult it is to schedule. A restricted form of

exhaustive search is used to find the most appropriate

shape for the fuzzy membership functions. The algorithm

was tested on benchmark data sets with encouraging

results.

Burke et al (2007c) propose a hyper-heuristic framework

that implements commonly used graph colouring heuristics

coupled with a random ordering heuristic. Tabu search is

employed as the high-level search method for producing

good sequences of the low-level heuristics. Each heuristic

list produced by the tabu search algorithm is evaluated by

sequentially using the individual heuristics to order the

unscheduled events, and thus construct a complete time-

table. This work also highlights the existence of two search

spaces: the heuristic space and the problem solution space.

The approach was tested on both course and exam

timetabling benchmark instances with competitive results.

A follow-up paper (Qu and Burke, 2009) compares the

performance of several metaheuristics that operate on the

search space of heuristics. Iterative techniques such as

iterated local search and variable neighbourhood search

were found to be more effective for traversing the heuristic

search space. The study also implemented hybridisations of

the hyper-heuristic framework with standard local search

operating on the solution space, which was found to

improve the performance of the overall system, making it

competitive with state-of-the-art approaches on the studied

benchmark instances. A further study (Ochoa et al, 2009a)

uses the notion of fitness landscapes to analyse the search

space of graph colouring heuristics. These landscapes are

found to have a high level of neutrality (ie, the presence of

plateaus). Furthermore, although rugged, they have the

encouraging feature of a globally convex or big valley

structure, which indicates that an optimal solution would

not be isolated but surrounded by many local minima.

Li et al (2011) investigate two data mining techniques,

artificial neural networks and binary logistic regression to

find global patterns hidden in large data sets of heuristic

sequences. With the trained classification rules, the

performance of a resulting solution during the hyper-

heuristic search can be predicted without the need to

undertake the computationally expensive determination

of the solution and calculation of the objective function.

The approach was tested on the graph-colouring hyper-

heuristic discussed above (Burke et al, 2007c), producing

significant speed ups of the search process.

Pillay and Banzhaf (2007) and Pillay (2008) study the

performance of evolutionary algorithms on a similar search

space as that discussed above, namely, the space of

combinations of graph colouring heuristics for examina-

tion timetabling. In the initial study (Pillay and Banzhaf,

2007), each element of the population is a variable length

string, where each character represents a heuristic. The

approach produced feasible examination timetables with

soft constraints within the range of other search methods

employed for this purpose, and outperformed previous

hyper-heuristics on a number of the tested instances.

Ross et al (2004) and Ross and Marı́n-Blázquez (2005)

apply a messy genetic algorithm (Goldberg et al, 1990)

hyper-heuristic based on graph colouring heuristics to both

class and exam timetabling problems. The idea is to learn

associations between problem states and adequate heur-

istics for timetabling. Specifically, the system tries to

discover a set of labelled points in the space of the problem

states. Each label refers to a heuristic, and the algorithm

works by repeatedly finding the nearest labelled point to

the current condition and applies its label until a complete

solution is built. Various different forms of problem-state

description and methods of measuring the fitness were

studied. The approach was able to generate fast and simple

problem-solving algorithms that offer good performance

over a range of exam and class timetabling problems.

Burke et al (2005a, 2006b) use a knowledge discovery

technique, case-based reasoning (Leake, 1996), as a

heuristic selector for solving both course and exam

timetabling problems. A set of graph colouring heuristics

and a hill-climbing procedure were selected as low-level

heuristics. In Burke et al (2006b), tabu search is employed

to discover the most relevant features used in evaluating

the similarity between problem-solving situations. The

objective was to choose the best heuristics from the most

similar previous problem-solving situation to construct

good solutions for the problem in hand.

Sabar et al (2011) utilise hierarchical hybridisations of

four low-level graph colouring heuristics for producing

Edmund K Burke et al—Hyper-heuristics 1699



even orderings. A combined difficulty index is calculated

by considering all the orderings and events are scheduled

according to this index. The approach produced competi-

tive result on the studied benchmark instances.

4.1.2. Production scheduling. Dispatching rules are

among the most frequently applied heuristics in produc-

tion scheduling due to their ease of implementation and

low time complexity. Whenever a machine is available, a

dispatching rule inspects the waiting jobs and selects the

job with the highest priority to be processed next.

Dispatching rules differ from each other in the way that

they calculate priorities. As discussed in Section 2, many

early hyper-heuristic approaches were based on dis-

patching rules. More recently, Vázquez-Rodrı́guez et al

(2007a) considered combinations of over a dozen

different despatching rules to solve a multi-machine

cardboard box shop scheduling problem. A standard

genetic algorithm was employed as the high-level search

strategy with successful results. A multi-objective job

shop problem was studied in Vázquez-Rodrı́guez and

Petrovic (2010) with a similar approach. Solutions are

represented as sequences of dispatching rules that are

called one at a time and used to sequence a number of

operations onto machines. The approach simultaneously

searches for the best sequence of rules, and the number

of operations to be handled by each rule. On different

variants of the multi-objective job shop, the method

obtained better results on all the studied instances when

compared with a previous hyper-heuristic based on

dispatching rules, and a conventional genetic algorithm

using a permutation representation.

A study of the search space composed by sequences of

dispatching rules is presented in Vázquez-Rodrı́guez et al

(2007b), where a formal definition and some properties of

these spaces are discussed. The notion of a decision block is

also introduced to refer to a set of decisions that are treated

as a single unit (ie processed by a single heuristic). A

further study (Ochoa et al, 2009b) conducts a landscape

analysis of the dispatching rules search space. Two

different objective functions and several hyper-heuristic

representation sizes (with different block sizes) are

considered. The study confirms the suitability of these

heuristic search spaces for evolving solutions to production

scheduling problems. Moreover, similarities between this

search space and the space of sequences of graph-colouring

heuristics for timetabling were found.

Cano-Belmán et al (2010) propose a hyper-heuristic

embedded within a scatter search (Laguna and Martı́,

2003) framework. The approach is applied to the problem

of sequencing products (mixed-model) on a paced assembly

line, and considers a set of 20 priority rules as low-level

heuristics. These priority rules are used to select a product

among a set of candidates, and are based on product and

work station features such as demand, processing time, idle

time, work overload, etc. Following the scatter search

methodology, the so-called reference set contains sequences

of priority rules, whose combination is based on a rule

frequency matrix. The approach was tested over a wide

range of instances from the literature. The solutions

obtained were, in many cases, of better quality than those

found by previous state-of-the art approaches.

4.1.3. Bin packing. Ross et al (2002) used an accuracy-

based classifier system (Wilson, 1995), in the domain of

one-dimensional bin-packing, to learn a set of rules that

associate characteristics of the current state of a problem

with different low-level constructive heuristics. A simpli-

fied description of the current state of the problem is

proposed, which considers the number of items remaining

to be packed and their size ranges. For the learning

process, a large set of benchmark instances from the

literature were used. The trained system showed good

generalisation to unseen problems. Another study using a

different type of classifier systems was also successfully

applied to solve 1D bin-packing problems (Marı́n-

Blázquez and Schulenburg, 2007). Ross et al (2003) use

the messy genetic algorithm hyper-heuristic (described

above in the context of timetabling) for learning associa-

tions between problem states and adequate heuristics for

bin-packing. The approach is applied to the 1D bin-

packing problem and overall the results were found a little

better than those obtained with the classifier system, and

on a larger set of benchmark problems.

Terashima-Marı́n et al (2006) applied the messy genetic

algorithm hyper-heuristic to solve 2D regular cutting stock

problems. For a 2D problem, two types of heuristics are

required: for selecting the figures and objects, and for

placing the figures into the objects. The state of the

problem is described by the percentage of pieces that

remain to be packed. The approach produced general

heuristic-combination rules that efficiently solved unseen

instances often with better performance than the best single

heuristic for each instance.

A more extensive investigation of the messy genetic

algorithm approach on 2D regular instances is presented in

Terashima-Marı́n et al (2009). The study also extended the

hyper-heuristic system to handle 2D irregular (convex

polygonal) bin packing problems. Very encouraging results

are reported for both types of problems. A recent study

applies machine learning techniques to extract relevant

features and improve the problem state representation of

irregular packing problems (Lopez-Camacho et al, 2010).

Garrido and Riff (2007a, b) propose a genetic algorithm-

based hyper-heuristic for solving the 2D strip packing

problems. In this case, the system is online, that is solution

methods are evolved for solving a single problem instance.

The approach uses a variable length representation that
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considers a categorisation of the low-level heuristics

according to their functionality: greedy, ordering and

rotational. Very good results are reported that even

outperform some specialised algorithms for the problem

and benchmark instances studied.

4.1.4. Workforce scheduling problem. Remde et al (2007)

propose a hybrid hyper-heuristic method to solve a

complex real-world scheduling problem. The approach

decomposes the problem into smaller parts solving each

part using exact enumerative methods. Constructive

heuristics are used and combined to first select a task,

and then select potential resources such as time for the

task. This combination produces a large number of low-

level heuristics (over 200) that need to be handled by the

hyper-heuristic. Variable neighbourhood search and other

simple hyper-heuristics were successfully used for deciding

the order in which to solve the sub-problems. In Remde

et al (2009) a tabu search-based hyper-heuristic dynami-

cally adapting the tabu tenures is applied to the same

problem and framework. A comprehensive study on this

framework is presented in Remde et al (2012), where

several hyper-heuristics are compared against a Variable

Neighbourhood and a Greedy Selection method with

favourable results. The best performing hyper-heuristics

depend on the allotted CPU time. When low to medium

CPU time is available, hyper-heuristics based on ranking

methods using adaptive reinforcement of low-level

heuristics perform well. For medium to high CPU time,

it is the adaptive tabu tenure hyper-heuristic approach

(Remde et al, 2009) producing the best results.

4.1.5. Constraint satisfaction. Terashima-Marı́n et al

(2008) use the messy genetic algorithms hyper-heuristic

framework for solving the dynamic variable ordering

problem within a constraint satisfaction framework. The

proposed framework produces combinations of condi-

tion-action rules, after going through a learning process.

The evolved rules produced encouraging results when

tested with a large set of randomly generated benchmark

problems. Ortiz-Bayliss et al (2010), explore patterns of

regularities in the relative effectiveness of two heuristics

for constraint satisfaction. The approach works in two

stages. In a training stage information about the perfor-

mance of the heuristics in different scenarios is gathered;

and in the second stage, this information is used to

generate a hyper-heuristic that decides which heuristic to

apply in the constructive process to produce a solution.

Ortiz-Bayliss et al (2012) describe a model for choosing

the right variable ordering heuristics while solving a

constraint satisfaction instance. A hyper-heuristic is repre-

sented as a set of vectors that maps instance features to

low-level heuristics, and a local search algorithm is used to

search for such vectors.

