
A Note on Scheduling Jobs with Equal Processing Times

and Inclusive Processing Set Restrictions

Abstract

We consider the problem of scheduling n jobs on m parallel machines with inclusive processing

set restrictions. Each job has a given release date, and all jobs have equal processing times.

The objective is to minimize the makespan of the schedule. Li and Li (2015) have developed an

O(n2 +mn log n) time algorithm for this problem. In this note, we present a modified algorithm

with an improved time complexity of O(min{m, logn} · n logn).

Keywords: Scheduling; parallel machines; equal processing time jobs; inclusive processing sets

This is the Pre-Published Version.
Chung-Lun Li & Kangbok Lee (2016) A note on scheduling jobs with equal processing times and inclusive processing set restrictions, Journal of the
Operational Research Society, 67:1, 83-86.
This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of the Operational Research Society on 21 Dec 2017 (published
online), available at: http://www.tandfonline.com/10.1057/jors.2015.56.

1 Introduction

Consider the following scheduling problem studied by Li and Li (2015): Given n jobs J1, J2, . . . , Jn

and m parallel machines M1, M2, . . . , Mm, we would like to schedule the jobs on the machines so

as to minimize the makespan of the schedule. All jobs have the same processing time p > 0, and

job preemption is not allowed. Associated with each job Jj is a release date rj ≥ 0 and a grade

aj ∈ {1, 2, . . . , m}. Job Jj can be processed by any one of the machines Maj
, Maj+1, . . . , Mm but

not by any of the machines M1, M2, . . . , Maj−1.

This problem is denoted as P |Mj(inclusive), rj, pj = p|Cmax, andMj = {Maj
, Maj+1, . . . , Mm}

is called the processing set of Jj . The processing sets are referred to as “inclusive” because for every

pairMj andMk, either Mj ⊆Mk orMk ⊆Mj (see Leung and Li 2008). Li and Li (2015) have

developed a polynomial time algorithm for this problem. In this note, we provide a modified

algorithm with an improved time complexity. Without loss of generality, we assume that m ≤ n

(if m > n, then machines M1, M2, . . . , Mm−n are not needed and can be ignored).

As stated in Li and Li (2015), the set

Λ =
{

T
∣

∣ T = rj + kp; j, k ∈ {1, 2, . . . , n}
}

,

contains all candidates for the optimal makespan of P |Mj(inclusive), rj, pj = p|Cmax. Note that

|Λ| = O(n2). Li and Li (2015) have shown that the elements of Λ can be generated and sorted in

an ascending order in O(n2) time. Once the elements of Λ are sorted, it takes O(log |Λ|) = O(logn)

iterations of a binary search to determine the optimal makespan T ∗. In each iteration, there is

a target makespan T ∈ Λ, and we would like to either assign all n jobs to the machines while

maintaining a makespan no greater than T , or determine that it is impossible to do so. They have

developed an O(mn) time procedure to perform such a job assignment for any given T . Thus, the

overall time complexity of their algorithm is O(n2 + mn log n).

In our improved algorithm, we use two binary searches, but each binary search involves a

smaller set of candidates. In addition, we provide an alternative implementation of Li and Li’s

(2015) job assignment procedure. This alternative implementation has a running time of O(n logn)

1

instead of O(mn). Combining these two techniques, we obtain an overall time complexity of

O(min{m, logn} · n logn) for problem P |Mj(inclusive), rj, pj = p|Cmax.

2 The Job Assignment Procedure

We first consider the following problem: Given any target makespan T ∈ Λ, we would like to either

assign all n jobs to the machines so that all jobs finish processing no later than T , or determine that

it is impossible to do so. Li and Li (2015) have presented a procedure for solving this problem. The

procedure attempts to assign jobs to disjoint time slots of size p in the form of [T −kp, T−(k−1)p],

where k = 1, 2, . . . , min{n, bT/pc}. A job Jj can be assigned to a time slot [T −kp, T − (k−1)p] on

machine Mi only if rj ≤ T − kp and i ≥ aj. The details of Li and Li’s (2015) procedure are given

as follows.

Procedure P(T):

Step 1. Let Φ0 ← ∅.

