arXiv:1309.4291v2 [math.OC] 8 Nov 2013

Modelsand algorithmsfor skip-free Markov decision
processes on trees

E.J. Collins
Department of Mathematics,
University of Bristol,

University Walk,
Bristol BS8 1TW, UK.

Accepted for publication subject to minor changes by theralwof the Operational
Research Society (JORS)

We introduce a class of models for multidimensional conmalblems
which we callskip-free Markov decision processes on tréé& describe
and analyse an algorithm applicable to Markov decisiongsses of this
type that are skip-free in the negative direction. Startinth the finite

average cost case, we show that the algorithm combines trentades
of both value iteration and policy iteration — it is guaratedo converge
to an optimal policy and optimal value function after a finmember of
iterations but the computational effort required for eaehation step is
comparable with that for value iteration. We show that tlgoathm can
also be used to solve discounted cost models and continumoestodels,
and that a suitably modified algorithm can be used to solvemanicating

models.

KEYWORDS: Multidimensional Markov decision processesnBmic programming, Queue-
ing, Inventory, Maintenance, Reliability


http://arxiv.org/abs/1309.4291v2

1 Introduction

Markov decision processes (MDPs) provide a class of stéichggimisation models
that have found wide applicability to problems in OperatibResearch. The standard
methods for computing an optimal policy are based on vagratibn, policy iteration
and linear programming algorithms (White 1993). Each apgindhas its advantages
and disadvantages. In particular, each step in value ibersd relatively computa-
tionally inexpensive but the value function may take someetio converge and the
algorithm provides no direct check that it has computed gteal value function and
an optimal policy. Conversely, each step in policy itemnatioay be computationally
expensive but the algorithm can be proved to converge inte fimimber of steps, con-
firms when it has converged and automatically identifies thten@l value function
and an optimal policy on exit.

Here we focus on models with special structure, in that theglip-free in the neg-
ative direction(Keilson 1965, p.10) oskip-free to the lefStidham & Weber 1989);
i.e. whatever the action taken, the process cannot passdrmrstate to a ‘lower’
state without passing through all the intervening stateschSkip-free models arise
naturally in many areas where OR is applied. The most obvexasnples are the
control of discrete time random walks and continuous timthkand death processes
(Serfozo 1981) such as queueing control problems with singit arrivals and depar-
tures (see, for example, Stidham & Weber (1989) and refesetiterein). In these
basic one-dimensional models, the state spgaise(a subset of) the integer lattice and
transitions are only possible to the next higher or loweeget state. However there
are several other standard OR models that fall within theemiche-dimensional skip-
free framework, including examples from the areas of queyiebntrol with batch
arrivals (Stidham & Weber 1989), inventory control (Mill€881) and reliability and
maintenance (Derman 1970, Thomas 1982).

Previous treatments of controlled skip-free processes bansidered only the one-
dimensional formulation. For processes with the ‘skigefte the left’ property, work
has focused on qualitative properties, in particular thsterce of monotone optimal
policies for models with appropriately structured costdiions (Stidham & Weber
1989, Stidham & Weber 1999). Conversely, work on procesststire correspond-
ing ‘skip-free to the right’ property has concentrated oalgsis of an approximating
bisection method for countable state space models (Widga&tidham 1986, Wijn-
gaard & Stidham 2000). We note that skip-free type ideas hlsgebeen exploited in



a different direction by (White 2005) and citing authors amthe emphasis has been
on reducing the computational complexity associated withcp iteration for quasi
birth-death processes.

An intuitive way of characterising the essential featuresw finite skip-free re-
current model is that the model is skip-free if and only if #tate space can be iden-
tified with the graph of a finite tree, rooted @twith each stateé corresponding to a
unique node in the tree, and such that for every acti@n A, the only possible tran-
sitions from state under actior: are either to its ‘parent’ state or to a state in the
subtree rooted at with appropriate modifications for stalevhich has no parent and
for terminal nodes which have only a parent and no descesdant

In this setting, the one-dimensional skip-free model abawth state spacé =
{0,1,..., M}, corresponds to the simplest case where the tree reducesitgla
linearly ordered branch connecting the root néd#hrough stated,2,..., M — 1
to the terminal nodé/, and transitions from stateare possible only to statese
{i — 1,4,..., M}. However, the analysis extends easily to cases with a rigossi-
bly multidimensional, state space, where the appropriaidehis in terms of transi-
tions on a finite tree. Examples of genuinely skip-free meaath multidimensional
state spaces arise in simple multi-class queueing systetindatch arrivals (Yeung
& Sengupta 1994, He 2000, and references therein), but seatmtents have focused
mainly on describing the behaviour of the process for a fixedo§ parameters (ac-
tions) rather than comparing actions in an optimality fraoek.

The rest of the paper is organized as follows. We start byridesg models for
average cost finite state recurrent MDPs that are skip-frebd negative direction,
illustrating our approach with a motivating example. Wenthgropose a skip-free
algorithm that combines the advantages of values iteratr@hpolicy iteration: the
computational effort required for each iteration step isiparable with that for value
iteration, but the algorithm is guaranteed to converge aftanite number of iterations
and automatically identifies the optimal value function andoptimal policy on exit.
We go on to show that the algorithm can be also be used to sadeeuhted cost
models and continuous time models, and that a suitably nedd#lgorithm can be
used to solve communicating models. Finally, we build orrétaionship between the
average cost problem and a correspondirrgvised first passage probletm provide
a proof of the main theorem and identify other possible vasiaf the algorithm.



2 Theskip-free MDP model

Consider a discrete time Markov decision process (MDP) \ithe state spaceé
over an infinite time horizom € {0,1,2,...}. Associated with each statec S is a
non-empty finite set of possible actions; sirt¢és finite, we assume without loss of
generality that the set of actiontsis the same for each If actiona € A is chosen
when the process is in stal@ = 7 at timet, then the process incurs an immediate cost
¢;(a) and the next state i¥;,; = j with probabilityp;;(a).

A policy 7 is a sequence of (possibly history dependent and randojmsied for
choosing the action at each given time paintA deterministicdecision rule corre-
sponds to a functiod : S — A and specifies taking action= d(i) when the process
is in statei. A stationary deterministipolicy is one which always uses same the de-
terministic decision rule at each time point Where the meaning is clear from the
context, we use the same notatidfor both the decision rule and the corresponding
stationary deterministic policy.

The expected average cost incurred by a potiayith initial state: is given by
g-(i) = limsup, .. 2 B, (317 ex,(a,)| Xo = i) , where X, is the state at time
anda; is the action chosen at timeundern. Similarly, for a given discount factor
0 < B < 1, the total expected discounted cost incurred by a patigyith initial state
iis given byVe(i) = E, (372, 8" ex,(ar)| Xo = 1) .

We say an MDP model igecurrentif the transition matrix corresponding to ev-
ery stationary deterministic policy consists of a singleureent class. We say an
MDP model iscommunicatingf, for every pair of states andj in S, j is reach-
able fromi under some (stationary deterministic) polidy i.e. there exists a pol-
icy d, with corresponding transition matri¥;, and an integern > 0, such that
Py X, = j|Xo=1) > 0.

WhenS = {0,1,2,..., M} is a subset of the integer lattice, we say the MDP
model isskip-free in the negative directigikeilson 1965, Stidham & Weber 1989) if
pij(a) = 0forall j < i—1anda € A, i.e. the process cannot move from state
a state with index < ¢ without passing through all the intermediate states. We wil
often find it easier to work in terms of the upper tail probdiei p;;(a) = P(X;+1 >
j1 Xy =i, 4 = a) = Y2 pi(a). To avoid degeneracy, we assume thata) < 1
fora € Aandthatforeache {1,..., M}, p;_1(a) > 0foratleastone € A. In this
setting, a recurrent model requires that, foralt A, p;_1(a) >0fori=1,..., M



andp;;(a) < 1forall 7 € S. In contrast a communicating model allows there ta be
anda with p;_1(a) = 0 and /orp;;(a) = 1.

To apply this idea in a wider context, we note that the essehaeskip free model
is that: (i) there is a single distinguished state, 8ay(ii) for any other state there
is a unique shortest path froirto 0; (iii) from each state # 0 the process can only
make transitions to either the adjacent state in the unigtiefpom: to 0, or to some
statej for whichi lies in the unique shortest path fromo 0.

In the finite one dimensional case, for edcthere is exactly one state for which
the shortest path to stafehas lengtht. Thus there is d—1 mapping of the states to
the integerd0, 1, ..., M} such that the distinguished state map8 &md the state for
which the shortest path had lengthmaps tok. In a more general setting, for each
k there may be more than one state for which the shortest patlehgthk. In this
case, rather tha mapping to the integer lattice, there is a fixed t7eéin the graph
theoretic sense) such that each state corresponds to aeumigie of the tree, with
the distinguished state mapping to the root node. It may teeipsualise movement
between states in terms of the corresponding movement betagdes on the tree.

To formalise this general model, we start by consideringitefiooted tre€/” with
N + 1 nodes labelled, 1, 2, ..., N, with root nhode), and with a given edge set. The
tree structure implies that for each pair of nodesnd ; there is a unique minimal
path (set of edges) in the tree that conné@nd;. Thus the nodes in the tree can be
partitioned into level seté, = {0}, L, ..., Ly, such that, forn =0,...,. M —1,i €
L,, . ifand only if the minimal path froni to 0 passes through exactly intermediate
nodes.

For adjacent nodese L,, andj € L,,.1, we sayi is the parent off andj is a
child of 7 if the minimal path fromyj to 0 passes through More generally, foi € L,,
andj € L,, r > m, we sayj is a descendant afif the minimal path fromj to 0 passes
throughi. Each nodej # 0 has a unique parent. We writ¢;) for the parent ofj,
we write D(j) for the set of descendants fifand we write7 (j) C T for (the nodes
of the) sub-tree rooted gt so7(j) = {j} U D(j). A state with no descendants is
said to be a terminal state, so all states in the highest leyehre terminal states. For
simplicity of presentation we will assume that these arecthlg terminal states; the
analysis easily extends to cases where intermediate |éyglsan also contain some
terminal states. For eache D(i), we write A(7, j) for the set of states following
in the unigue minimal path in the tree connecting j, so if the path passes through



s — 1 intermediate states and takes the farms r¢ — r; — -+ — r, = 7, then
Aty 7) =4ry,...,rs}.

Now consider a finite MDP with state spaSeand action spacé. Assume we
can construct a rooted trée such that (i) the states ifi correspond to the nodes of
T, and (ii) for every staté € S and actioru € A, the only possible transitions from
state; under actior: are either to its parent statéi) or to a state in the subtrég(:)
rooted ati, with appropriate modifications for statewhich has no parent and for
terminal nodes which have only a parent and no descendaetsiNgay that such an
MDP is skip-free (in the negative direction) on the trge As with the integer lattice
model above, it is often convenient work in terms of the thpargail probabilities
pij(a) = P(Xy1 € T(j3)| Xy =i, Ay = a), corresponding to the probability that the
next transition from stateunder actioru is to a state in the subtree rooted;at

To illustrate and motivate the general case, where a moidgdsional model is
required, consider ((He 2000, Yeung & Sengupta 1994)) adesisgrver multi-class
gueueing system witlk’ > 1 customer classes and finite capacitly (including the
job, if any, in service). Assume the service discipline is-pmptive but otherwise
takes no account of class. A job that arrives when the systematifull enters service
immediately and the job currently in service at that pointimes to the head of the
buffer. When a job completes service, the server next s¢heg®b at the head of the
buffer. Any job that arrives when the system is full is lost.

The model is most naturally formulated in continuous timeghwxponential inter-
arrival and service time distributions, though it can gab# translated to a discrete
time setting using the methods of section/4.2. Assume ¢élgebs arrive at rate\;
and complete service at class and action dependentgéte where different actions
a € A correspond to different service levels. Since the modedsigekeep track of the
class of each job as it enters service, we take the state helmeultidimensional vector
i = (i1,...,1y) Wherei; denotes the class of the job currently in servigedenotes
the class of the job waiting for service in the buffer in place m = 2,..., M, and
im = 0 if the mth place is empty. Assume costs are incurred atd#@te:) reflecting
both holding costs and action costs.

The possible transitions under the model are the completidhe job currently

in service, corresponding to the transitiba= (i1, ...,iy) — (i2,...,7,0), Or the
arrival of a class: job (k = 1,..., K) to a patrtially full system, corresponding to the
transitions = (i1,...,iy) = 7 = (kyi1, ... ip—1)-



For M > 2 this model cannot be represented as a skip-free MDP witafisteuc-
ture, i.e. with each statehaving exactly one chilg with ¢ = p(j). To see this, let
a denote the stat@u, iy, ..., 7)) With iy, # 0, let b denote the staté, i, . .., i),
differing from a in only the first component, and letdenote the stat@., ..., iy, 0).
The only possible direct transitions to and franare frome and toc. Similarly for b.

If cis restricted to having just one child, then the only podisies are either (i has
no parent (sa is the root state)y = p(c) andc = p(b), or (i) b has no parent (sb

is the root state)) = p(c) andc = p(a). In case (i),b can have no children so none
of the other states can reach the root state as they cancbtr@aa skip-free manner
under any policy; in case (ip can have no children and a similar argument applies.

(1.1,1)(2.1.,1) (1.2,1)(2.2,1) (1.1.2)(2.1,2) 1.2.2)(2.2.2)

Figure 1: The tre@ corresponding to the state space for the pre-emptive rolakis
gueueing system of withl = 2 job classes and capacity = 3.

However we can represent the model as a skip-free MDP on gtresfollows.
We takeL, = {(0,...,0)} to contain the state corresponding to the empty queue and
take the level seté,,, m = 1,..., M to each contain thé™ states of the form
t = (i1,...,im,0,...,0). Given a stat& = (i1,...,ip) € L,, We assign it parent
p(2) = (i2,...,ip,0) and assign i< children of the forny = (k,41,...,in1), k =
1,..., K (with appropriate modifications fdr, andL,,). The set of descendari¥z)
is the set of all states of the forthy, ..., k., 41, ... ,0,,0,...,0)forr=1,..., M—m
(where there aréd/ — m — r trailing 0s). The possible transitions under the model
correspond exactly to transitions frainto its parenp(z) or to one of itsK” children, so
the MDP satsifies the conditions required for it to be skip irethe negative direction
on the treef". Figurell illustrates the tree corresponding to the stateesfor a system
with K = 2 job classes and capacify = 3. Extensions with direct transitions to



more general descendants, of fofkg. .., k,i1,...,i,,0,...,0) are possible if batch
arrivals are allowed, subject to appropriate capacity tairgs.

3 Theskip-freealgorithm

For finite recurrent MDP models, the solution to the expeatatage cost problem can
be characterised by the correspondangerage cost optimality equatiorfButerman
1994,58.4)

h; = mingea{ ci(a) — g + Zjespij(CL)hj } i€esS (1)

in that (i) there exist real numberg andh},i € S satisfying the optimality equa-
tions; (ii) the optimal average cost is the same for eachairstate and is given by
g*; (iii) the optimality equations uniquely determigé and determine thé; up to
an arbitrary additive constant; (iv) the stationary detarstic policy d* is an average
cost optimal policy, where, for eache S, d* (i) is an action achievingin,{ ¢;(a) +
> jesPij(@)h; }.

It follows from (iv) above that there is an optimal policy imet class of stationary
deterministic policies. We therefore restrict attentimni now on to stationary deter-
ministic policies, writing ‘policy’ as a shorthand for ‘stenary deterministic policy’
and writingg(d) for the average cost under a given stationary determirpsticy d.

For each, j € S, we can interpreb; — h} as the asymptotic relative difference in
the total cost that results from starting the process ie stather than statg under the
stationary deterministic poliay*. Thus the quantities; —h; are uniquely defined, but
the quantities:;, : € .S are defined only up to an arbitrary additive constant. Wedocu
on the particular solution normalised by settffg= 0 and refer to the corresponding
h; as the normalised relative costs under an optimal policy.

In general, the optimality equatiorid (1) cannot be solveeatly. Instead an opti-
mal policy in the class of stationary deterministic polgcis usually found by methods
based on value iteration, policy iteration or linear prognaing, or combinations of
these approaches (Puterman 1994). For skip-free model®vieo, we have the fol-
lowing simplification.

Lemma 1l For finite recurrent skip-free average cost MDPs, the optitp&quations



(@) are equivalent to the equations

yi = ming{ (c;(a) — ) /pipay(a) } i€ Ly (23)
Y = mina{ (Ci(a) —x+ Zkep(i) pik(a)yk)/pip(i)(a) } i€ Ly—1,...,Ly (2Db)
0 = ming{ co(a) —z + ZkeD(o) Pox(a)yx } (2c)

in that (i) these equations also have unique solutiorsnd y;, i € D(0); (ii) the
optimal average cost ig* = = and the normalised relative costs under an optimal
policy satisfyh; — Wiy = ¥ir, 1 € D(0); (iii) an optimal stationary deterministic
policy is given byl*, whered* (i) is any action minimising the rhs of the corresponding
equation fory; andag is an action minimising the rhs ip_(Rc).

Proof For skip-free models, the only possible transitions froatest € D(0) are to
statep(i), to state itself, or to a statg € D(i). Thus equations (1) take the form

hi = mingea{ c;(a) — g + Zjepu) pij(a)h; + pii(a)hi + pipey(a)hpey 1 €S
3)

with appropriate modification to give the normalised santwith h, = 0. Valuesh;
andg satisfy [3) if and only if in each equatidn < the rhs for alk:, with equality for at
least one:i. With appropriate modifications for the root no@land for terminal nodes,
simple rearrangement in shows that< c;(a) — g + >_;cpu Pij(a)h; + pi(a)h; +
Pioti) (@) ho(iy i @nd only if piyi) (a) (hi — ) < ci(a) = g+ 2 jep Pis(a)(hy — hi),
and that equality in one expression implies equality in theo

Now write x for g and for eachi € D(0) write y; for h; — h,;). For eachj #
i € D(i), write A(, j) = {r1,...,rs} for the states following in the unique minimal
path fromj toi. For eachk = 1,...,s, r_; is the parent of so thatr,_; = p(rx).
Henceh; —h; = hy, —hy, = Zzz1<hm —hy_y) = Zzz1<hm - hp(m)) = Zizl Yry =
ZreA(m) y-. Now if j is a descendant afandr # j is in the path connectingand
j, thenr is a descendant afandj is in the subtree rooted af and vice versa. Thus
for fixedi anda we have thad ;1 pij(a)(hy — hi) = 32 cp) Dorenp g Pis(@)yr =
ZreD(i) ZjeT(r) pij(a)yr = ZrED(i) Pir(a)yr-

Taking account of the modifications for the root state 0 and the terminal states
i € Ly, and thefactthate L,, = D(i) C Ly,+1 U---U Ly, it follows that there
areg andh; satisfying [(3) if and only if there are valuesandy; satisfyingl(2). O



In the optimality equations[{2), the value®f i € L), depends only on, and in
each subsequent equation the valug;alepends only on: and the values aofj,. for
k € D(i). Thus, if the value ofr was known, it would be easy to compute then
turn fory, € Ly, ..., L, and to determine the corresponding policy which takes the
optimal action in each statec S.

This observation motivates an iterative approach to findingaverage cost op-
timal policy: (i) choose an initial policyl, and compute its expected average cost
g0 = g(dp); (ii) given a current policyl,, with expected average cogt, compute an
updated policyd,,, by settingz = g, and solving[(Za) and_(2b), and compute its
expected average cogt. ; (iii) iterate until convergence. This approach forms the
basis for the followingkip-freealgorithm. Its properties are set out in the subsequent
theorem.

Skip-free algorithm
1. Initialisation

Choose an arbitrary initial policy,. Perform a single iteration of step 2 below, with
x = 0 and witha, restricted to the single valug (i), i € S. Setgy = uo.

2. lteration

Setr = g,.

e Fori € L), compute:
a; = argmin,{ (ci(a) — =) /pipi)(a) }
yi = (ci(a) — ) /pipiy(ai)
ti = 1/pip@iy(ai)
eForie L., r=M—1,...,1compute:
a; = argmin,{ (¢;(a) —z + ZkeD(i) pik<a)yk)/pip(i)<a) }
Yi (ci(ai) —z + Zkep(,-) Dir(ai)yk) / Pipti) (i)
ti = (1+ EkeD(z’) Pir(@i))/Pip(i(ai)
e Forj = 0 compute:
ap = argmin,{ (co(a) = + > yepo) Por(@)yk) /(1 + 2 ep(o) Por(ao)tr) }
uo = (colao) =2+ 3 pep(o) Por(a0)yk)/ (1 + 3 yep(o) Por(ao)tx)
to = (142 kep(o)Por(ao)te)/(1 = poo(ao))

Setd,,1(i) = a; fori € S and sely,. .1 = g, + uo-

9



3. Termination

If ug < 0 then return to step 2.

If o = 0 then stop. Returm,,; as an optimal policy, returp,.; as the optimal
average cost, and for eache D(0) returnh; = 37,1, v; @s the corresponding
normalised relative cost.

Theorem 2 Consider the skip-free algorithm above applied to a finiureent skip-
free average cost MDP model. Then:

(i) At each iteration eitherg,.; < g,., SO0d,; iS a strict improvement od,,, or
Jni1 = gn. INnthe latter case, .1 = g*, d,,.1 IS an optimal average cost policy, and the
corresponding normalised relative costs are giverpy= 0, h; = ZieA(O,j) Yi, J €
D(0).

(i) The algorithm converges after a finite number of iteoats.

Remarks (1) The motivation for the particular choice of action intst@ is given in
the remarks following the proof of the theorem. (2) The updatre particularly sim-
ple in the one dimensional case whete= {0,1,...,M}. Here}, ., simplifies

to E,i”:m andp(i) simplifies to: — 1. (3) The computational requirement for each
iteration in step 2 of the algorithm is clearly similar to ttwd the corresponding step
in value iteration, in that it only requires simple evaloas rather than the solution of
a set of equations. While the algorithm is also similar tagyévaluation in that it
returns the average cost of poli¢y at the end on theth iteration, it differs from stan-
dard policy iteration in that it the values gfreturned do not correspond to the relative
costs undetl,,. Only at convergence do the relative costs and average acosspond
to the same (optimal) policy. (4) The basic principle unged this iterative approach
appears to be similar to that used in (Low 1974), but the teshére were restricted
to a very specific model with simple birth and death structu@ther treatments of
skip-free models (Wijngaard & Stidham 1986, Stidham & Web889, Stidham &
Weber 1999, Wijngaard & Stidham 2000) have used iterativihaus to search for a
good approximation for the average castbased on the value of current and previ-
ous approximations, or used the form of the optimality eiquiatto derive qualitative
properties of the solution, in particular monotonicity giftimnal policies, but neither
approach explicitly identified the simple skip-free impeavent algorithm described
here.
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4 Discounted, continuous and communicating models

The skip-free algorithm can also be used to solve discowustland continuous time
problems, in each case by transforming the problem into avalgnt average cost
problem. Moreover, a suitably modified algorithm can be usetlve communicating
models. For ease of presentation, we focus on the one dioraisiase, indicating
how the argument can be extended to the general model asgeéqui

4.1 Discounted cost models

Consider a recurrent MDP model that is skip-free in the regalirection, with state
spaceS = {0,1, ..., M}, finite action space!, transition probabilitiep;;(a), imme-
diate costs;(a) and discount factof. Following Derman (1970, p.31), we construct
an average cost MDP with modified state spéeel, ..., M, M + 1} and modified
transition probabilities and immediate costs given by:

pi;(a) = Bpij(a), di(a) = ¢;(a), i,j=0,1,....,M, a€ A
p§v1+1M(a) =B, cr+1(a) =0, a€c A
p§M+1(a):1—5> 1=0,1,.... M+1, a€ A

In the spirit of similar models (Low 1974, Wijngaard & Stidhal986), we note that
this new average cost MDP inherits from the original model phoperty of being
skip-free in the negative direction.

Letg’andh], i =0,..., M + 1 be the optimal average cost and the corresponding
relative costs for the new average cost problem, normabgesettingh;, = 0. From
above,g’ andh;, i = 1,..., M + 1, are the unique solutions to the optimality equa-
tions (1), and any set of actions achieving the minimum orrtisedefines an optimal
policy. In terms of the original parameters, these equatiake the form

Py  =—g +Bhy+ (1= By,
M

n = min{ ci(a) — ¢’ + B> pia)h+ (1= By} i=0,.... M
j=0

Now setv; = ) — R}y, +¢'/(1 =), j = 0,..., M. Then rewriting the equations

11



for hg, ..., hy interms ofvy, . .., vy, We see that the; satisfy the equations
M
Ui:min{ci(a)+52pij(a)vj} i=0,...,M.
§=0

Thus thev; satisfy the optimality equations for the discounted cosbfgm, and so
represent the unique optimaldiscounted cost function (Puterman 1994, p.148).

Finally, letz’ andyy, ..., y),,, be solutions to the policy iteration algorithm ap-
plied to the new skip-free average cost problem. Thies 2’ andh); = y; + --- +
vy, j=1,..., M + 1. Thus the optimal value function for the discounted probiem
given explicitly in terms of the output of the policy iterati algorithm by

vj =2 /(1= B) = Y1+ + Yrrsr) j=0,....M

and a policy which is optimal for the modified average cosbfem is also optimal for
the original discounted cost problem.

The extension to the general skip-free MDP tree model isg$ttirward, requir-
ing just the addition of an extra state for each terminales(abde) to preserve the
skip-free property. This extra state now becomes the teimade in that branch.
Transitions from this extra state are to the correspondiagipus terminal node, with
probability 3, or back to itself, with probability — 5. Transition probabilities from
non-terminal states are modified as above, by seftifig) = Sp;(a) if j is a non-
terminal node of the modified tree and by assigning the reimginansition probabil-
ity 1 — ( to the newly added terminal nodes of the modified sub-frég rooted at
1. The precise assignment may be chosen arbitrarily — for pigraach new terminal
node in the modified sub-tree may be chosen with equal prhyabias long as the
total probability sums ta — .

4.2 Continuoustime models

Consider a continuous time Markov decision process (CTMBIR) finite state space
S and finite action spacd. Assume that when the current actioriand the process
is in stateX, = ¢, the process incurs costs at raté:) and makes transitions to state
J € S atrateg;;(a) (Where transitions back to the same state are allowed).nffioite
horizon problems, under either an average cost or a disedwust criterion, we can
restrict attention to stationary policies and to modelslmol decisions are made only

12



at transition epochs (Puterman 1994, p.560). For simplaifpresentation we again
restrict attention to recurrent models and defer treatraemhichain and communicat-
ing models to Section 4.3. As for MDPs, we say a CTMDP is skag-in the negative
direction if the process cannot move from each siatea statej < ¢ without passing

through all the intermediate states, yg(a) = 0 forall j <i — 1 anda € A.

To apply the skip-free algorithm, we first convert the moaeht equivalent uni-
formised model (Lippman 1975) with rate= max;cg qca Ejes ¢ij(a). Inthis model,
when the current action isand the process is in statetransitions back to statieoc-
cur at rate\ — >, ¢;;(a) while transitions to statg # i occur at ratey;;(a), so that
overall transitions occur at uniform rate Next we construct a discrete time problem
with the same state and action space, where.fpre S anda € A the transition
probabilities and immediate costs are givenghya) = gi;(a)/A, i@ # j;pj(a) =
1= > ai(a)/A;ci(a) = Aci(a). If the original CTMDP is recurrent and skip-
free, then the discretised model is recurrent and skipdnekecan be solved using the
algorithm.

Finally, letd’ andg’ be the optimal policy and the optimal average cost identified
by the algorithm for the discrete time problem. Then theroptipolicy d* and the
optimal average cogt* for the uniformised continuous time problem are the same as
d" andg’, and the normalised relative costs for the uniformised j@robare given in
terms of those for the discrete problem/by= h;/A, i € S (Puterman 199411.5).

4.3 Communicating models

So far we have assumed the MDP model is recurrent. There &rehapplications
for which this assumption excludes sensible policies, agcholicies that are recur-
rent only on a strict subset ¢f. Simple examples include: maintenance/replacement
problems where a policy might specify replacing an item withenstate reached some
lower level K > 0 with a item of level. < M; inventory problems where a policy
might reorder when the stock reached some lower |&vel 0 and/or reorder up to
level L < M; queueing control problems where a policy might turn theveseoff
when the queue size reached some lower Iével 0 and/or might refuse to admit
new entrants when the queue size reached |level M. In each case, determining
optimal values forK” and L. might be part of the problem. In this section we extend
our result to the wider class of communicating MDP modelsrtable us to address
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examples like these.

We say an MDP model isommunicatingf, for every pair of states andj in S,
j is reachable from under some (stationary deterministic) poli¢yi.e. there exists
a policy d, with corresponding transition matrik;, and an integer, > 0, such that
Py(X,, = j|Xo = 1) > 0. We say that/ is unichainif it decomposes5 into a single
recurrent class plus a (possibly empty) set of transietest# there is more than one
recurrent class we sakis multichain Letd be a multichain policy and, for each let
gr denote the average cost undestarting in a state i, and letE,, be arecurrent set
with smallest average cost, s@y. Because the model is skip-freg,, must consist of
a sequence of consecutive stat€s, ..., L,,; again, because the model is skip-free,
the action in each each stategreater tharl.,, can be changed if necessary so that
E,, is reachable frony; finally, because the model is communicating, the action in
each statg less thank,,, can be changed if necessary so that is reachable from
j. Denote byd’' the new policy created by changing actions in this way, ifassary,
but leaving the actions ift,, unchanged. Thed is unichain by construction, and the
average cost starting in each state S is g,,, which is no greater than the average
cost starting inj underd. Thus, for average cost skip-free communicating models,
nothing is lost by restricting attention to unichain pagi

In contrast to recurrent models, communicating modelsatlere to be anda
with p;;(a) = 1 and/orp;;_1(a) = 0. Foreach- =0,1,..., M, letU, be the (possibly
empty) set of unichain policied for which p,.,_1(d(r)) = 0 but p;_,(d(¢)) > 0 for
i=r+1,...,M (where we takey;_;(a) = 0 for all a for i = 0). Every unichain
policy must be inU, for somer. Partition the possible actions for each state S
into B; = {a € A: p;_i1(a) > 0} and its complemenB; = {a € A : p;i_1(a) = 0},
where B; may be empty butB; is non-empty by the assumptions of the skip free
model in Section2. Then for a unichain polidye U,, we have thati(i) € B;, i =
r+1,..., M;that state- is recurrent and(r) € B, by definition; and that statés< r
are transient.

Thus the minimum average cost over policiedjinis the same as the minimum
average cost for a modified skip-free MDP motlelwith the same transition proba-
bilities and immediate costs but with reduced state space {r,..., M} and with
state-dependent action spacgs= B, fori = r + 1,...,M and A, = B,. In this
notation, the model of Sectidn 2 corresponds$itoand state plays the same role as
the recurrent distinguished statelin that state) plays inIl,. If we compare the result
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of applying the skip-free algorithm t,. with the result of applying it tdl,, we see
that, for the same current value ofthe algorithm computes the same valueg;of;,
anda; in states = M, M — 1,...,r + 1. However, in state, the skip-free algorithm
applied toll, computes quantities appropriate to the distinguished,statu” andu”,
where

@ = argmingep { (¢;(@) =+ 0 Bel@)yn) /(1 + 3030, Pr(@)tn) }
uo=(ep(an) =+ 0 P )n) /(L 00 B )

and computes an updated ‘minimising’ poli¢y, , with average cosj;,_ ,,where

d;—i—l(r) = ar; d;+1(i):a’i7izr+17"'7M7 and

T _ T
In+1 = Tr+u.

This motivates the following modified skip-free algorithfirst, it includes these
extra computations for each stateso that, in a single iteration, it simultaneously
computes the optimal policy; , , and its average cosf,,, for eachsS,. Secondly,
at the end of the: — 1th iteration it setst = ¢, = min, ¢}, and setsi,, to be the
corresponding policy, where ties are broken by choosingjiiveith the smallest index
r. Say the minimum average cost at this stage is achieved bycg path indexr = K
Then, by the properties of the skip-free algorithm appleed £, at the end of the next
iteration either (i)g2,, < ¢/ = z, in which casey,; = min, g/, < 2 = g,; or
(i) X, = 0andgX, = g¥ = x = min, g, S0g11 = g, andd,,1 = d¥,, is an
optimal average cost policy for starting states K, ..., M. In this case, because the
model is communicating, it is possible (Puterman 1994, 1).85 modify the actions
chosen by the policy in the, now transient, staies ., K — 1 so that the modified
d,., satisfies the optimality equations for all states. ., M and is an average cost
optimal policy. We summarise this discussion in the follogtheorem.

Theorem 3 Consider the skip-free algorithm modified as above appleed finite
communicating discrete time average cost skip-free MDPainwidh state spacé =
{0,1,2,...,M}. Then:

(i) At each iteration of the skip-free algorithm either,; < g, andd,, ., is a strict
improvement owl,,, or g,.1 = g, and for somek the policy satisfies the optimality
equations for statef’, ..., M.

(i) The modified skip-free algorithm converges after a@mtimber of iterations.

15



Finally, note that it is easy to check if a skip-free model ésnenunicating. An
assumption of the (non-degenerate) skip-free model wasteh staté < M was
reachable froni+1. It follows that a skip-free MDP with state spage= {0,1,..., M}
is communicating if and only if\/ is reachable fron under at least one stationary
deterministic policyd. Let N, = 0, let N; be the index of the maximum stajefor
which py;(a) > 0 for somea € A, and form = 1,2, ... let N, be the index of the
maximum statg for whichp;;(a) > 0 for some0 < i < N,, anda € A. As the state
space is finite, the sequen¢#/,,} terminates, say with stat¥. Since the model is
skip-free,N is the largest state that is reachable by all states bel@mdtthe model is
communicating if and only ifV = M.

The extension to a general skip-free communicating modekraightforward.
Again, the idea is that for each statéhe skip-free algorithm is modified so that in
passing it solves the corresponding sub-problénwith state spacd (i) and with
state; as the distinguished state, and then computes the optirdategh average cost
and policy by minimising over the costs and policies for eatthe sub-problems.

5 Proof of Theorem 2

We start our analysis of the average cost MDP model by defiairgjated problem
(or class of problems) that we will call therevised first return problemThe model
for this problem has the same state spé¢ce¢he same action spack and the same
transition probabilitiep;;(a)} as the average cost model. However, for each fixed
the immediate costs in the correspondingevised problem are revised downward by
x, so¢;(a) is revised tor;(a) — x. Whereas the original problem was to find a policy
d that minimised the expected average ggsl), the objective for this new problem is
to find a policy that minimises the expectedevised cost until first return to stafle
where, for a process starting wity, = 0, we define the first return epoch to stat®

be the smallest value > 0 such thatX,_; # 0 and X, = 0. The MDP is assumed
recurrent under any stationary deterministic policy,rsis well defined and almost
surely finite.

For a fixed policyd, starting in staté, write 7(d) for the expected first return epoch
underd, C(d) for the expected first return cost undgrand H (d, x) for the expected
x-revised first return cost undér The average costs and theevised costs undet
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are related by the equations
gld) = C(d)/7(d), H(d,z) =C(d) —az7(d), g(d)=z+H(dz)/m(d), (4)

where the first equation follows from viewing the average posblem from a renewal-
reward perspective (Ross 1970, p.160) and noting that 8teteecurrent under any
stationary deterministic poliay, and the second follows from noting that the expected
x-revised cost undet until first return to staté is just the original expected caStd)
adjusted downwards by an amounfor an expected time periodd).

Lemma4 Forfixedz, leta;, i € D(0) be actions minimising the rhs in equatiohsli(2a)
and (2b) and ley;, i € D(0) be the corresponding values. Set

a0 = argmin,{ (co(a) = o+ 3", po(@u)/(1-pw(@) }. ()

and letd be the policy that takes actiaf) in statei, ¢ € S. Thend minimises the
expectedz-revised cost until first return to state and the expected-revised first
return cost undetl is

H(d, x) = (co(ag) —x + ZRGD(O) Pok(a0)yr)/ (1 = poo(ao))- (6)

Proof Since the process is Markov and skip-free in the negativection, it follows
that a policy minimises the expecteerevised cost until first return to stateif and
only if it also minimises the expectedrevised total cost until first passage to state
for each starting state# 0 €, i.e.i € D(0), and hence minimises the expected cost
until first passage fromto to p(i) for eachi € D(0). For the one-dimensional case
whereS = {0,1,..., M}, this problem has been called therevised first passage
problem (Stidham & Weber 1989). For fixadand: € {1,..., M}, leta; be actions
minimising the rhs in equationis (2a) andl(2b) and,ldie the correspondingvalues.
Then they show that the polieythat takes actiod(:) = a; in statei is optimal for the
x-revised first passage problem and the minimal expectediotittirst passage from
to:— 1 is given byy;. With only minor notational changes, their results extemeatly

to the general case whefecorresponds to the nodes of a tre,. . ., M} is replaced
by D(0) andi — 1 is replaced by(i). It follows that the policy that uses actions

in i € D(0) has the property that for each statie also minimises the expected total
x-revised cost until first passage to statand that the minimum expectedrevised
total cost until first passage to sté@testarting in state # 0, is given by the sum of the
y; values along the path fromo 0, i.e. ZRGA(OJ) Y-

17



Now consider a process that starts in statelnder a policy that specifies actian
in state0, the expected time until the process first leaves $tégd /(1 — pyo(a)) and
during that time it incurg:-revised costs at raig(a) — = per unit time. Conditional
on leaving stat®, the first transition is to statewith probabilitypg;(a)/(1 — peo(a)).
From above, the minimum additional expected total costl @i process next re-
enters staté is EkeA(O,j) yx, and this minimum expected cost is achieved by the pol-
icy that takes actiong; in states € D(0). Thus, if a policyd takes actiom in state0,
the minimum expected-revised cost from leaving stabeuntil first return to staté is
H(d,z) = Ejel)(o) poj(a) ZkeA(o,j) Y/ (1=poo(a)) :EkeD(O) EjeT(k) poj(a)yr/(1—
poo(@)) = _kepo) Por(@)yx/(1 — poo(a)). It follows that the optimal action in state
is one that minimises the quantity,(a) — = + >_cp (o) Por(a)yr)/(1 — poo(a)) and
the expected-revised first return cost (d, =) is as shown. O

Lemmab’ Letd be a fixed policy with expected average cgst) and letd! be the
optimalz-revised policy specified in Lemrk 4 for the case ¢(d). Then:

(i) the average cost undet is no greater than the average cost under

(i) if the average cost undet' is the same as the average cost undénend! is an
optimal policy for the average cost problem.

Proof (i) For the fixedz, we know from Lemma&l4 that' is an optimal policy for the
z-revised first return problem. Thusg(d', z)) < H(d,z), and from [(4) this implies
C(d') — x7(d') < C(d) — z7(d). Becauser corresponds to the average cost under
d, then, from [#),2 = g(d) = C(d)/7(d) soC(d) — z7(d) = 0. Thus,H(d") =
C(d") — z7(d") < 0andg(d') = C(d")/7(d") <z = g(d).

(ii) If g(d') = g(d), then from aboved (d',z) = H(d) = 0. But, from Lemmd#,
H(d",x) = (colao) — = + Y4y Por(ao)yr)/(1 — poo(ao)), wherepoo(ag) < 1. It
follows that H(d',z) = 0 = (co(ao) — = + Yoot Pox(ao)yx) = 0. Thus, when
g(dY) = g(d), the valuesr = g(d') and the corresponding values gf i € D(0)
satisfy the optimality equations_(2at2c) adidis a decision rule corresponding to the
actions minmising the rhs of each equation. It follows titats an optimal average
cost policy, the optimal average costis= g(d') = g(d) and the normalised relative
costs under the optimal policy ahg = ZRGA(OJ) Y- O

Lemma6 Leta;, i € S be fixed actions and letbe the fixed policy for whicti(:) =
a;, 1 € S. Perform a single iteration of step 2 of the skip-free algfum with starting
value z and with the action in each staterestricted to the single value;. If the
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algorithm output values arey, y;, i € D(0) andt;, ¢ € S, thenH (d, z) andr(d) are
given by equation${6) andl(7). Further, if the starting vaisz = 0, theng(d) = wuy.

Proof The expression foff (d, z) follows from Lemmad_# by considering the possible
actions in state to be restricted to just the given.

For the expected first return epoch undewritet, = 7(d) > 0 and writet; > 0 for
the expected first passage timéom i to: — 1. Interprett, as the expectettrevised
first return cost undedf for a model with immediate costs(a) = 1 for all states and
actions (and withx = 0), with a similar interpretation for thg. Then, as with the;,
thet; can be computed recursively using the equatiQrs 1/p;,)(a;), i € Las; t; =
(14 Ekem) Pik(ai)tk) /Dipeiy(@i), © € Lyj—1, ..., Ly, and

7(d) = to = (1 + ZRGD(O) Pok(ao)tr) /(1 — poo(ao))- (7)

Finally setx = 0. Theng(d) = H(d,0)/7(d) from (4), so from [(6) and[(7)
9(d) = (co(ao) + 2 pep(o) Por(@0)yi) /(1 + 3 1oy Por(ao)tr) = uo. O

Given a current policyl with average cost = g(d), both the original optimality
equations[(R) and the-revised approach suggest updatihgvith a policy that for
i € D(0) uses the actions; identified by equations (2a) and (2b). However they
differ in their suggested actiom, in state0 — the former suggests using the action
minimising the rhs in equation (2c) while the latter suggessting the action identified
in (8). However, the above lemma suggests another possibleecwould be

ap = argmin,{ (co(a) — 2 + ZkeD(O) Pox(a)yr)/ (1 + ZkeD(O) Por(ao)tr) }- (8)

This results in a policy that minimises the average cost allgrolicies that take the
given actionsy; in states € D(0). The next lemma shows all three variations either
strictly improve ond or identify an optimal policy.

Lemma7 Letd be a fixed policy and let = g(d). For thisz, leta;, i € D(0)
be actions minimising the rhs in equatioisi(2a) ahd (2b) aetd)), i € D(0) be
the corresponding values. Leta} be the action specified by equatidd (5), dét
be the action minimising the rhs of equatidnl(2c), andafebe the action specified
by equation[(B). Fork = 1,2,3, let d* be the policy that takes action in state
i € D(0) and takes actiom? in state0. Then either (i) all three policieg* satisfy
g(d*) < g(d), or (ii) all three policies satisfy)(d*) = g(d) and each of the three (and
d itself) provides an optimal average cost policy.
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Proof For fixedz and any policyd, g(d) — x = H(d,z)/7(d) from (4) andr(d) is
positive, sqgy(d) — = has the same sign @5(d, ). Since all three policies take actions
a; in statesi € D(0), expression[(6) gives their respective expectagvised first
return costs asf (d",x) = (co(ag) — @ + X yep(o) Por(ag)yr)/ (1 — poo(ag)), where
eachpo(af) < 1 by the assumptions of the skip-free model.

Now H (d2,2) <0 = (co(ad) — 2+ epo) Por(ad)ye)/ (1 —poo(ad)) < 0 =
(colay) = = + P pepo) Por(ag)yr) /(1 — poo(ag)) < 0 (asay minimises this quantity
over choice ofe) = H(d"',z) < 0. ConverselyH (d',z) < 0 = (co(a}) —
24 Y pepio Por (@) /(1= poolah)) < 0 = (colad) = &+ Yy Po(ad)n) <
0 = (co(ad) = = + X4ep(o) Por(ag)yx) < 0 (asai minimises this quantity over
choice ofa) = H(d?, z) < 0. A similar argument utilising the definition of and
the positivity of (1 + 3=, Pok(a0)tx) Shows thatl (d?, ) < 0 <= H(d*,x) < 0.
Exactly similar arguments then show thét{(d!,z) = 0 — H(d* z) = 0 <
H(d* x) = 0, and thatH (d',z) > 0 <= H(d*, ) > 0 < H(d? z) > 0. The
second part of the lemma then follows from Lenima 5. O

Proof of Theorem [2 (i) It follows from Lemmal6 that the initialisation step out-
putsgy = g(dy). Now letxz = g, and assume, = g(d,). Then iterationn +

1 outputsg, 11 = g, + uo, Whereuy = (co(ao) — = + D 4epo) Por(a0)yr) /(1 +
Zkep(o pok(ao)ty) = H(dpi1,7)/7(dnyr) from (@) and [(F). ThUSgnH = T+
H(dys1,2)/7(dpy1) = g(dns1) from equation[(¥). Sincg, = g(do), it follows by
induction thaty,, = g(d,) forn =0,1,2,....

By construction at iteratiom + 1 the skip-free algorithm specifies, (i) =
a;, i € S, whereqa;, i € D(0) are the actions minimising the rhs in equatidns (2a)
and [2b) for this value of (andy;, i € D(0) andt;, i € D(0) are the corresponding
y andt values), andi is the action minimising the rhs in equatidd (8). It follows
from Lemmd.¥ that eithey(d,.1) < g(d,), or g(d,+1) = g(d,) and bothd, ., and
d, provide optimal average cost policies. Finally the exgoes$or £} follows from
considering the case= 0 in the representation; — h; = >, . ;) ¥ IN Lemmall
with the normalisatiork, = 0.

(ii) Since the set of possible stationary deterministicisiea rules is finite, and
each iteration prior to convergence leads to a strict imgmoent and hence a strictly
different decision rule, the process must converge afterte fnumber of steps. [

Remark The update proposed in the skip-free algorithm ugesatisfying [(8). It has
the property that, for each current poli€yit generates an improved policy with aver-
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age cost at least as small as the other two variants condidetemma_ 7. This does
not guarantee that improvements using this update convastgr than improvements
using either of the other two variants. After one iteratieach policy may generate a
different starting point for the next iteration, and ourusdo not allow us to compare
the policies from these different starting points — inddedight be that the larger the
improvement from the first iteration, the smaller the imgment resulting from the
second iteration, as the average cost is now closer to timalptalue. Our experience
has been that the number of iterations taken by all threeadstivas often the same.
Where one was fastest, it was always the one uging (8), buethtive ranking of the
other two depended on the model parameters.
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