4.1.6. Vehicle routing. Garrido and Castro (2009) use a

hill-climbing-based hyper-heuristic to solve the capaci-

tated vehicle routing problem. The approach incorporates

both constructive and perturbative heuristics. Specifically,

it searches the space of sequences of constructive-

perturbative pairs of low-level heuristics. These sequences

are applied in order to construct and improve partial

solutions. The approach was tested using some standard

state-of-the-art benchmarks and compared against several

well-known methods proposed in the literature, with

competitive results. In a follow-up paper, the authors use

an evolutionary hyper-heuristic for solving the dynamic

vehicle routing problem (Garrido and Riff, 2010). The

framework includes three types of low-level heuristics:

constructive, perturbative, and noise heuristics, and evolves

a sequence of combinations of them, which are applied in

order to construct and improve partial solutions. The

approach is evaluated on a large set of instances with

different topologies and degrees of dynamism, and pro-

duced competitive results when compared with some well-

known methods proposed in the literature.

4.1.7. Summary and discussion. From the very early

studies in production scheduling (see Section 2), it can be

inferred that a combination or sequencing of several rules

or constructive heuristics is advantageous over using just

a single one. This fact has been recently confirmed within

different domains, such as educational timetabling, bin

packing and others. Approaches in the literature have

used both online and offline machine learning. In the

online approaches, the idea is to search (learn) for a good

sequence of heuristics that learn while solving a single

instance of the problem at hand. A feature of this type of

approach is the clear existence of two search spaces, the

space of sequences of heuristics, and the space of solutions

to the underlying problems. An important research

question is, then, to study the structure of these new

heuristic search spaces; and the relationship between the

two spaces. An analysis of the landscapes of heuristic

sequences on both educational timetabling and produc-

tion scheduling has revealed common features, such as the

existence of plateaus (neutrality): many different local

optima are located at the same level in the search (ie have

the same value). These common landscape features can, in

principle, be exploited by high-level search strategies.

With respect to the mapping between the two spaces, the

heuristic search space is generally smaller and covers only

a subset of the solution search space (but well-distributed

areas). The role of the high-level heuristic appears to be to

search within the limited areas quickly and to explore as
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widely as possible the solution space by re-starting from

different heuristic sequences within a limited computa-

tional time. This clearly invites the hybridisation of hyper-

heuristics with standard local search techniques in the

problem solution space. In other words, search can be

simultaneously conducted over the two search spaces.

The offline machine learning approaches proposed so far

have been based on learning classifier systems and messy

genetic algorithms and have been mainly applied to several

bin-backing problems. One fundamental research issue in

this type of approach is the determination of a simplified,

yet accurate, representation of the state space in the

construction process, since the learning process is directed

to link state-space descriptions to useful low-level heur-

istics. Other fundamental issues are the sensitivity of results

in relation to the particular choice of low-level heuristics,

and whether the use of randomised heuristics is advisable.

The determination of efficient learning or search techniques

to be used as high-level strategies also deserves further

study.

Finally, the exploration of additional domains, in which

constructive heuristics are available, is another worthwhile

research direction.

4.2. Approaches based on perturbative low-level heuristics

These approaches aim to improve a candidate solution

through a process of automatically selecting and applying a

heuristic. Online and offline machine learning techniques

are valuable to the heuristic selection strategies in order to

make informed decisions regarding which heuristic to

employ at a given step. Hyper-heuristic methodologies

based on perturbative heuristics have been applied to a

wide variety of combinatorial optimisation problems as

summarised in Table 2.

There are a few studies on the hyper-heuristic meth-

odologies to select perturbative heuristics that perform

multi-point search (processing multiple solutions). The

majority of previously proposed approaches conduct a

single point search. In a single point search-based hyper-

heuristic framework, an initial candidate solution goes

through a set of successive stages repeatedly until termina-

tion. First, a heuristic (or a subset of heuristics) is selected

from a set of low-level perturbative heuristics and then

applied to a single candidate solution. Finally, a decision is

made about whether to accept or reject the new solution.

A hyper-heuristic to select perturbative heuristics

performing single-point search combines two separate

components: (i) heuristic selection method and (ii) move

acceptance method as identified in Bilgin et al (2006)

and Özcan et al (2008). This component decomposition

presents a high level of modularity, indicating that either

one of these components can be replaced by another

method generating a new hyper-heuristic. An instance of a

single-point search-based hyper-heuristic will be denoted as

Heuristic Selection—Move Acceptance from this point

forward. Different combinations of heuristic selection

and move acceptance methods have been explored within

the context of hyper-heuristics.

4.2.1. Learning selection in hyper-heuristics performing

single point search. The heuristic selection that does not

use any type of learning mechanism is based on either a

random or an exhaustive process. A learning mechanism

can be introduced into the heuristic selection process to

improve the decision-making process over a set of

possible neighbourhoods. Thabtah and Cowling (2008)

discuss an offline learning strategy to detect a rule from

seen problem instances to choose a low-level heuristic at a

given decision point for solving unseen problem instances.

Table 2 Most studied application domains of methodologies
to choose perturbative heuristics

Application domain References

Personnel scheduling Cowling et al (2000, 2002b, c)
Cowling and Chakhlevitch
(2003)
Han and Kendall (2003)
Burke et al (2003b)
Bai et al (2012)
Mısır et al (2010)

Educational timetabling Cowling et al (2000, 2002c)
Burke et al (2003b, 2005b)
Bilgin et al (2006)
Chen et al (2007)
Bai et al (2012, 2007)
Özcan et al (2009, 2010)
Demeester et al (2012)

Space allocation Burke et al (2005c)
Bai and Kendall (2005);
Bai et al (2008)

Cutting and packing Dowsland et al (2007)
Bai et al (2012)

Vehicle routing Pisinger and Ropke (2007)
Meignan et al (2010)
Mısır et al (2011)

Sports scheduling Mısır et al (2009)
Gibbs et al (2010)

Cross-domain (HyFlex) Burke et al (2010b, 2011a)
Ochoa et al, 2012a, b)
Özcan and Kheiri (2011)
Walker et al (2012)
Drake et al (2012)
Mısır et al (2012)
Ping-Che et al (2012)
Chan et al (2012)
Gaspero and Urli (2012)
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The majority of the heuristic selection methods used

within the single point search-based hyper-heuristic

framework generate online score(s) for each heuristic

based on their performances. Then these values are

processed and/or combined in a systematic manner to

select the heuristic to be applied to the candidate solution

at each step. All score-based heuristic selection techniques

require five main components to be implemented:

(i) initial scoring, (ii) memory length adjustment,

(iii) strategy for heuristic selection based on the scores,

(iv) and (v) score update rules in case of improvement and

worsening, respectively. All low-level heuristics are

assigned an initial score. Depending on the mechanism

used, these scores might affect the performance of a

hyper-heuristic. In general, initial scores are set to the

same value, typically zero. Memory length determines the

effect of the previous performance of a heuristic while

making the heuristic selection at a decision point. Given a

set of scores, heuristic selection can be performed in many

different ways. For example, max strategy selects the

heuristic with the maximal score. On the other hand,

Roulette-wheel (score proportionate) strategy associates a

probability with each heuristic that is computed by

dividing each individual score by the total score. Then,

a heuristic is selected randomly based on these probabil-

ities. A high score generates a higher probability of being

selected.

One of the commonly used methods in hyper-heuristics is

reinforcement learning, see Kaelbling et al (1996) and

Sutton and Barto (1998) for more details. A reinforcement

learning system interacts with the environment (or a model

of the environment) and given a state, takes an action

based on a policy. By trial and error, the system attempts to

learn which actions to perform by evaluating state and

action pairs through accumulated rewards. In the context

of hyper-heuristics, rewarding and punishing each heuristic

depending on their individual performance during the

search is a scoring mechanism. If a low-level heuristic

improves a solution, then it is rewarded and its score gets

updated positively, while a worsening move causes punish-

ment of a heuristic by decreasing its score. Different

combination of operators can be designed for reward and

punishment.

The acceptance strategy is an important component of

any local search heuristic (operating on any search space).

Two different types of acceptance strategies can be

identified in the literature: deterministic or non-determi-

nistic. Deterministic methods make the same decision for

acceptance regardless of the decision point during the

search using given current and new candidate solu-

tions(s). A non-deterministic approach might generate a

different decision for the same input. The decision

process in almost all non-deterministic move acceptance

methods requires additional parameters, such as the time

(or current iteration).

Single point search-based hyper-heuristics will be cov-

ered in four distinct subsections considering the nature of

their components as follows: (i) Hyper-heuristics using

deterministic move acceptance, (ii) Hyper-heuristics using

heuristic selection methods with no learning and non-

deterministic move acceptance, (iii) Hyper-heuristics using

heuristic selection methods with learning and non-determi-

nistic move acceptance, and (iv) Comparison studies.

Section 4.2.5 presents an overview of multi-point search-

based hyper-heuristics. Finally, Section 4.2.7 provides a

summary and discussion.

4.2.2. Hyper-heuristics using deterministic move accep-

tance. In Cowling et al (2000, 2002c), the authors proposed

and compared a variety of the hyper-heuristic compo-

nents on two real-world scheduling problems: a sales

summit and a project presentation problem, respectively.

A Simple Random heuristic selection method chooses a

low-level heuristic at random at each step. Random

Gradient is a variant of Simple Random, a randomly

selected heuristic is repeatedly applied until no improve-

ment is achieved. The same affect of Random Gradient

can be achieved by modifying the operation of each

heuristic as discussed and employing Simple Random.

Random Permutation generates a random ordering of the

low-level heuristics and at each step successively applies a

low-level heuristic in the provided order. Random

Permutation Gradient is a variant of Random Permuta-

tion that proceeds in the same manner as Random

Gradient without changing the order of heuristics until no

improvement is achieved. Berberoğlu and Uyar (2010)

showed that the Random Permutation Gradient-based

hyper-heuristic performs better than some other meta-

heuristics for solving the unit commitment problem.

Greedy exhaustively applies all low-level heuristics to a

candidate solution and selects the one that generates the

best improved solution. Greedy is a learning heuristic

selection method with the shortest memory length. The

heuristic that makes the best improvement as a feedback

is used for the heuristic selection and then this informa-

tion is discarded in the following step. Although Random

Gradient and Random Permutation Gradient heuristic

selection methods make use of a random component, they

can still be considered as intelligent heuristic selection

mechanisms that embed a reinforcement learning mechan-

ism. Initial scores of all heuristics are set to 0, which is

also the lower bound for the scores. The upper bound is

set to 1. As a score update rule, score of an improving

heuristic is increased by one (additive), otherwise it is

punished by decreasing its score by 1 (subtractive). The

scores are kept within the bounds; hence, the memory

length is set to the shortest possible value for such a

reinforcement learning scheme. This type of strategy can

be useful if the search landscape is highly rugged and
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there are not many plateaus. With the exception of

Greedy, the other heuristic selection methods execute fast.

The Choice Function heuristic selection method intro-

duced in Cowling et al (2000) is a score-based learning

approach. This method adaptively ranks each low-level

heuristic with respect to a combined score based on the

following: how well it has performed individually, how well

its performance is as a successor of previously invoked

heuristic and the elapsed time since it was last called. The

first two components intensify recent performance, while

the third provides an element of diversification. For

implementing the heuristic selection, max and roulette

wheel strategies were tested, with the former approach

producing better performance. As the acceptance criteria,

two deterministic approaches were considered: All Moves

(AM) and Only Improvements (OI). The experimental

results in Cowling et al (2000) show that the Choice

Function—All Moves hyper-heuristic is promising. The

best parameter set is obtained through a manual tuning

process. Cowling et al (2001) introduce a parameter-less

Choice Function. In Cowling et al (2002c), this variant was

found to outperform the simple ones over the problems

studied, and produced improved results when compared

with a manually produced solution and a constructive

approach. The design of this hyper-heuristic is further

extended in Rattadilok et al (2005) by proposing a model

for general-purpose low-level-heuristics and exploiting

parallel computing frameworks for the hyper-heuristics.

Nareyek (2003) used Reinforcement Learning (RL) as a

heuristic selection method attempting to learn how to select

the promising heuristic at each decision point. The learning

process is based on scores (weights) as described pre-

viously. Each heuristic starts with the same score and they

are updated by a predetermined scheme during the move

acceptance process. All Moves is used as an acceptance

criterion. The approach is evaluated on the Orc Quest

problem (Nareyek, 2001), and in a modified Logistics

Domain, well known to the action-planning community.

The results of the study suggest that combining a low rate

of adaptation (additive update) for rewarding an improve-

ment with a strong (root update) rate of adaptation for

punishing a deterioration is a good choice. Moreover,

choosing a heuristic with a max strategy at each step often

generates better results when compared with choosing a

heuristic with a roulette wheel scheme.

Burke et al (2003b) presented the Reinforcement

Learning with Tabu Search heuristic selection method. In

a similar way to the previous study of Nareyek (2003), the

low-level heuristics are selected according to learned scores

(ranks). The proposed hyper-heuristic also incorporates a

dynamic tabu list of low-level heuristics that are tempora-

rily excluded from the available heuristics in certain

situations. This hyper-heuristic is evaluated on various

instances of two distinct timetabling problems: university

course timetabling and nurse rostering. The results were

competitive with respect to those obtained using the state-

of-the art problem-specific techniques. Burke et al (2005c)

extended this methodology with a fixed size tabu list to be

used in multi-objective optimisation. The hyper-heuristic

maintains the scores of low-level heuristics for each

objective separately. The results show that the proposed

multi-objective hyper-heuristic framework guides the

search towards the promising areas of the trade-off front

over a set of space allocation and timetabling problems.

In Cowling and Chakhlevitch (2003), a range of hyper-

heuristics were studied based on Simple Random and

Greedy heuristic selection methods. According to the

description of the Greedy method in Cowling et al

(2000), worsening moves are never accepted. On the other

hand, it is possible that all heuristics might worsen the

quality of a candidate solution when the Greedy approach

is used. In Cowling and Chakhlevitch (2003), such

situations are allowed. This is a more general approach

that allows the move acceptance component to deal with

worsening moves, enriching the generation of different

hyper-heuristics embedding different acceptance mechan-

isms. In this study, Peckish heuristic selection strategies

(Corne and Ross, 1996) that use a Greedy method after

reducing the number of low-level heuristics are also

investigated along with four different Tabu Search based

move acceptance strategies. These strategies accept an

improving move and the related heuristic is removed from

the tabu list if it is there. A non-improving move is

accepted only if the employed heuristic is not in the tabu

list. The hyper-heuristics utilise Only Improving, All

Moves and a variant of All Moves that discards moves

generating the same objective value as the current solution

as move acceptance criterion. The approaches were

evaluated on a real-world personnel scheduling problem

with 95 low-level heuristics yielding promising results.

However, the process for selecting a low-level heuristic to

apply at each decision point is slow since it involves

examining all heuristics from a large set. Therefore, in

Chakhlevitch and Cowling (2005), two learning strategies

were investigated for choosing the subset of the fittest low-

level heuristics. At each step, the changes in the quality of a

solution are compiled to reflect the total improvement due

to a heuristic. Greedy—Tabu Search (event-based tabu list)

that linearly reduces the number of the fittest low-level

heuristics turned out to be the most promising hyper-

heuristic.

Garcia-Villoria et al (2011) applied a number of different

hyper-heuristic methods to an NP-hard scheduling pro-

blem, namely, response time variability problem. The

authors experimented with constructive and dual stage

improvement hyper-heuristics. The improvement hyper-

heuristic evaluates the performance of each low-level

heuristic during a learning stage and improves a solution

based on the performance indicators for each heuristic

obtained from the previous stage. Mixing local search
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heuristics using a roulette wheel heuristic selection strategy

based on objective values generated by each heuristic

during the learning stage performed better than a naive

iterative selection strategy. The local search heuristics were

then replaced by a set of metaheuristics within the frame-

work. The cooperation of metaheuristics via the hyper-

heuristic framework works better than the use of each

individual metaheuristic for solving the problem.

McClymont and Keedwell (2011) applied a heuristic

selection method modelled as a Markov chain to a well-

known multi-objective continuous optimisation bench-

mark DTLZ. This is one of the rare studies on the

application of selection hyper-heuristics for continuous

optimisation (Kiraz et al, 2011; Köle et al, 2012) handling

multi-objectives. The proposed approach is based on a

Reinforcement Learning scheme, which maintains a set of

weighted edges representing probabilities of transitioning

from one heuristic to another. After each invocation, the

edge weights are updated based on the performance of a

heuristic. Given a set of four low-level heuristics, this

selection method was incorporated into a Evolution

Strategy framework and compared with Simple Random

and a roulette wheel heuristic selection method using a

tabu list, referred to as ‘TSRoulWheel’ in Burke et al

(2005c). The Markov chain hyper-heuristic accepted non-

dominated solutions yielding a matching performance to

the best heuristic on the benchmark instances.

4.2.3. Hyper-heuristics using heuristic selection with no

learning and non-deterministic move acceptance. In Ayob

and Kendall (2003), a set of Monte Carlo-based non-

deterministic move acceptance strategies which accept all

improving moves and some non-improving moves with a

certain probability was proposed. The authors explored a

Linear (LMC), an Exponential probability function

(EMC), and included their most sophisticated formula-

tion based on the computation time and a counter of

consecutive non-improvement iterations (EMCQ). The

EMCQ formulation is similar to that of a simulated

annealing approach (Kirkpatrick et al, 1983; Cerny, 1985).

The difference is that it does not include a temperature

parameter and thus a cooling schedule. Hyper-heuristics

combining Simple Random and {Linear, Exponential,

EMCQ} are applied to scheduling of electronic component

placement on a printed circuit board. Their performances

are compared with the combination of {Simple Random,

Choice Function} and {All Move, Only Improving} hyper-

heuristics. Simple Random-EMCQ delivered a superior

performance as compared with the hyper-heuristics using

deterministic acceptance with and without learning for the

given problem instances. Although it appears as if no

parameter tuning is necessary for Monte Carlo-based hyper-

heuristics, more instructions will be executed in a unit time

on a faster machine compared with a slower machine;

hence, Monte Carlo-based hyper-heuristics will be produ-

cing different results given the same number of iterations.

In Kendall and Mohamad (2004a), a variant of the Great

Deluge acceptance criteria (Dueck, 1993) was incorporated

within a hyper-heuristic framework. In this acceptance

strategy, at each iteration, any configuration is accepted

which is not much worse than an expected objective value,

referred to as level, which changes at a linear rate every step

from an initial towards a target objective value within

given number of iterations. Simple Random—Great

Deluge generated competitive results as compared with a

constructive heuristic and a genetic algorithm for solving

channel assignment benchmark problems, a real–world

problem from the mobile communications industry.

In another study, Kendall and Mohamad (2004b)

extended the Record-to-Record Travel acceptance criteria

of Dueck (1993) to be used in a hyper-heuristic. Any new

candidate solution is accepted which is not much worse

than the current one within a given fixed limit. A Simple

Random—Record-to-Record Travel hyper-heuristic is also

applied to benchmark instances of a channel assignment

problem. The empirical results suggest that this hyper-

heuristic is superior to using All Move, Only Improving and

EMCQmove acceptance strategies, performing comparable

to a constructive heuristic and a genetic algorithm.

A Simulated Annealing acceptance method in hyper-

heuristics was investigated in Bai and Kendall (2005). The

approach is studied on a shelf space allocation problem. In

Simulated Annealing, the improving solutions are always

accepted, and worsening moves are accepted according to

the Metropolis criterion (Kirkpatrick et al, 1983). The

temperature is decreased during the algorithm run using a

cooling schedule. The authors discuss how to compute the

relevant Simulated Annealing parameters automatically.

Different approaches are allowed to improve an initial

candidate solution that is generated by a greedy heuristic.

The results show that the Simple Random—Simulated

Annealing hyper-heuristics outperform Simple Random—

Only Improving, Simple Random—All Moves, Greedy—

Only Improving, Choice Function—All Moves, two con-

ventional simulated annealing approaches each using a

different single neighbourhood operator in all problem

instances tested. Two strategies to decide the initial

temperature are compared. One of them computes the

initial temperature as a factor of the initial objective value,

while the other one samples a set of random solutions and

makes the computation based on the largest objective

difference. The former scheme performs slightly better than

the latter one.

Antunes et al (2009) described a multi-objective Simple

Random—Simulated Annealing hyper-heuristic for solving

a power compensation problem in electricity distribution

networks. Deciding the location of network nodes and the

size of capacitors to be installed for reactive power

compensation requires two conflicting objectives to be
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achieved, namely, cost and power loss. Six low-level

heuristics are designed to make a move from one feasible

solution to another. Simulated Annealing makes its

acceptance decision based on the dominance between the

new solution and the archived solutions. The weighted sum

of two objective values is used in the acceptance probability

function whenever needed. The results indicate that this

hyper-heuristic performs slightly worse than a multi-

objective genetic algorithm.

Late Acceptance method (Burke and Bykov, 2008) is a

memory-based technique that maintains the history of

objective values from the previous solutions in a list of

given size, L. The new solution is compared with a previous

solution obtained at the Lth step and the acceptance

decision is made accordingly. Demeester et al (2012) used

Simple Random-based hyper-heuristics focusing on different

move acceptance method for examination timetabling.

Improving or Equal, Great Deluge, Simulated Annealing,

Late Acceptance and its variant, referred to as Steepest

Descent Late Acceptance, were used as move acceptance

criteria. Steepest Descent Late Acceptance first acts the same

as Only Improving for a given solution and the incumbent

solution before applying the generic Late Acceptance. The

Simple Random—Simulated Annealing hyper-heuristic im-

proved on a number of best results from the literature over

the Toronto benchmark data set and performed well over

another data set provided by the authors.

Mısır et al (2011) proposed a move acceptance method

that adaptively sets the threshold value based on history.

Simple random combined with the new acceptance

method, referred to as Adaptive Iteration Limited List-

based Threshold Acceptance (AILLA), is tested on a ready-

mixed concrete delivery problem. The performance com-

parison of AILLA, Late Acceptance, Simulated Annealing,

Great Deluge and Improving and Equal acceptance criteria

showed that AILLA and Late acceptance outperform the

rest if Simple Random is used for heuristic selection. It is

observed that if the execution time is increased, then

Simple Random—AILLA starts to outperform Simple

Random—Late Acceptance.

4.2.4. Hyper-heuristics using heuristic selection with online

learning and non-deterministic move acceptance. In

Dowsland et al (2007), a variant of Reinforcement

Learning with Tabu Search (RLTS) was hybridised with

a Simulated Annealing with Reheating move acceptance

strategy. In particular, RLTS is modified to employ a

batch learning mechanism updating the performance of a

heuristic based on the best objective value obtained after a

number of iterations at each decision point. In addition,

an undulating cooling schedule based on a geometric

function is proposed as a means to deal with the effects of

having different neighbourhood sizes (given by the pool

of low-level heuristics used).

A reheating scheme is employed after a rejected move

and the required acceptance rate is reduced periodically as

discussed in Thompson and Dowsland (1996) at every

given number of iterations. In a way, the updates of scores

for low-level heuristics in Reinforcement Learning with

Tabu Search and reductions of the acceptance rate in

Simulated Annealing with Reheating are performed

together. The proposed hyper-heuristic is applied to a

packing problem of determining shipper sizes for storage

and transportation. Real-world data from a cosmetics

company are used as a base for generating experimental

data. The Reinforcement Learning with Tabu Search—

Simulated Annealing with Reheating hyper-heuristic is

superior in performance than a simpler local search strategy

(random descent). Bai et al (2012) presented a different

hyper-heuristic scheme that was possibly inspired from the

studies provided in Burke et al (2003b), Bai and Kendall

(2005), Dowsland et al (2007). The proposed hyper-

heuristic uses a reinforcement learning mechanism with a

short-term memory as a heuristic selection component.

Each heuristic receives a weight (score) that is updated

periodically. In this study, a different Simulated Anneal-

ing with Reheating scheme is used as a move acceptance

method which executes switching between annealing and

reheating phases during the search. The proposed hyper-

heuristic is tested on nurse rostering, course timetabling

and bin packing problems and comparisons to pre-

viously proposed approaches show that it is competitive.

On the other hand, Burke et al (2010a) show that this

hyper-heuristic does not perform better than the hyper-

heuristics using {Simple Random, Greedy, Choice

Function} heuristic selection methods for examination

timetabling. This study also shows that the hyper-

heuristics based on Simulated Annealing and its reheat-

ing variant perform significantly better than the ones

based on EMCQ move acceptance.

In Pisinger and Ropke (2007), a competent unified

methodology was presented for solving different vehicle

routing problems. The proposed approach extended

the large neighbourhood search framework presented

in Shaw (1998) with an adaptive layer. This layer

adaptively chooses among a number of insertion and

removal heuristics to intensify and diversify the search,

according to scores for each heuristic accumulated

during the iterations. The hyper-heuristic combines the

adaptive heuristic selection mechanism with a standard

Simulated Annealing acceptance strategy based on a

linear cooling rate. A large number of tests were

performed on standard benchmarks from the literature

covering five variants of the vehicle routing problem.

The results proved highly promising, as the methodol-

ogy was able to improve on the best known solutions on

some instances.

Özcan et al (2009) investigated different heuristic selec-

tion methods that would perform the best in combination
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with the Late Acceptance method. The results show that

Simple Random performs the best when combined with

Late Acceptance as compared with other hyper-heuristic

approaches involving online learning. The delay within

the acceptance strategy seems to deceive the learning

mechanisms.

Bhanu and Gopalan (2008) combined a genetic algo-

rithm, and a set of its hybrids with simulated annealing,

tabu search and hill climbing, respectively under a

Greedy—Great Deluge hyper-heuristic to schedule jobs

in a grid environment. The hyper-heuristic performs better

than each individual low-level metaheuristic over a small

set of problems. Özcan et al (2010) showed that

Reinforcement Learning—Great-Deluge and Simple Ran-

dom—Late Acceptance were promising hyper-heuristics

for solving the Toronto and Yeditepe examination time-

tabling problems.

Mısır et al (2009) introduced a hyper-heuristic

combining a simple heuristic selection method based

on a learning automaton. This method updates the

probabilities of each low-level heuristic being chosen in

an online manner and utilises a new move acceptance

method, namely; Iteration Limited Threshold Accepting

(ILTA). The experiments over a set of Traveling

Tournament Problem instances from the US National

League Baseball and the Super 14 Rugby League

delivered promising performance. A two-phase hyper-

heuristic based on ILTA was applied to the Eternity II

puzzle yielding successful results (Vancroonenburg

et al, 2010).

Mısır et al (2010) describe a tabu-based learning strategy

to reduce the number of low-level heuristics for a

number of phases using a quality index (QI) for each

low-level heuristic (where 1pQIpnumber-of-heuristics).

QI reflects the quality of a heuristic at a phase and helps

to compare performance differences and a low-level

heuristic is selected randomly from the reduced set. The

authors also introduce an adaptive variant of ILTA as a

new move acceptance strategy. The resultant hyper-

heuristic managing six perturbative heuristics performs

better than Simple Random—Improving and Equal for

home care scheduling.

Blazewicz et al (2011) studied Choice Function and

Reinforcement Learning-based selection hyper-heuristics

and their variants to predict DNA sequences. A set of low-

level heuristics were defined that manipulate a given DNA

sequence via insertion, deletion, swap and shift operations.

Simulated Annealing and Accept All Moves were used as

the move acceptance criteria. Using a base set of six low-

level heuristics, Roulette Wheel-based Selection—Simu-

lated Annealing outperformed all other hyper-heuristics.

The tests were performed using different sets of low-level

heuristics. The learning hyper-heuristics delivered similar

performance to bespoke metaheuristics from the literature

for DNA sequencing.

4.2.5. Other studies on selection hyper-heuristics. There

are an increasing number of comparison studies on hyper-

heuristics illustrating their success on different problem

domains. After experimenting with 35 hyper-heuristics,

Bilgin et al (2006) reported that although none of the

hyper-heuristics dominated the others for benchmark

function optimisation. According to the empirical results,

Choice Function—Improving and Equal produces a

slightly better mean performance. Moreover, Choice

Function—Simulated Annealing and Simple Random—

Great Deluge produce better quality solutions for exam

timetabling. Özcan et al (2006) investigated the perfor-

mance of different hyper-heuristic frameworks over a set

of benchmark functions. The low-level heuristics are

classified as either a hill climber (meme) that aims to

generate an improved solution or a mutational heuristic

that perturbs a candidate solution without considering

whether the resulting solution will be improved or not. In

this study, three alternative iterated local search inspired

hyper-heuristic frameworks to the standard framework

are proposed, which separate and enforce the hill-

climbing process explicitly and deliver promising perfor-

mances. The success of a hyper-heuristic based on a

framework distinguishing between mutational and hill

climbing heuristics is also confirmed across different

problem domains in later studies (Burke et al, 2010b;

Berberoğlu and Uyar, 2010). Özcan et al (2008) extended

the studies in Bilgin et al (2006) and Özcan et al (2006)

and illustrated that the choice of hill climber affected the

performances of the relevant frameworks. Choice Func-

tion—Improving and Equal based on a general iterated

local search framework with multiple perturbative neigh-

bourhood operators and a prefixed hill climber performs

well and its performance is similar to a generic memetic

algorithm. The experimental results show that a memetic

algorithm embedding a Simple Random—Improving and

Equal hyper-heuristic, which is categorised as a static

external-level adaptation mechanism in Ong et al (2006),

also delivers a good performance. More on memetic

algorithms utilising hyper-heuristics to choose hill clim-

bers can be found in Ersoy et al (2007). Bai et al (2008)

studied the performance of a set of fast approaches for

solving a fresh produce inventory and shelf space

allocation problem and compares against a variety of

approaches (Bai and Kendall, 2008). The empirical results

show that the Simulated Annealing-based hyper-heuris-

tics perform better than Reinforcement Learning with

Tabu Search—All Moves and they deliver a similar

performance to a generic simulated annealing approach

and GRASP (Feo and Resende, 1995). Gibbs et al (2010)

reported that Reinforcement learning heuristic selection

performed well in combination with Great Deluge and

Simulated Annealing for producing a football fixture

schedule for the holiday periods. On the other hand,

Berberoglu and Uyar (2011) compared the performance
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of 24 learning and non-learning selection hyper-heuristics

managing seven mutational and hill-climbing heuristics

on a short-term electrical power generation scheduling

problem. Random Permutation Descent—Only Improv-

ing performed the best on this problem.

In order to generate better learning schemes that will

improve the decision-making process during heuristic

selection, one should always remember that a learning

process involves memory. Memory length can be handled

in different ways. For example, the scores for low-level

heuristics are updated based on the entire historical

information in Burke et al (2003b) and Dowsland et al

(2007). On the other hand, the minimum and maximum

scores are bounded in Nareyek (2003). This approach

serves as some type of a forgetting mechanism for

successive improving or non-improving moves. The

empirical study carried out in Bai et al (2007) on university

course timetabling shows that hyper-heuristics using a

short-term memory produce better results than both an

algorithm without memory and an algorithm with infinite

memory. The memory length is found to be sensitive to

different problem instances.

There is a growing number of studies on multi-point

(population)-based hyper-heuristics. These hyper-heuristics

are either existing metaheuristics or used in/for cooperative

search. In Cowling et al (2002b), an indirect genetic

algorithm for solving a personnel scheduling problem was

proposed. The approach can be regarded as a hyper-

heuristic that uses a GA as the heuristic selection

mechanism. Han and Kendall (2003) extend this study

with adaptive length chromosomes and guided operators,

producing promising results on the trainer scheduling

problem when compared with both a direct encoding

genetic algorithm and a memetic algorithm.

The ant colony algorithm was used as a hyper-heuristic

in Burke et al (2005b) and Chen et al (2007) to address a

personnel scheduling and a sports timetabling problem,

respectively, with promising results. Similarly, Ren et al

(2010) discussed an ant-based hyper-heuristic for solving

the p-median problem. Different type of frameworks have

been proposed to enable the use of multi-point-based

search methods. For example, Vrugt and Robinson (2007)

introduced the AMALGAM approach for continuous

multi-objective optimisation that manages a set of popula-

tion-based multi-objective approaches while producing a

new population of solutions yielding an improved perfor-

mance, eventually. The number of new solutions produced

by each low-level approach is decided proportional to the

percentage of previously created individuals that remains

in the working population at each stage.

Cobos et al (2011) mixed different variants of evolu-

tionary approaches for document clustering and tested

different heuristic selection and move acceptance methods

under a multi-point-based search framework. One of the

initial studies hybridising generation and selection of

heuristics was provided by Kampouridis et al (2012).

In this study, a genetic programming approach is used

to create decision trees for financial forecasting in order

to make decisions whether to buy or not. During the

multi-stage evolutionary process, the candidate solu-

tions are improved through a reinforcement learning-

based hyper-heuristic that manage a set of perturbative

low-level heuristics.

Grobler et al (2012) mixed a set of metaheuristics

including a genetic algorithm, particle swarm optimisation

variants, CMA-ES and variants of differential evolution

under a hyper-heuristic framework. The authors investi-

gated different ways of employing local search in

combination with those low-level heuristics over a set of

benchmark functions.

Tsai et al (2012) presented a simple random-based hyper-

heuristic framework which is able to mix single and multi-

point-based metaheuristics for data clustering.

Crainic and Toulouse (2003) classified cooperative search

methods as type 3 parallel strategies that allowed multiple

search methodologies to guide the search process via

information sharing in a multi-thread environment. These

strategies can be thought of as parallel/distributed hyper-

heuristics which have been increasingly used to combine

multiple low-level (meta-)heuristics.

Biazzini et al (2009) combine several algorithms for

numerical optimisation such as differential evolution and

random search in a distributed framework in an island

model.

Meignan et al (2010) presented a self-adaptive and

distributed approach based on agents and hyper-heuristics.

Several agents concurrently explore the search space using

a set of operators. The approach is applied to vehicle

routing.

Ouelhadj and Petrovic (2010) proposed an agent-based

cooperative hyper-heuristic framework composed of a

population of heuristic agents and a cooperative hyper-

heuristic agent. Computational experiments on a set of

permutation flow shop benchmark instances illustrated the

superior performance of the cooperative hyper-heuristic

framework over sequential hyper-heuristics.

Dynamic environment problems represent a challenging

set of problems in which the environment changes over

time during the search process. Successful approaches

are highly adaptive and can react rapidly whenever a

change occurs (Branke, 2002; Cruz et al, 2011). Kiraz

and Topcuoglu (2010) hybridised an evolutionary algo-

rithm with a selection hyper-heuristic for solving

dynamic generalised assignment problem. Kiraz et al

(2011) experimented with hyper-heuristics using different

heuristic selection methods on moving peaks benchmark.

Choice Function—Improving and Equal performed the

best managing seven parameterised Gaussian-based

mutation operators across a variety of change scenarios.

Köle et al (2012) showed that Simple Random choice is a
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viable strategy if the environment changes fast and there

is noise on The Open Racing Car Simulator (TORCS).

Uludag et al (2012) presented a framework hybridising

Estimation Distribution Algorithms and hyper-heuristics

for solving discrete dynamic environment problems. This

approach uses multi-population combining offline and

online learning to deal with random as well as cyclic

dynamic environments.

4.2.6. The HyFlex benchmark framework and the Cross

Domain Heuristic Challenge (CHeSC) 2011. HyFlex

(Hyper-heuristic Flexible framework) (Ochoa et al, 2012a)

is a software framework for the development of hyper-

heuristics and cross-domain search methodologies. The

framework features a common software interface for

dealing with different combinatorial optimisation pro-

blems, and provides the algorithm components that are

problem specific. In this way, the algorithm designer does

not require a detailed knowledge of the problem domains,

and thus can concentrate his/her efforts on designing

adaptive general-purpose optimisation algorithms. In an

initial implementation, HyFlex provided four combina-

torial problems implemented in Java, namely: boolean

satisfiability, one-dimensional bin packing, permutation

flow shop and personnel scheduling, including for each

problem a set of heuristic/search operators, initialisation

routines. These four domains represented the training

benchmark that supported an international research

competition: the first Cross-Domain Heuristic Search

Challenge (Ochoa and Hyde, 2011) that attracted sig-

nificant international attention. The challenge is analo-

gous to the athletics Decathlon event, where the goal is

not to excel in one event at the expense of others, but to

have a good general performance on each. Competitors

submitted one Java class file using HyFlex representing

their hyper-heuristic or high-level search strategy. This

ensures that the competition is fair, because all of the

competitors must use the same problem representation

and search operators. Moreover, due to the common

interface, the competition considered not only hidden

instances, but also two hidden domains. Two additional

domains were later implemented, namely: the travelling

salesman and vehicle routing problems. The competing

algorithms were compared (on both the training and

hidden domains) and ranked using a simple point mech-

anism inspired by the Formula 1 scoring system. More

details about the competition scoring system, experimen-

tal setting, and best performing algorithms can be found

in Ochoa et al (2012a).

We give here a brief overview of publications so far

based on the HyFlex framework and using the CHeSC

2011 benchmark software. The first article implementing

hyper-heuristics using HyFlex was published in 2010

(Burke et al, 2010b), where several hyper-heuristics

combining two heuristic selection mechanism and three

acceptance criteria were compared. A multiple neighbour-

hood iterated local search was also implemented and found

to outperform the other approaches as a general optimiser.

This iterated local search hyper-heuristic contains a

perturbation stage, during which a neighborhood move is

selected uniformly at random (from the available pool of

mutation and ruin-recreate heuristics) and applied to the

incumbent solution, followed by a greedy improvement

stage (using all the local search heuristics). The approach is

extended in Burke et al (2011a) by substituting the uniform

random selection of neighbourhoods in the perturbation

stage by online learning strategies, significantly improving

the performance. This implementation was the best

performing hyper-heuristic before the competition started.

Özcan and Kheiri (2011) implemented a multi-stage

hyper-heuristic, combining a greedy stage with a random

descent stage, followed by a simple solution acceptance

mechanism. This relatively simple approach produces very

good results when compared with previous HyFlex hyper-

heuristics (before the competition).

Walker et al (2012) describe in detail the design of one of

the CHeSC 2011 hidden domains, namely the vehicle

routing problem with time windows. The article also

implements a new multiple neighbourhood iterated local

search algorithm that includes adaptive mechanisms for

both the perturbation and improvement stages. This

implementation outperformed all the CHeSC competitors

in the vehicle routing domain.

Drake et al (2012) describe a variant of the choice

function heuristic selection with a simple new initialisation

and update scheme for the weights of diversification and

intensification.This approach ranks the 20th while its

modified version ranks the 12th among the hyper-heuristics

proposed by the CHeSC competitors (emphasising the

importance of tuning).

Mısır et al (2012) implement an approach including

two stages: heuristic selection and solution acceptance.

Heuristic selection is done by learning dynamic heuristic

sets, and effective pairs of heuristics. The algorithm also

incorporates adaptation of the heuristic parameters, and an

adaptive threshold acceptance. This approach was the

winner of the CHeSC competition.

Ping-Che et al (2012) implement a variable neighbour-

hood search algorithm that orders perturbation heuristics

according to strength. It includes two stages: diversification

and intensification and incorporates adaptive techniques to

adjust the strength of the local search heuristics. This

approach obtained the second place in the competition.

Chan et al (2012) implement a hyper-heuristic that can

assemble different iterated local search algorithms. The

authors use the metaphor of pearl hunting; there is a

diversification stage (surface and change target area) and

an intensification stage (dive and find pearl oysters). The

algorithm also uses offline learning to identify search
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modes. This approach obtained the fourth place in the

competition, and, interestingly, was able to find new best-

known solutions for the personnel scheduling problem

(Ochoa et al, 2012a).

Gaspero and Urli (2012) used reinforcement learning for

heuristic selection and explored several variants for the

rewards, policy and learning functions. Different ways of

modelling the agents’ states and actions were also explored.

Ochoa et al (2012b) present a number of extensions to

the HyFlex framework that enable the design of more

effective adaptive heuristics. The article also demonstrates

that adaptive evolutionary algorithms can be implemented

within the framework, and that the use of crossover and a

diversity metric produced improved results, including a

new best-known solution on the studied vehicle routing

problem.

Another software framework, Hyperion, was proposed

in Swan et al (2011) that provides a general recursive

framework supporting the development of any type of

(meta-)heuristic, selection hyper-heuristic and their

hybrids.

4.2.7. Summary and discussion. Most of the existing

hyper-heuristics to select perturbative heuristics are

designed based on a single point search framework.

Initial studies concentrate on utilising different mechan-

isms to manage a set of low-level heuristics. As hyper-

heuristics were initially defined as ‘heuristics to choose

heuristics’, almost no emphasis is given to the acceptance

mechanisms during these initial studies. Later, it has been

observed that by using more sophisticated move accep-

tance criteria, the performance can be improved substan-

tially. After the initial studies, there has been a rapid

growth in the usage of well-known acceptance methods in

different hyper-heuristic frameworks. A range of heuristic

selection methods have been investigated such as the

Choice Function (Cowling et al, 2000, 2002c) and

reinforcement learning variants (Nareyek, 2003; Burke

et al, 2003b; Dowsland et al, 2007; Gibbs et al, 2010;

Mỳsỳr et al, 2010). Simulated annealing (Bai and Kendall,

2005; Bilgin et al, 2006; Dowsland et al, 2007; Bai et al,

2012), late acceptance (Özcan et al, 2009; Demeester et al,

2012) and variants of threshold acceptance (Kendall and

Mohamad, 2004a; Bilgin et al, 2006; Mısır et al, 2009;

Özcan et al, 2009; Mısır et al, 2011) turn out to be

appropriate choices as move acceptance components to be

used within hyper-heuristics to select perturbative heur-

istics. It appears that the choice of move acceptance

component is slightly more important than the choice of

heuristic selection.

In order to observe how well the proposed hyper-

heuristics generalise, they need to be applied to several

problem domains. We can expect more comparative

studies in the future. One of the goals of hyper-heuristic

research is raising the level of generality. In this context, it

is often the case that a hyper-heuristic does not aim to

outperform a custom-made solver for a given problem.

In such an environment, applicability over a wide range

of problem domains is more crucial. For this reason,

comparison measures across different problems are of

interest. Selection hyper-heuristics are highly adaptive

search methodologies. There is strong empirical evidence

that they can handle not only static optimisation problems,

but also dynamic environments (Kiraz and Topcuoglu,

2010; Kiraz et al, 2011; Uludag et al, 2012). There is a vast

literature on dynamic environments. Both communities

can benefit from interaction. The current studies attempt to

bring hyper-heuristics into dynamic environments, while

the use of existing techniques in the field of dynamic

environments would also be beneficial in the development

of adaptive selection hyper-heuristics.