Step 2. For i = 1, 2, . . . , m,

(a) let Φi ← Φi−1 ∪ {Jj | aj = i};

(b) let S ← T − p;

(c) let Ψ← {j | Jj ∈ Φi and rj ≤ S};

(d) if Ψ 6= ∅ then let ` ← argmaxj∈Ψ{rj}, schedule J` to start at time S on machine Mi, let

Φi ← Φi \ {J`}, let S ← S − p, and go to Step 2(c); otherwise, move on to the next i.

In this procedure, S keeps track of the start time of the slot, Φi contains the unassigned jobs

that are eligible for machine Mi, and Ψ contains the indices of those unassigned jobs that are

feasible for the time interval [S, S + p] on the current machine. In Li and Li (2015), the elements

of Φi, Ψ, and {Jj | aj = i} are maintained in a descending order of rj, and Step 2(a) of procedure

P(T) is a merging operation of two sorted arrays. Thus, each iteration of Step 2 requires O(n)

time, and the time complexity of the procedure is O(mn).

2

We now present an alternative implementation of procedure P(T). We use a balanced binary

tree to store the elements of Φi using rj as the key, so that a job can be inserted to and deleted

from Φi in O(logn) time (see Knuth 1998, Sec. 6.2.3 for a discussion of balanced trees). Let

hi = |{Jj | aj = i}|, which is the number of jobs inserted into Φi−1 in Step 2(a). Then, each

execution of Step 2(a) can be done in O(hi logn) time. The total running time of Step 2(a) in all

m iterations combined is O(
∑m

i=1
hi logn) = O(n logn). In Steps 2(c)–(d), instead of creating set

Ψ, we search for the job J`; that is, among the jobs of Φi stored in the balanced binary tree, we

search for the job with the largest rj such that rj ≤ S. This can be accomplished in O(logn) time.

In Step 2(d), removing J` from Φi requires O(logn) time. Thus, each execution of Steps 2(c)–(d)

requires O(logn) time. Note that Steps 2(c)–(d) are executed m+n times in the procedure. Hence,

the total running time of Steps 2(c)–(d) in all the iterations combined is O(n logn). Therefore, the

complexity of this alternative implementation of procedure P(T) is O(n logn). This leads to the

following lemma.

Lemma 1 Procedure P(T) can be implemented in O(min{m, logn} · n) time.

Proof. If m ≤ O(logn), then we use Li and Li’s (2015) original implementation, which has a

running time of O(mn). Otherwise, we use our alternative implementation, which has a running

time of O(n logn). Thus, procedure P(T) can be implemented in O(min{m, logn} · n) time.

3 Searching for the Optimal Makespan

We now present an improved method for determining the optimal makespan T ∗. Suppose that we

know an upper bound TU on the optimal makespan such that

TU − p < T ∗ ≤ TU .

Then, it suffices to consider a subset of candidates Λ′ ⊆ Λ for the optimal makespan, where

Λ′ =
{

T
∣

∣ T = rj + kp and TU − p < T ≤ TU ; j, k ∈ {1, 2, . . . , n}
}

=

{

T

∣

∣

∣

∣

T = rj +

⌊

TU − rj

p

⌋

p; j ∈ {1, 2, . . . , n}

}

.

3

After constructing set Λ′, we sort its elements in an ascending order and then use a binary search

to determine the optimal makespan T ∗. In each iteration of the binary search, there is a target

makespan T , and we execute procedure P(T) to determine if there exists a feasible solution with a

makespan no greater than T .

To determine TU , we consider the range of the optimal makespan. First, T ∗ ≥ rmax +p because

the completion time of the job with the largest release date is at least rmax + p in any feasible

schedule, where rmax = max{r1, r2, . . . , rn}. Second, T ∗ ≤ rmax + np because the schedule where

all n jobs are scheduled on machine Mm after time rmax with no idle time between jobs is feasible.

Thus, there must exist k ∈ {1, 2, . . . , n} such that

rmax + (k − 1)p < T ∗ ≤ rmax + kp.

Hence, it suffices to consider a subset of candidates Λ′′ ⊆ Λ for TU , where

Λ′′ =
{

T
∣

∣ T = rmax + kp; k ∈ {1, 2, . . . , n}
}

.

After constructing set Λ′′, we use a binary search to determine TU ∈ Λ′′ such that P(TU) returns

a feasible schedule but P(TU − p) returns an infeasible solution. So, TU − p < T ