
Polynomial time solutions for scheduling problems
on a proportionate flowshop with two competing
agents
B Mor

1
and G Mosheiov

2�
1
The Department of Economics and Business Administration, Ariel University Center of Samaria, Israel;

and
2
The Hebrew University, Jerusalem, Israel

In scheduling problems with two competing agents, each one of the agents has his own set of jobs and his
own objective function, but both share the same processor. The goal is to minimize the value of the objective
function of one agent, subject to an upper bound on the value of the objective function of the second agent.
In this paper we study two-agent scheduling problems on a proportionate flowshop. Three objective
functions of the first agent are considered: minimum maximum cost of all the jobs, minimum total com-
pletion time, and minimum number of tardy jobs. For the second agent, an upper bound on the maximum
allowable cost is assumed. We introduce efficient polynomial time solution algorithms for all cases.

Journal of the Operational Research Society (2014) 65, 151–157. doi:10.1057/jors.2013.9

Published online 27 February 2013

Keywords: two-agent scheduling; proportionate flowshop; makespan; total completion time; number of tardy jobs

1. Introduction

Baker and Smith (2003) and Agnetis et al (2004) started a

new line of research in scheduling theory, known as

scheduling with two competing agents. The general setting of

a problem in this class consists of two agents who need to

process their jobs using the same processor. Each one of

the two agents has his own set of jobs and his own

objective function. The goal is to minimize the value of the

objective function of one agent, subject to an upper bound

on the value of the objective function of the second agent.

A growing number of papers have been published in

recent years focusing on scheduling with two competing

agents. These papers assume various combinations of

scheduling measures and machine settings. The relevant

reference list contains Baker and Smith (2003) (focused on

a single machine and the criteria of makespan, maximum

lateness and total weighted completion time), Agnetis et al

(2004) (considered the same and additional measures, eg

the number of tardy jobs and maximum regular functions,

and studied multi-machine settings as well), Cheng et al

(2006) (proved that the problem with minimum number of

tardy jobs for each agent is strongly NP-hard, and

introduced a polynomial time solution for the case of unit

time jobs), Ng et al (2006) (studied minimum weighted

completion time for one agent subject to an upper bound

on the number of tardy jobs for the second agent), Cheng

et al (2007) (studied total tardiness), Agnetis et al (2007)

(focused on a multi-agent setting), Cheng et al (2008)

(multi-agent problems with precedence constraints), Liu

and Tang (2008) and Liu et al (2009) (two agent scheduling

with deteriorating jobs), Agnetis et al (2009) (branch-and-

bound algorithms for minimum total weighted completion

time of the first agent, subject to an upper bound on several

measures of the second agent), Lee et al (2009) (introduced

multi-agent scheduling with total weighted completion

time, and provided fully polynomial approximation

schemes), Mor and Mosheiov (2010) (two-agent scheduling

with various earliness measures), Leung et al (2010) (two-

agent scheduling with preemption and release dates), Wan

et al (2010) (two-agent problems with controllable proces-

sing times), Liu et al (2010) (two-agent single-machine

scheduling with position-dependent processing times),

Cheng et al (2011) (minimum weighted completion time of

the first agent subject to no tardy jobs of the second agent,

with learning effect based on sum-of-processing times),

Li and Yuan (2012) (two-agent scheduling with batching,

where the total processing time of a batch is equal to the

maximum processing time of the jobs in the batch), Mor

and Mosheiov (2011) (two-agent batch scheduling assuming

identical jobs and minimum total flowtime), Li and Hsu

(2012) (minimizing total weighted completion time of both

agents, subject to an upper bound on the makespan of

both agents, with a learning effect), Gawiejnowicz et al

(2011) (minimum total tardiness of the first agent subject

Journal of the Operational Research Society (2014) 65, 151–157 © 2014 Operational Research Society Ltd. All rights reserved. 0160-5682/14

www.palgrave-journals.com/jors/

�Correspondence: G Mosheiov, School of Business Administration, The

Hebrew University of Jerusalem; Mount Scopus, Jerusalem 91905, Israel.

E-mail: msomer@mscc.huji.ac.il



to no tardy jobs of the second agent, with time-dependent

processing times), Gerstl and Mosheiov (2012) (minimiz-

ing weighted earliness-tardiness of the first agent, subject

to maximum weighted deviation of the second agent), Yin

et al (2012a) (minimizing earliness measures of the first

agent subject to an upper bound on the earliness of the

second agent, with job linear deterioration), Yin et al

(2012b) (minimum tardiness of the first agent subject to

minimum lateness of the second agent, with release dates),

and Yin et al (2012c) (two-agent single machine with

release times and deadlines).

The vast majority of the above papers consider a

single-machine setting. Among the papers dealing with

multi-machine settings, only Agnetis et al (2004) studied

flowshops. They focused on the simplest case, that is, on

a two-machine flowshop with the makespan objective

function for both agents. They proved that even this case is

binary NP-hard. In this paper we further investigate

scheduling problems with two competing agents on flow-

shops. We focus on the well-known special case of propor-

tionate flowshop, in which the job processing times are

machine-independent. We consider the following classical

objective functions of the first agent: (i) minimizing the

maximum cost among all the jobs (given job-dependent

general cost functions), (ii) minimizing the total completion

times of all the jobs, and (iii) minimizing the number of

tardy jobs. In all cases, a maximum allowable cost on each

of the jobs of the second agent is assumed. We introduce

polynomial time solutions for all three problems.

The paper is organized as follows: In Section 2 we provide

the problem formulation. In Sections 3–5, we solve the

minmax cost problem, the total completion time problem

and the number of tardy jobs problem, respectively.

2. Formulation

Two agents, denoted X and Y, need to process nX and nY

jobs, respectively, on an m-machine flowshop. Let

n�nXþ nY. The processing time of job j of agent A on

machine i is denoted pij
A, i¼ 1, . . . ,m, j¼ 1, . . . , nA,

A¼X, Y. We assume a proportionate flowshop, that is,

pij
A¼ pj

A, i¼ 1, . . . ,m, j¼ 1, . . . , nA, A¼X, Y. All the jobs

are available at time zero, and preemption is not allowed.

For a given job schedule, let Cj
A denote the completion

time of the last operation (ie, on the last machine) of job j

of agent A, j¼ 1, . . . , nA, A¼X, Y. Each job (of each

agent) has a specific cost function that depends on its

completion time. We denote these functions: fj
A, j¼ 1, . . . ,

nA, A¼X, Y, and assume that they are general non-

decreasing in the job completion time. Let f Amax ¼
max f1ðC1Þ; f2ðC2Þ; . . . ; fnAðCnAÞf g; A ¼ X ;Y The first

problem solved here is minimum fmax
X subject to an upper

bound Q on the maximum cost of agent Y, fmax
Y . Formally,

the problem is Fm/pij¼ pj/fmax
X : fmax

Y pQ.

The second problem studied here is minimum total

flowtime of agent X, subject to an upper bound on the

maximum cost of agent Y. The total flowtime of agent X is

given by
PnX

j¼1 C
X
j . The problem is Fm=pij ¼ pj=PnX

j¼1 C
X
j : f YmaxpQ.

For the third problem, we define due-dates for the

X-jobs: dj
X, j¼ 1, . . . , nX. Let Uj

X¼ 0 if Cj
Xpdj

X, and

Uj
X¼ 1 otherwise. Our objective is to minimize the number

of tardy jobs of agent X, subject to an upper bound on

the maximum cost of agent Y: Fm=pij ¼ pj=
PnX

j¼1 U
X
j :

f YmaxpQ:

3. Fm/pij¼ pj/fmax
X

: fmax
Y pQ.

We begin by solving the single-agent version of this

problem, that is, Fm/pij¼ pj/fmax. We show that this prob-

lem is solved by Lawler’s algorithm (1973), which was

designed for a single-machine setting. Let n denote the

number of jobs (of a single agent), pj is the processing time

of job j, and pmax¼max{pj, j¼ 1, . . . , n}. Let fj denote the

cost function of job j, which is assumed to be general non-

decreasing in its completion time. Also, let T denote the

completion time of the last job on the last machine (ie the

makespan value). It is well-known that T is sequence-

independent, and is given by: T¼ (m�1)pmaxþ
P

j¼ 1
n pj (see

eg, Pinedo, 2012). We define k to be the index of the job

with the minimal cost function, if scheduled to be com-

pleted at time T, that is, k¼ arg{min{fi(T)), j¼ 1, . . . , n}}.

Claim 3.1 An optimal schedule exists in which job k is

scheduled last.

Proof As in Lawler (1973), consider an optimal schedule

S in which job k is not scheduled last. Thus, S consists of a

subset of jobs q1 followed by job k, followed by a subset q2,

followed by job l, the last job in S; see Figure 1(a). We

create a sequence S0 by moving job k to be last (imme-

diately after l; see Figure 1(b)). We claim that S0 is at least
as good as S. First, the completion times of the jobs of q1
on the last machine of the flowshop in S0 are clearly

identical to their completion times in S, implying that their

costs are identical in both sequences. Next, it is easily

observed that in a proportionate flowshop, jobs completed

earlier on the first machine will be completed earlier on the

last machine as well. Thus, the completion time of job l and

the completion times of the jobs of q2 in S0 (on the last

machine of the flowshop) are not larger than their com-

pletion times in S. This implies that their costs are not

larger (due to the monotonicity of the cost functions).

Finally the cost of the last job in S0 (job k) is not larger

than the cost of the last job in S (job l), due to the

definition of k. It follows that sequence S0 is optimal, which

completes the proof. &

152 Journal of the Operational Research Society Vol. 65, No. 1



Claim 3.1 verifies that Lawler’s Algorithm for a single

machine produces an optimal schedule for a proportionate

flowshop as well. The modified algorithm is the following:

Lawler Algorithm for proportionate flowshop:

Input: an m-machine proportionate flowshop,

a set q of n jobs with processing times

{p1, p, . . . , pn} and cost functions {f1, f, . . . , fn}.

Step 1: Calculate T¼ (m�1)pmaxþ
P

j¼ 1
n pj ;

Step 2: Calculate fj(T), jAq;

Find k¼ arg {min{fj (T ), jAq}};

Step 3: Schedule job k in the last position.

q¼ q\{k};

If q¼+
Stop;//The resulting schedule is optimal.

pmax¼max{pj, jAq};

T¼ (m�1)pmaxþ
P

jAqpj;

Go to Step 2;

Running time: Assuming that calculating the fj values is

done in constant time, Step 2 requires O(n), and is

performed n times. Hence the total running time is O(n2).

Claim 3.2 The two-agent version can be reduced to a

single-agent problem.

Proof Following Agnetis et al (2004), we calculate the

deadlines of the jobs of agent Y, that is, Dj
Y¼max

{t; fj
Y(t)pQ}, j¼ 1, . . . , nY. (Note that the completion time

of a job is defined as the completion time of its last

operation. Hence, Dj
Y is the latest permitted completion

time of job j on machine m. Its latest permitted completion

time on the first machine of the proportionate flowshop is

clearly Dj
Y�mpj

Y.) We also define qX and qY to be the sets

of jobs of agents X and Y, respectively. Given these, the

reduction to a single-agent problem is based on the

following definition of the cost function:

f ðxÞ ¼
f Xj ðtÞ; j 2 qX

1; j 2 qY and t4DY
j

0; j 2 qY and tpDY
j

8><
>:

ð1Þ

This resulting single-agent setting is clearly solved to

optimality by the above algorithm. &

Based on the above two claims, we have the following

algorithm:

Algorithm for Fm/pij¼ pj/fmax
X : fmax

Y pQ

Input: An m-machine proportionate flowshop, two

agents X and Y;

Two sets of jobs qA, A¼X, Y;

The processing times and cost functions: pj
A, fj

A,

j¼ 1, . . . , nA, A¼X,Y.

Step 1: Let q¼ qX,qY; pmax¼max{pj, jAq}; T¼
(m�1)pmaxþ

P
jAqpj;

Define the functions fj, jAq, according to (1).

Step 2: Calculate Dj
Y, j¼ 1, . . . , nY;

Step 3: Sort Dj
Y in a non-decreasing order;

Step 4: Use Lawler Algorithm for proportionate flowshop

(see above) to obtain an optimal solution.

(If qX¼+ and fj
Y(t)4 Q, no feasible solution

exists.)

Running time: We assume that calculating the fj functions

and their inverse functions is done in constant time. Then,

calculating the Dj
Y values (Step 2) requires O(n). Sorting

the Y-jobs by their deadlines (Step 3) requires O(n log n).

q1Machine 1

Machine 2

Machine m

q1

q2Jk

q2

.

.

.

Jl

Jk Jl

q1 q2Jk Jl

q1Machine 1

Machine 2

Machine m

q1

Jlq2 Jk

q2 Jl Jk

.

.

.

q1 q2 Jl Jk

Figure 1 (a) Schedule S in Claim 3.1; (b) Schedule S0 in Claim 3.1.

B Mor and G Mosheiov—Polynomial time solutions for scheduling problems 153



As mentioned above, Lawler Algorithm (Step 4) requires

O(n2). Thus, the total running time is O(n2).

[Comment: We have programmed and tested the above

algorithm. The Cþþ program was processed on Intels

Coret i7-2600k@3.40GHz. We solved a three-machine

proportionate flowshop with 5000 jobs for each agent. For

simplicity we assumed for the jobs of agent X: f j
X¼Cj,

j¼ 1, . . . , nX. For the jobs of agent Y, we considered step

functions: fj
Y(C)¼ 0 if CpQj, (for some job-dependent

constant Qj), and fj
Y(C)¼N if C4 Q, j¼ 1, . . . , nY. The

job processing times were generated uniformly in the

interval [1,100], and the job-dependent Qj values of agent Y

were generated uniformly in the interval [3Pmax, Cmax],

where 3Pmax is the completion time of the largest job on the

third machine if this job is scheduled first, and Cmax is the

maximum completion time of all the jobs of both agents.

The total running time required for solving this 10000-job

problem was 842 milliseconds, ie, less than a second.]

4. Fm/pij¼ pj/
P

Cj
X
: fmax

Y pQ.

In this section we solve the problem of minimizing total

completion time of agent X, subject to an upper bound on

the maximum cost of agent Y. Recall that q denotes the set

of all jobs (of both agents), pmax is the maximal processing

time in the set q, and T denotes the (sequence independent)

makespan obtained by all the jobs in q. Following Agnetis

et al (2004) (for the single-machine case), we claim the

following (for a proportionate flowshop):

Claim 4.1 If a Y-job, say k, exists such that fK
Y(T)pQ,

then an optimal schedule exists in which job k is scheduled

last (to be completed at T).

Proof Consider an optimal schedule S in which the Y-job

k is not scheduled last. S consists of a subset of jobs q1
followed by job k, followed by a subset q2, followed by an

X-job which is scheduled last. We create a sequence S0 by
moving job k to be last (and shifting the jobs of q2 and the

last scheduled X-job to start earlier). Note that the com-

pletion time of job k on the last machine in S0 is identical to
the completion time of the last X-job in S (by the fact that

the makespan in a proportionate flowshop is sequence

independent). Note also that the completion times of (all

the operations of) the jobs in the subset q2 and that of the

last X-job were reduced on all the machines. We claim that:

(i) the resulting schedule is clearly feasible (by the definition

of k, and the fact that the completion time of all other

Y-jobs was not increased), (ii) the cost of the resulting

schedule is smaller (since the completion time of some of

the X-jobs decreases, while the completion time of the

remaining jobs was not affected). Therefore, S0 has a strictly
smaller cost, implying that S is not optimal. &

Based on the above claim, an algorithm can be

introduced in which the Y-jobs will be assigned as late as

possible, and will be scheduled according to their deadlines.

(Note that if several Y- jobs can be scheduled at time T,

their order is in fact immaterial.)

Claim 4.2 If for all the Y-jobs, fj
Y(T)4 Q, then an optimal

schedule exists in which the largest X-job is scheduled last

(to be completed at T).

Proof By a standard pair-wise interchange argument.&

Based on this claim, an optimal schedule exists in which

the X-jobs are scheduled according to SPT. A formal

algorithm is provided below:

Algorithm for Fm/pij¼ pj/
P

Cj
X: fmax

Y pQ

Input: An m-machine proportionate flowshop, two

agents X and Y.

Two sets of jobs qA, A¼X,Y.

The processing times: pj
A, j¼ 1, . . . ,nA, A¼X, Y.

The cost functions: fj
Y, j¼ 1, . . . ,nY.

Step 1: Calculate Dj
Y, j¼ 1, . . . , nY;

Step 2: Sort Dj
Y in a non-decreasing order;

Step 3: Sort pj
X in a non-decreasing order;

jX¼ nX; jY¼ nY;
P

Cj¼ 0;

Step 4: While (qXa+ and qYa+)

pmax
X ¼max{pj

X, jAqX}; pmax
Y ¼max{pj

Y, jAqY};

pmax¼max{pmax
X , pmax

Y };

T ¼ ðm� 1Þpmax þ
P

j2qX p
X
j þ

P
j2qY p

Y
j ;

If qYa+
If f YjY ðTÞpQ, then

schedule job jY to be completed at time

T; qY¼ qY \{ jY}; jY¼ jY�1;
Else,

If qXa+, then

schedule job j X to be completed at

time T;
P

Cj¼
P

CjþT; j X¼ jX�1;
Else—no feasible solution exists;

Else

If qXa+, then

schedule job jX to be completed at

time T;
P

Cj¼
P

CjþT; jX¼ jX�1;
Endif

Endif

Endwhile

Running time: Step 1 requires O(n) time (assuming that

calculating the Dj
Y values and the inverse functions is done

in O(1)). Sorting the Y-jobs by their due-dates (Step 2)

requires O(n log n). Sorting the X-jobs according to their

154 Journal of the Operational Research Society Vol. 65, No. 1



processing times (Step 3) requiresO(n log n). Each iteration

in Step 4 requires O(1), implying that Step 4 is performed

in O(n) We conclude that the running time of the entire

algorithm is O(n log n).

5. Fm/pij¼ pj/
P

Uj
X
: fmax

Y pQ

In this section we assume that the X-jobs have due-

dates, denoted by dj
Y, and introduce a polynomial time

solution for the problem of minimizing the number

of tardy jobs of agent X, subject to an upper bound on

the maximal cost of agent Y. We show that the solu-

tion introduced by Agnetis et al (2004) for the single-

machine case can be easily extended to a proportionate

flowshop setting.

Recall that the deadlines for the jobs of agent Y are

denoted by Dj
Y¼max{t; fj

Y(t)pQ}, j¼ 1, . . . , nY. As men-

tioned, a deadline is clearly defined as the latest possible

completion time of the last operation of the job (ie on the

last machine of the flowshop). For convenience, we denote

the Latest permitted Completion time of a Y-job j on the

first machine by LCj
(Y,m1). Similarly, we denote the Latest

permitted Starting time of a Y-job j on the first machine

by LSj
(Y,m1). A trivial upper bound on LCj

(Y,m1) is Dj
Y�

(m�1)pjY. Another upper bound on LCj
(Y,m1) is the latest

permitted starting of job jþ 1 on the first machine

(LSjþ 1
(Y,m1)). It follows that LCj

(Y,m1)pmin {Dj
Y�(m�1)pjY,

LSjþ 1
(Y,m1)}, and consequently LSj

(Y,m1)pmin{Dj
Y�mpj

Y,

LSjþ 1
(Y,m1)�pjY}. Based on these definitions, one can easily

schedule the Y-jobs as late as possible: schedule the last

Y-job to start processing at time Dn
Y�mpn

Y on the first

machine, and continue backwards, such that the starting

time of job j on the first machine is given by LSj
(Y,m1)¼

min{Dj
Y�mpj

Y, LSjþ 1
(Y,m1)�pjY}.

Following Agnetis et al (2004), we schedule the Y-jobs at

their latest times, and consider the resulting intervals as

unavailable intervals for the X-jobs. We then create an

instance for the problem of the single agent X only (1//P
Uj
X) as follows: (i) we remove the unavailable intervals

from all the machines, and (ii) we re-define the due-dates of

the X-jobs, by subtracting the cumulative unavailable

intervals prior to each due-date. Formally, let Tj
X denote

the total processing time of the Y-jobs processed prior

to dj
X, j¼ 1, . . . , nX. Then the updated due-dates of the

X-jobs are: dj
X0 ¼ dj

X�Tj
X, j¼ 1, . . . , nX. Note that the due-

dates are updated similarly on all the machines. In

particular, the due-date of the first operation (on the

first machine) of job j becomes dj
(X0,m1)¼ dj

(X,m1)�
Tj
X¼ dj

X�(m�1) pj�Tj
X, j¼ 1, . . . ,nX. The single-agent

problem 1/dj
X 0/
P

Uj
X is known to be solved by Moore’s

Algorithm (Moore, 1968), even for a proportionate flow-

shop (Pinedo, 2012). After the problem 1/dj
X0/
P

Uj
X is

solved to optimality, the Y-jobs are re-inserted on all the

machines at their latest starting times (ie the unavailable

intervals are reconsidered). The resulting schedule may

clearly include some preempted X-jobs. We note that the

resulting number of tardy X-jobs is clearly a lower bound

on the optimal number of tardy jobs for the non-

preemptive problem. However, similar to the single-

machine case (see Agnetis et al, 2004), this schedule can

be easily converted into a schedule with no preemption and

the same number of tardy X-jobs. Denote by Sj
X0 the

starting time of job j of agent X on the last machine. It

follows that this job starts at time Sj
X0�pjX on the previous

machine, and accordingly at time Sj
(X0,m1)¼Sj

X0�(m�1)pjX
on the first machine. If an X-job j is preempted by one or

more Y-jobs, then these Y-jobs (ie all operations of each of

these Y-jobs) can be moved to start earlier. The first of these

Y-jobs will start at time Sj
(X0,m1) on machine 1, and at time

Sj
X0 on the last machine. All the Y-jobs which preempted job

j of agent X are processed continuously. As a result, the X-

operations start later and processed continuously. Note that

in the resulting schedule: (i) the Y-jobs are completed earlier

implying that the schedule remains feasible, (ii) the X-job is

not preempted, and (iii) the completion time of the X-job

has not changed. Repeating this procedure for all the pree-

mpted X-jobs leads to a feasible schedule, that is, no Y-jobs

are late and no X-jobs are preempted. The resulting number

of tardy jobs remains equal to the above lower bound,

implying that this solution is optimal. A more formal

description of these steps is given in the following:

Algorithm for Fm/pij¼ pj/
P

Uj
X: fmax

Y pQ

Input: An m-machine proportionate flowshop, two

agents X and Y.

Two sets of jobs qA, A¼X,Y.

The processing times: pj
A, j¼ 1, . . . , nA, A¼X,Y.

The cost functions: f j
Y, j¼ 1, . . . , nY.

The due-dates of the X-jobs: dj
X, j¼ 1, . . . , nX.

Step 1: Calculate Dj
Y, j¼ 1, . . . , nY;

Step 2: //Schedule the Y-jobs.

Sort Dj
Y in a non-decreasing order, and renum-

ber the Y-jobs accordingly;

Schedule the last Y-job to start processing on

machine 1 at time Dn
Y�mpn

Y;

For j¼ nY�1, . . . , 1
LSj

(Y,m1)¼min{Dj
Y�mpj

Y, LSjþ 1
(Y,m1)�pjY};

//Schedule job j to start processing on

machine 1 at time LSj
(Y,m1).

Endfor

Step 3: //Create the single-agent X problem.

Remove the processing times of the Y-jobs

(unavailable intervals) from the problem;

Compute Tj
X, j¼ 1, . . . , nX ;//the total proces-

sing time of the Y-jobs processed prior to dj
X.

Update the due-dates of the X-jobs: dj
X0 ¼

dj
X�Tj

X, j¼ 1, . . . , nX;

Step 4: Solve the single-machine problem 1/dj
X0/
P

Uj
X;

B Mor and G Mosheiov—Polynomial time solutions for scheduling problems 155



Step 5: Reinsert the Y-jobs at their latest possible times

on all the machines;

//This may lead to preemption of some X-jobs.

Step 6: For each preempted X-job, shift the relevant

Y-jobs to start at time Sj
(X0,m1) on machine 1, and

processed continuously;

//The starting times of the X-jobs are delayed on

all the machines, they are processed non-

preemptively and their completion times are

unchanged.

Running time: If the computation of the fj values requires

constant time, Step 1 requires O(n). and is performed n

times. Hence the total running time is O(n2). Sorting the

Dj
Y requires O(n log n), and scheduling the Y-jobs takes

O(n) time. Hence, Step 2 requires O(n log n). Step 3 is

performed inO(n), and Step 4 needsO(n log n). Steps 5 and

6 are performed in O(n) as well. Thus, the total running

time is O(n log n).

6. Conclusion

We studied scheduling problems with two competing agents

on a proportionate flowshop. Three objective functions

of the first agent were considered: minimum maximum

cost, minimum total completion time, and minimum

number of tardy jobs. In all cases, a maximum allow-

able cost on the jobs of the second agent is assumed.

The two-agent problem on a flowshop was shown to be

NP-hard even for the setting of two machines and for

the simplest objective functions of makespan minimiza-

tion for both agents (Agnetis et al, 2004). However,

problems in the setting of proportionate flowshop

studied in this paper are shown to have polynomial

time solutions. Following the single-machine solutions

introduced by Agnetis et al (2004), we propose O(n2),

O(n log n) and O(n log n) algorithms for the above three

problems, respectively. Future research may focus on

extensions of the two-agent proportionate flowshop

model to other objective functions of both agents.

Acknowledgements—This paper was supported in part by The
Charles Rosen Chair of Management and the Recanati Fund of The
School of Business Administration, The Hebrew University, Jerusa-
lem, Israel.

References

Agnetis A, Mirchandani PB, Pacciarelli D and Pacifici A (2004).
Scheduling problems with two competing agents. Operations
Research 52(2): 229–242.

Agnetis A, Mirchandani PB, Pacciarelli D and Pacifici A (2007).
Multi-agent single machine scheduling. Annals of Operations
Research 150(1): 3–15.

Agnetis A, Pascale G and Pacciarelli D (2009). A Lagrangian
approach to single-machine scheduling problems with two
competing agents. Journal of Scheduling 12(4): 401–415.

Baker KR and Smith JC (2003). A multiple-criterion model for
machine scheduling. Journal of Scheduling 6(1): 7–16.

Cheng TCE, Ng CT and Yuan JJ (2006). Multi-agent scheduling on
a single machine to minimize total weighted number of tardy
jobs. Theoretical Computer Science 362(1–3): 273–281.

Cheng TCE, Ng CT and Yuan JJ (2007). Two-agent scheduling on a
single machine with fixed jobs and preemption. Working paper,
Department of Logistics, Hong Kong Polytechnic University.

Cheng TCE, Ng CT and Yuan JJ (2008). Multi-agent scheduling on
a single machine with max-form criteria. European Journal of
Operational Research 188(2): 603–609.

Cheng TCE, Cheng S-R,WuW-H, Hsu P-H andWu C-C (2011). A
two-agent single-machine scheduling problem with truncated
sum-of-processing-times-based learning considerations. Compu-
ters & Industrial Engineering 60(4): 534–541.

Gawiejnowicz S, Lee W-C, Lin C-L and Wu C-C (2011). Single-
machine scheduling of proportionally deteriorating jobs by
two agents. Journal of the Operational Research Society 62(11):
1983–1991.

Gerstl E and Mosheiov G (2012). Scheduling problems with two
competing agents to minimize weighted earliness-tardiness.
Computers & Operations Research 40(1): 109–116.

Lawler EL (1973). Optimal sequencing of a single machine
subject to precedence constraints. Management Science 19(5):
544–546.

Lee K, Choi B-C, Leung JY-T and Pinedo ML (2009).
Approximation algorithms for multi-agent scheduling to mini-
mize total weighted completion time. Information Processing
Letters 109(16): 913–917.

Leung JY-T, Pinedo M and Wan G (2010). Competitive
two-agent scheduling and its applications. Operations Research
58(2): 458–469.

Li D-C and Hsu P-H (2012). Solving a two-agent single-machine
scheduling problem considering learning effect. Computers &
Operations Research 39(7): 1644–1651.

Li S and Yuan J (2012). Unbounded parallel-batching schedul-
ing with two competitive agents. Journal of Scheduling 15(5):
629–640.

Liu P and Tang L (2008). Two-agent scheduling with linear
deteriorating jobs on single machine. In Proceedings of the 14th
Annual International Conference on Computing and Combinato-
rics, pp 642-650, Dalian, China.

Liu P, Tang L and Zhou X (2009). Two-agent group scheduling with
deteriorating jobs on a single machine. The International Journal
of Advanced Manufacturing Technology 47(5–8): 657–664.

Liu P, Zhou X and Tang L (2010). Two-agent single-machine
scheduling with position-dependent processing times. The Inter-
national Journal of Advanced Manufacturing Technology 48(1–4):
325–331.

Moore JM (1968). An n job, one machine sequencing algorithm
for minimizing the number of late jobs. Management Science
15(1): 102–109.

Mor B and Mosheiov G (2010). Scheduling problems with
two competing agents to minimize minmax and minsum
earliness measures. European Journal of Operational Research
206(3): 540–546.

Mor M and Mosheiov G (2011). Single machine batch scheduling
with two competing agents to minimize total flowtime. European
Journal of Operational Research 215(3): 524–531.

Ng CT, Cheng CTE and Yuan JJ (2006). A note on the complexity
of the two-agent scheduling on a single machine. Journal of
Combinatorial Optimization 12(4): 387–394.

156 Journal of the Operational Research Society Vol. 65, No. 1



Pinedo M (2012). Scheduling: Theory, Algorithms, and Systems.
Springer: New York.

Wan G, Vakati SR, Leung JY-T and Pinedo M (2010). Scheduling
two agents with controllable processing times. European Journal
of Operational Research 205(3): 528–539.

Yin Y, Cheng S-R and Wu C-C (2012a). Scheduling problems
with two agents and a linear non-increasing deterioration
to minimize earliness penalties. Information Sciences 189:
282–292.

Yin Y, Wu W-H, Cheng S-R and Wu C-C (2012b). An
investigation on a two-agent single-machine scheduling problem

with unequal release dates. Computers & Operations Research
39(12): 3062–3073.

Yin Y, Cheng S-R, Cheng TCE, Wu W-H and Wu C-C (2012c).
Two-agent single-machine scheduling with release times and
deadlines. International Journal of Shipping and Transport
Logistics 5(1): 75–94.

Received May 2012;
accepted January 2013 after two revisions

B Mor and G Mosheiov—Polynomial time solutions for scheduling problems 157


	Polynomial time solutions for scheduling problems on a proportionate flowshop with two competing agents
	1. Introduction
	2. Formulation
	3. Fm/pij=pj/fmaxX: fmaxY⩽Q.
	4. Fm/pij=pj/∑CjX: fmaxY⩽Q.
	5. Fm/pij=pj/∑UjX: fmaxY⩽Q
	6. Conclusion
	Acknowledgements
	References