The theoretical study on selection hyper-heuristics is

extremely limited. In a recent study by He et al (2012), a

theoretical comparison was performed between a pure

strategy using a single mutation operator and a mixed

strategy using multiple mutation operators within the

framework of (1þ 1) EA based on a performance measure,

referred to as asymptotic hitting time. The authors showed

that the asymptotic hitting time of the (1þ 1) EA with a

mixed strategy using a set of mutation operators based on

a prefixed distribution is not worse than the (1þ 1) EA

with the worst pure strategy using a single operator from

that set. This type of studies is important for bridging the

gap between theory and practice. It is crucial to have

theoretical support motivating the development of selec-

tion hyper-heuristics.

CHeSC 2011 set an interesting benchmark for selection

hyper-heuristics. We expect that there will be more studies

on hyper-heuristics extending the features of the interface

and even introducing new benchmarks based on HyFlex

(Ochoa et al, 2012a) and Hyperion (Swan et al, 2011).

5. Heuristic generation methodologies

The previous section covered heuristic selection methodol-

ogies. In contrast, this section will review another class of

hyper-heuristics: heuristic generation methodologies. The

defining feature of this class is that the hyper-heuristic

searches a space of heuristics constructed from components

rather than a space of complete, pre-defined, heuristics.

While both classes output a solution at the end of a run, a

heuristic generator also outputs the new heuristic that

produced the solution, and this heuristic can be potentially

reused on new problem instances.

Genetic programming (Koza, 1992; Koza and Poli, 2005)

is an evolutionary computation technique that evolves a

population of computer programs, and is the most common

methodology used in the literature to automatically
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generate heuristics. In the case that the evolved programs

are heuristics, genetic programming can be viewed as a

hyper-heuristic to generate heuristics. However, genetic

programming is not inherently a hyper-heuristic, as the

evolved programs can also directly represent problem

solutions. For example, in symbolic regression, the solution

is a formula, and the ‘programs’ in the population are

candidate formulas, which are not used as heuristics. As

another example, genetic programming can be employed to

evolve programs which construct the design of artefacts

such as bridges, circuits, and lenses. These programs are not

heuristics, but a series of deterministic instructions.

Automatically generated heuristics may be ‘disposable’

in the sense that they are created for just one problem, and

are not intended for use on unseen problems. This

terminology was first used by Bader-El-Den and Poli

(2007). Alternatively, the heuristic may be created for the

purpose of reusing it on new unseen problems of a certain

class. It is generally the case that all heuristics generated by

a hyper-heuristic can technically be defined as reusable, as

they can be applied to a new instance to produce a legal

solution. However, they may not perform well on new

instances if the particular hyper-heuristic methodology has

not been designed with reusability in mind. For a generated

heuristic to be successful when reused, the hyper-heuristic

would usually train it offline, on a set of representative

problem instances.

There are a number of potential advantages of

automatically generating heuristics. The characteristics of

problem instances vary, and obtaining the best possible

result for an instance would ideally require a new heuristic

specialised to that instance, or a specialised variation of a

previously created heuristic. It is inefficient for a human

analyst to specialise heuristics on a per-instance basis. As

such, human created heuristics are rarely successful on only

one problem instance; they are usually designed to be

effective on a given class of problems. In contrast, an

automated heuristic design process makes it potentially

feasible and cost effective to design a heuristic for each

problem instance. As the process is automated, it is less

demanding on human resources and time. As it is more

specialised, a generated heuristic could even produce a

better solution than that which can be obtained by any

current human-created heuristic, and many such examples

are discussed in this section.

For example, ‘best-fit’ is a human-created heuristic for

one-dimensional bin packing, which performs well on a

wide range of bin packing instances. It was created as a

general heuristic for all bin packing problems, and no

heuristic is superior in both the average and worst case

(Kenyon, 1996). However, over a narrower set of bin

packing problems with piece sizes defined over a certain

distribution, best-fit can be outperformed by automatically

generated heuristics which are ‘tailored’ to the distribution

of piece sizes (Burke et al, 2007b).

Table 3 presents a summary of papers that involve the

automatic generation of heuristics. The rest of the

section is organised by application area as follows:

production scheduling (Section 5.1), cutting and packing

(Section 5.2), SAT (Section 5.3), the travelling salesman

problem (Section 5.4), and timetabling and scheduling

(Section 5.5). These are the domains most widely studied

in the literature. A summarising discussion is provided in

Section 5.6.

Table 3 Application domains of heuristic generation meth-
odologies

Application domain References

Production scheduling Jakobovic et al (2007)
Ho and Tay (2005)
Tay and Ho (2008)
Dimopoulos and Zalzala (2001)
Geiger et al (2006)

Cutting and packing Burke et al (2006a, 2007a, b)
Poli et al (2007)
Kumar et al (2008)
Allen et al (2009)
Burke et al (2010c, e, 2011b)
Özcan and Parkes (2011)
Burke et al (2012)
Sim et al (2012)

Satisfiability Fukunaga (2002, 2004, 2008)
Bader-El-Den and Poli
(2007, 2008)
Lokketangen and Olsson (2010)

Travelling salesman problem Keller and Poli (2007a, b,
2008a, b, c)
Oltean and Dumitrescu (2004)
Runka (2009)

Function optimisation Oltean (2005)
Oltean and Grosan (2003)
Tavares et al (2004)

Timetabling and scheduling Pillay (2009)
Bader-El-Den et al (2009)

Additional domains Drechsler and Becker (1995)
Drechsler et al (1996)
Minton (1996)
Schmiedle et al (2002)
Stephenson et al (2003)
Oltean and Grosan (2003)
Tavares et al (2004)
Oltean (2005)
DiGaspero and Schaerf (2007)
Kumar et al (2009)
Pappa and Freitas (2009)
Nguyen et al (2011)
Elyasaf et al (2012)
van Lon et al (2012)
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5.1. Production scheduling

Genetic programming has rarely been used to solve

production scheduling instances directly, because of the

difficulty of encoding solutions. However, it is highly

suitable for encoding scheduling heuristics (Jakobovic et al,

2007). The evolution of dispatching rules is the most

common application of hyper-heuristics in this domain.

Ho and Tay (2005) and Tay and Ho (2008) employ

genetic programming to evolve composite dispatching rules

for the flexible job shop scheduling problem. Jakobovic

et al (2007) employ a similar technique for the parallel

machine scheduling problem. The evolved dispatching

rules are functions, which assign a score to a job based

on the state of the problem. When a machine becomes idle,

the dispatching rule function is evaluated once for each job

in the machine’s queue, and each result is assigned to the

job as its score. The job in the queue with the highest score

is the next job to be assigned to the machine.

The hyper-heuristic combines components from pre-

viously published dispatching rules. The results obtained

by the best evolved dispatching rule are better on over 85%

of the instances. This shows that genetic programming can

combine and rearrange heuristic components to create

heuristics superior to those which have been created by

humans. Importantly, the heuristics are shown to be

reusable on new problem instances because an appropriate

training set is used to train them during their evolution.

Dimopoulos and Zalzala (2001) evolve priority dispatch-

ing rules for the single machine scheduling problem to

minimise the total tardiness of jobs. The component set is

based on the human designed ‘Montagne’ dispatching rule,

and contains five elements, representing both global and

local job information. While the component sets are

relatively simple, the system evolves heuristics superior to

the Montagne, ADD, and SPT heuristics.

Geiger et al (2006) also employ genetic programming to

evolve dispatching rules for single machine problems. The

component sets are expanded from that presented by Ho

and Tay (2005) and Dimopoulos and Zalzala (2001).

Human competitive heuristics are produced under a variety

of scheduling conditions, often replicating the human-

created heuristics for the problems. The system also

obtains human-competitive results on a two-machine flow-

shop problem, where a unique dispatching rule is evolved

for each machine simultaneously.

5.2. Cutting and packing

Burke et al (2006a, 2007a, b) employ a genetic program-

ming hyper-heuristic methodology to generate heuristics

for one-dimensional bin packing. The heuristics generated

by this system are functions consisting of arithmetic

operators and properties of the pieces and bins. The

heuristics operate within a fixed framework that packs the

pieces of an instance one at a time. For each piece in turn,

the framework iterates through all of the bins, executing

the heuristic function once for each. The heuristic returns a

value for each bin. The bin that receives the highest value is

the one into which the piece is placed (Burke et al, 2007b).

These heuristics maintain their performance on new

instances much larger than the training set in Burke et al

(2007a). This work shows that there is a trade-off between

the time taken to evolve a heuristic on larger instances, and

the heuristic’s scalability. Burke et al (2010c) extend this

work by adding a memory component to the genetic

programming system. It maintains a record of the pieces

that have been seen so far during the packing process. The

results show that the GP evolves heuristics which use this

component, and that those heuristics perform better

because of it.

Poli et al (2007) also employ genetic programming to

evolve heuristics for one-dimensional bin packing. The

structure within which their heuristics operate is based on

matching the piece size histogram to the bin gap histogram,

and is motivated by the observation that space is wasted if,

when placing a piece into a bin, the remaining space is

smaller than the size of the smallest piece still to be packed.

Constructive heuristics for the two-dimensional strip

packing problem have been evolved with genetic program-

ming in Burke et al (2010e), which are competitive with the

best human-created constructive heuristic in the literature.

In contrast to their previous work on one-dimensional bin

packing, the heuristics operate on the offline problem. The

heuristics choose the most appropriate piece to pack next,

and where to place it in the solution.

Allen et al (2009) evolve heuristics for three-dimensional

knapsack packing. Their performance is compared with the

human-created best-fit heuristic and a simulated annealing

methodology. While the evolved heuristics are worse than

best-fit on most instances, they are competitive with the

simulated annealing method. Burke et al (2011b) extend

this work by representing one- and two-dimensional

packing problems as three-dimensional problems, and

therefore creating a system which can evolve heuristics

for packing problems of all dimensions. It remains an open

question as to how to automatically generate 3D packing

heuristics which maintain their performance on new

problems. The literature shows that it is often the case

that automatically designed heuristics can only be relied

upon to maintain their performance on new instances of

the same problem class as they were evolved on. Therefore,

a possible reason for the difficulties in the 3D packing

domain could be that it is more difficult to define classes of

instances, as problem instances are generally very diverse.

Benchmark classes of instances exist, but within each class

the instances may not share characteristics which allow one

heuristic to specialise on that class.

Hyper-heuristics that generate heuristics for combina-

torial optimisation problems often generate constructive
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heuristics. This is by far the most common format,

especially for cutting and packing problems. The other

alternative is to generate local search heuristics, which start

with a complete solution and iteratively improve it. There

are many choices to make when designing a local search

algorithm, and among the most important is the neigh-

bourhood move operator. The work of Burke et al (2012)

shows that the space of neighbourhood move operators

can be specified by a grammar, and high-quality operators

can be evolved using a grammatical evolution technique.

Recent work by Kumar et al (2008) presents a genetic

programming system that evolves heuristics for the

biobjective knapsack problem. This is the first paper in

which heuristics for a multiobjective problem have been

automatically generated with a hyper-heuristic. To pack a

knapsack instance, an evolved heuristic iterates through

the list of pieces still to be packed, and is evaluated on

each, using the profit and weight of the piece as inputs.

When an evaluation returns a value of greater than or

equal to one, then the iteration stops and that piece is

packed. This is similar to the bin packing methodology of

Burke et al (2006a), as it uses a threshold to make a

decision, before all of the options have been evaluated.

Özcan and Parkes (2011) introduce a matrix representa-

tion of policies (heuristics). An offline learning genetic

algorithm using this efficient representation created con-

structive heuristics that outperformed human designed

heuristics for online bin packing.

Sim et al (2012) present a methodology to generate a

selection hyper-heuristic (See section 4.1) for the one-

dimensional bin packing problem. The idea is to auto-

matically design a selection mechanism which will choose

the correct heuristic for the characteristics of a given

problem instance. An evolutionary algorithm is employed

to evolve combinations of problem characteristics which

are similar to those used previously by Ross et al (2002).

The advantage of automatic generation in this case is to

evolve characteristics that are actually relevant to the

performance of the heuristics, and the results corroborate

other studies which show that selecting from a set of

heuristics produces better results than any one heuristic

used in isolation.

5.3. Boolean satisfiability (SAT)

Fukunaga presents ‘CLASS’ (Composite Learned Algo-

rithms for SAT Search), an automated heuristic discovery

system for the SAT problem. Earlier papers by Fukunaga

(2002, 2004) represent the initial work, while much more

analysis is given in Fukunaga (2008). SAT is a domain

where the most successful heuristics from the literature

have a similar structure. Indeed, better heuristics have been

created simply by adding a ‘random walk’ element to an

existing heuristic. Fukunaga has broken this structure

down into component parts, and the CLASS system is a

genetic programming methodology used to evolve human

competitive heuristics consisting of these components.

Among others, there are some components which supply

a set of variables, some of which select a variable from such

a set, and some which make use of conditions to decide

which subset of components to execute. Fukunaga (2008)

shows that certain human-created heuristics from the

literature, such as GWSAT and WalkSAT, can be

represented with this component set. Fukunaga states that,

because of the number of possibilities involved, the task of

combining the components to create effective new heur-

istics is difficult for humans, but well suited for an

automated system.

Fukunaga (2002, 2004, 2008) does not employ the

genetic programming operators of crossover and mutation

in their standard form. Instead of standard crossover,

individuals are combined with a conditional operator,

which keeps the original individuals intact and ‘blends’

their behaviour. If the condition is met, one individual is

executed, else the other is executed.

Bader-El-Den and Poli (2007) observe that this results in

heuristics consisting of other nested heuristics. The

heuristics are composites of those in early generations,

and are therefore relatively slow to execute. Bader-El-Den

and Poli present a different heuristic generation methodol-

ogy for SAT, which makes use of traditional crossover and

mutation operators to produce heuristics which are more

parsimonious, and faster to execute. A grammar is defined,

which can express four existing human-created heuristics,

and allows significant flexibility to create completely new

heuristics.

ADATE is a methodology that generates code in a

subset of the functional programming language ML.

Lokketangen and Olsson (2010) show how this technique

can be utilised to automatically generate metaheuristic

code. They apply the methodology to the boolean

optimisation problem (BOOP). They begin with an ML

implementation of a tabu-search metaheuristic from the

literature, and ADATE modifies the section of the code

that decides which variable to flip next. This is an example

of a common methodology to begin with an existing

algorithm as a template, and allow the automatic code

generator to modify the ‘heuristic’ sections of the algorithm

which make the decisions during a search.

5.4. Travelling salesman problem

Keller and Poli (2007b) present a linear genetic program-

ming hyper-heuristic for the travelling salesman problem.

The hyper-heuristic evolves programs that represent the

repeated application of a number of simple local search

operations. The programs are sentences of a language

defined by a grammar, and the grammar is progressively

made more complex over a series of papers, including
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conditional components and loops (Keller and Poli, 2007a,

2008a, b, c).

Also for the travelling salesman problem, Oltean and

Dumitrescu (2004) evolve constructive heuristics, as

opposed to the local search heuristics evolved by Keller

and Poli (2007b). They use multi-expression programming

to evolve functions that decide which node of the graph to

add to the tour. This is another example of the common

technique of evolving a scoring function which operates

within a fixed iterative framework (such examples have

been discussed in Sections 5.1, 5.2, and 5.3). The decision-

maker is evolved, but the context within which the decision

is made remains fixed. In general, at each decision point,

the function is evaluated on all available options to obtain

a score for each. The option with the highest score is the

one that is actually performed on the partial solution. In

this case, Oltean and Dumitrescu (2004) apply the

candidate function to all of the cities that are not yet

included in the partial tour, and the one which receives the

highest score from the function is added to the tour.

One general methodology for automatically generating

heuristics is to evolve a fundamental part of an existing

metaheuristic search algorithm. This has the potential to

produce a much better variation of the original human-

designed algorithm. Runka (2009) presents such a system

for evolving the edge selection formula of an ant colony

optimisation algorithm. While the evolved formulae were

tested on only two unseen travelling salesman problem

instances, the results were better than the original human-

designed formula.

5.5. Timetabling and scheduling

A grammar-based genetic programming system is pre-

sented by Bader-El-Den et al (2009) for the exam

timetabling problem. The grammar contains elements of

graph colouring heuristics and slot allocation heuristics,

and a sentence in this grammar represents a new heuristic

for constructing a timetable. The results returned by the

evolved heuristics are comparable with a range of human-

created search methodologies from the literature. The

system is presented as an online learning methodology, as it

is not shown whether these evolved heuristics are successful

when reused on new problem instances.

The exam timetabling approach of Pillay (2009) evolves

a heuristic to order exams. A sorting algorithm, such as

quicksort, has a comparator which decides if one element

should be ahead of another in the list, and then it is applied

to as many pairs of elements as is necessary to create the

ordering based on that comparator. Pillay uses strongly

typed genetic programming to evolve the comparator of

two elements, which in this case are exams. The com-

parator has a tree structure consisting of standard graph

colouring indicators such as largest weighted degree and

saturation degree of the two exams, and logic operators

such as ‘less than’ and ‘not equal to’. After sorting, the

exam that appears at the head of the queue is scheduled

next.

5.6. Summary and discussion

This section presents a summary of the literature on

heuristic generation methodologies. Investigations have been

undertaken on a wide variety of optimisation problems,

which have relied on human-generated heuristics thus far.

The literature shows that, typically, evolutionary computa-

tion methods are employed to automatically generate

heuristics, which are reusable on new problem instances.

A heuristic generation process is often computationally

expensive when compared with a methodology that

operates directly on the solution space. However, this is

only a disadvantage in the short term, when results will not

be required for future problems. Consider the application

of an evolutionary algorithm directly to the problem space.

The output is just the solution to the instance, and the

entire evolutionary algorithm must be run again if a

solution is required for future problems. If the evolutionary

process is employed instead as a hyper-heuristic, to

generate a quick reusable heuristic, then only one run of

the evolution is required. The evolved heuristic can then

obtain a comparable result on the future problems, much

more quickly than the application of an evolutionary

algorithm. This is one of the main benefits of searching for

a solution method rather than just searching for a solution.

While the evolution process is computationally expen-

sive, it is often quicker than manual heuristic generation.

For example, Geiger et al (2006) state that production

scheduling heuristics from the literature are the result of

years of scheduling research, and the identical evolved

heuristic rules are generated within a fraction of this time.

This illustrates one of the main motivations for auto-

matically generating heuristics.

However, the potential components of the evolved

heuristics must still be defined by humans, and the consensus

from current research seems to be that the set of components

will be different for each problem domain. Research in this

new area of automatic heuristic generation shows that it is

not yet able to completely replace human ingenuity, as it can

be argued that successful sets of components are inspired by

the literature on human-created heuristics. As Fukunaga

(2008) states, humans are able to invent good building

blocks, and the literature does show that hyper-heuristic

methodologies have been able to successfully combine these

human-defined building blocks in superior ways.

6. Related areas

Heuristic search is widely studied in Operational Research,

Computer Science and Artificial Intelligence. A promising
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direction for developing improved search techniques is to

integrate learning components that can adaptively guide

the search. Many techniques have independently arisen in

recent years that exploit either some form of learning, or

search on a configuration space, to improve problem-

solving and decision-making. We briefly overview some of

these approaches below, categorising them between offline

and online approaches.

6.1. Offline approaches

Algorithm configuration: Is concerned with determining the

appropriate values for algorithm parameters. It is com-

monly treated as an optimisation problem (and therefore

as a search problem in a configuration space), where the

objective function captures performance on a fixed set of

benchmark instances (Hutter et al, 2007). Depending on

the number and type of parameters, the methods used to

solve this optimisation problem include exhaustive enu-

meration, beam search (Minton, 1996), experimental

design (Ridge and Kudenko, 2007), the application of

racing algorithms (Birattar, 2005), combinations of frac-

tional experimental design and local search (Adenso-Diaz

and Laguna, 2006), and iterated local search (Hutter et al,

2009).

Meta-learning for algorithm selection: The algorithmic

selection problem was formulated by Rice (1976) as:Which

algorithm is likely to perform best for my problem?

Recognising this problem as a learning task, the machine

learning community developed meta-learning approaches

mainly to learn about classification. The generalisation of

meta-learning concepts to constraint satisfaction and

optimisation as discussed in Smith-Miles (2008b) is closely

related to hyper-heuristic research. Examples of these

generalisations can be found in Operational Research

(Smith-Miles, 2008a) and Artificial Intelligence (Horvitz

et al, 2001).

6.2. Online approaches

Parameter control in evolutionary algorithms: A different

approach to algorithm configuration, also called para-

meter control, is the idea of tuning algorithm parameters

online at execution time. These approaches were already

discussed in Section 2. In Eiben et al (1999), a useful and

widely accepted classification of mechanisms for para-

meter control is proposed, together with a detailed

literature survey of work to date in this topic within

evolutionary algorithms. More recent surveys and over-

views of the state-of-the-art can be found in Eiben et al

(2007) and Lobo et al (2007).

Adaptive memetic algorithms: Another approach closely

related to heuristic selection based on perturbative

heuristics is that of adaptive memetic algorithms, a breed

of hybrid evolutionary algorithms, in which several memes

(or local searchers) are available and adaptively selected

(or generated altogether) during the search (Krasnogor and

Smith, 2000; Krasnogor and Gustafson, 2004; Ong and

Keane, 2004; Jakob, 2006; Ong et al, 2006). Ong et al

(2006) present a useful classification of memes adaptation

in memetic algorithms based on the widely accepted

terminology proposed in Eiben et al (1999). As discussed

in Smith (2008), self-adaptation ideas have been applied to

memetic algorithms in two ways: (i) for self-adapting the

choice of local search operators (Krasnogor and Smith,

2000), and (ii) for self-adapting the definition of local

search algorithms (Smith, 2002; Krasnogor and Gustafson,

2004). This distinction is analogous to our main classifica-

tion of hyper-heuristics into heuristic selection and

heuristic generation methodologies (see Section 3).

Adaptive operator selection: A related recent research

direction, again within evolutionary algorithms, has been

termed adaptive operator selection. Its goal is to design

online strategies able to autonomously select between

different variation operators. As discussed in Maturana et

al (2009), adaptive operator selection approaches contain

two main mechanisms: credit assignment, which defines the

reward to be assigned to an operator (according to its

quality) after it has been applied, and operator selection

that selects one operator to be applied according to

previously computed operator qualities. Several ap-

proaches for implementing these two mechanisms have

been proposed (Fialho et al, 2008; Maturana et al, 2009,

2010; Candan et al, 2012; Veerapen et al, 2012).

Reactive search: is an online methodology that advocates

the integration of sub-symbolic machine learning techni-

ques into search heuristics for solving complex optimisa-

tion problems (Battiti, 1996; Battiti et al, 2009). The

machine learning component acts on top of the search

heuristic, in order to let the algorithm self-tune its

operating parameters during the search operation. The

learning component is implemented as a reactive feedback

scheme that uses the past history of the search to increase

its efficiency and efficacy. These ideas have been mainly

applied to the tabu search meta-heuristic.

Variable neighbourhood search: Although generally not

including an adaptive mechanism, Variable Neighbour-

hood search (VNS) (Mladenovic and Hansen, 1997) is

related to heuristic selection based on perturbative

heuristics in that such a method exploits the search power

of multiple neighbourhoods. VNS systematically switches

neighbourhoods in a predefined sequence so that the search

can explore increasingly distant neighbourhoods of the

current solution. Therefore, we can say that VNS is a high-

level heuristic that coordinates the behaviour of several

neighbourhood structures.

Algorithm Portfolios: First proposed in Huberman et al

(1997), algorithm portfolios represent an alternative way of

automating the design of search techniques. They are

designed following the standard practice in economics to
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obtain different return-risk profiles in the stock market

by combining different stocks. An algorithm portfolio

would run different algorithms concurrently in a time-

sharing manner, by allocating a fraction of the total

CPU cycles to each of them. The first algorithm to finish

reports the solution and determines the completion time

of the portfolio, while the other algorithms are im-

mediately stopped. Dynamic portfolios, that include

online learning, have been considered in Gagliolo and

Schmidhuber (2006).

7. Discussion and future work

The defining feature of hyper-heuristics is that they operate

on a search space of heuristics rather than directly on a

search space of problem solutions. This feature provides the

potential for increasing the level of generality of search

methodologies. There have been several independent

realisations of this idea over the years (since the early

1960s) within Operational Research, Computer Science and

Artificial Intelligence; however, the term hyper-heuristic is

relatively new. We identified two main broad classes of

approaches to the challenge of automating the design of

heuristics; namely: heuristic selection and heuristic genera-

tion. This article has covered both the intellectual roots and

the state of-the-art of these methodologies up until the end

of 2010.

Heuristic generation methodologies offer more scope

for greater levels of generalisation. However, they can

be more difficult to implement, when compared with

their counterpart (heuristic selection methodologies)

since they require the decomposition of existing

heuristics, and the design of an appropriate framework.

These issues are balanced by the potential benefits of the

approach. One of the strengths of heuristic generation

methodologies is that they can automatically specialise

a heuristic to a given class of problem instances. This

process of specialisation and tuning is usually the time-

consuming and expensive part of the implementation

of a heuristic, and so hyper-heuristics have the potential

to save a significant amount of effort. In turn this could

reduce the cost barriers that prevent smaller organisa-

tions from taking advantage of modern search technol-

ogies.

An additional criterion for classifying hyper-heuristics is

the source of the feedback during the learning process,

which can be either one instance (online approaches) or

many instances of the underlying problem (offline ap-

proaches). Both online and offline approaches are poten-

tially useful and therefore worth investigating. Although

having a reusable method will increase the speed of solving

new instances of a given problem, using online methods can

have other advantages. In particular, searching over a space

of heuristics may be more effective than directly searching

the underlying problem space, as heuristics may provide an

advantageous search space structure (Storer et al, 1995;

Ochoa et al, 2009b; Vázquez-Rodrı́guez and Petrovic,

2010). Moreover, in newly encountered problems there

may not be a set of related instances on which to train

offline hyper-heuristic methods.

Hyper-heuristics can be used for solving complex real-

world problems. Since the search strategy components of a

hyper-heuristic process only problem domain independent

information, they can be readily applied in a different

problem domain (provided that the problem-specific

algorithm components are available to the practitioner).

The studies on parallel and distributed processing strategies

can benefit from hyper-heuristic research and vice versa.

Hyper-heuristic methodologies can handle both single and

multi-objective problems. The empirical investigations up

to now show that hyper-heuristics are fast techniques that

produce solutions with reasonable quality in a reasonable

time. Moreover, their performance is often comparable

with bespoke systems.

The further development of hyper-heuristic frameworks

such as HyFlex (Ochoa et al, 2012b) and Hyperion (Swan

et al, 2011) may help to promote research and thus

improve hyper-heuristic methods. It is still an open

problem how to easily apply these software frameworks

in practice for new domains.

Thus far, little progress has been made to enhance our

theoretical understanding of hyper-heuristic approaches.

Initial efforts have been devoted to understanding the

structure of heuristic search spaces (Vázquez-Rodrı́guez

et al, 2007b; Qu and Burke, 2009; Ochoa et al, 2009a;

Maden et al, 2009), and the implications to the Non-Free-

Lunch theorem (Poli and Graff, 2009). Further research in

this direction, including run time analysis and other

foundational studies, would be relevant to both enhancing

our understanding and designing efficient and general

hyper-heuristics.

As it was discussed in Section 6 several communities

have been working in related research themes and

sharing common goals. However, there is still little

interaction between them. Much is to be gained from a

greater awareness of the achievements in various cross-

disciplinary approaches; opportunities would open for

extension to both new problem domains and new

methodologies through cross-fertilisation of these ideas.

Hyper-heuristic research has the potential of bringing

together promising ideas in the fields of meta-heuristics

and machine learning, with knowledge (in the form of

problem-specific heuristics) accumulated over the years

in the field of operational research. The overall aim is to

solve complex real-life combinatorial optimisation

problems in a more general fashion, and produce

reusable technologies to facilitate systems which can

work with users to home in on high-quality solutions to

problems.
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Bilgin B, Özcan E and Korkmaz EE (2006). An experimental study
on hyper-heuristics and final exam scheduling. In: Proceedings of
the International Conference on the Practice and Theory of
Automated Timetabling (PATAT’06), pp 123–140.

Birattar M (2005). Tuning Metaheuristics: A Machine Learning
Perspective. Studies in Computational Intelligence, Vol. 197,
Springer: New York.

Blazewicz J, Burke E, Kendall G, Mruczkiewicz W, Oguz C and
Swiercz A (2011). A hyper-heuristic approach to sequencing by
hybridization of dna sequences. Annals of Operations Research,
pp 1–15, DOI 10.1007/s10479-011-0927-y.

Branke J (2002). Evolutionary Optimization in Dynamic Environ-
ments. Kluwer: Dordrecht, MA.

Burke EK and Bykov Y (2008). A late acceptance strategy in hill-
climbing for exam timetabling problems. In: Practice and Theory
of Automated Timetabling (PATAT 2008).

Burke EK, Hart E, Kendall G, Newall J, Ross P and Schulenburg S
(2003a). Hyperheuristics: An emerging direction in modern search
technology. In: Glover F and Kochenberger G (eds). Handbook
of Metaheuristics. Kluwer: Dordrecht, MA, pp 457–474.

Burke EK, Kendall G and Soubeiga E (2003b). A tabu-search
hyperheuristic for timetabling and rostering. Journal of Heur-
istics 9(6): 451–470.

Burke EK, Dror M, Petrovic S and Qu R (2005a). The next
wave in computing, optimization, and decision technologies.
chap Hybrid Graph Heuristics within a Hyper-heuristic
Approach to Exam Timetabling Problems, Springer: New York,
pp 79–91.

Burke EK, Kendall G, Landa-Silva JD, O’Brien R and Soubeiga E
(2005b). An ant algorithm hyperheuristic for the project
presentation scheduling problem. In: Proceedings of the 2005
IEEE Congress on Evolutionary Computation, Edinburgh, Scot-
land, Vol. 3, pp 2263–2270.

Burke EK, Landa-Silva JD and Soubeiga E (2005c). Meta-
heuristics: Progress as real problem solvers. chap Multi-objective
Hyper-heuristic Approaches for Space Allocation and Timetabling,
Springer: New York, pp 129–158.

Burke EK, Hyde MR and Kendall G (2006a). Evolving bin packing
heuristics with genetic programming. In: Parallel Problem

Edmund K Burke et al—Hyper-heuristics 1717



Solving from Nature (PPSN’06), Lecture Notes in Computer
Science, Vol. 4193, pp 860–869.

Burke EK, Petrovic S and Qu R (2006b). Case-based heuristic
selection for timetabling problems. Journal of Scheduling 9(2):
115–132.

Burke EK, Hyde M, Kendall G and Woodward J (2007a). The
scalability of evolved on line bin packing heuristics. In: IEEE
Congress on Evolutionary Computation (CEC’07), Singapore, pp
2530–2537.

Burke EK, Hyde M, Kendall G and Woodward J (2007b).
Automatic heuristic generation with genetic programming:
Evolving a jack-of-all-trades or a master of one. In: Genetic
and Evolutionary Computation Conference (GECCO’07), ACM,
pp 1559–1565.

Burke EK, McCollum B, Meisels A, Petrovic S and Qu R
(2007c). A graph-based hyperheuristic for educational time-
tabling problems. European Journal of Operational Research 176:
177–192.

Burke EK, HydeM, Kendall G, Ochoa G, Özcan E and Woodward
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Schoenauer M and Schwefel H-P (eds). Parallel Problem Solving
from Nature, PPSN V. Lecture Notes in Computer Science,
Springer: Amsterdam, the Netherlands, pp 845–854.

Hart E, Ross P and Nelson JAD (1998). Solving a real-world
problem using an evolving heuristically driven schedule builder.
Evolutionary Computing 6(1): 61–80.

He J, He F and Dong H (2012). Pure strategy or mixed strategy?—
An initial comparison of their asymptotic convergence rate and
asymptotic hitting time. In: Hao JK and Middendorf M (eds).
Evolutionary Computation in Combinatorial Optimization—12th
European Conference, EvoCOP 2012. Málaga, Spain, 11–13
April 2012. Proceedings, Lecture Notes in Computer Science,
Vol. 7245, Springer, pp 218–229.

Ho NB and Tay JC (2005). Evolving dispatching rules for solving
the flexible job-shop problem. In: IEEE Congress on Evolutionary
Computation (CEC’05). IEEE: Edinburgh, UK, pp 2848–2855.
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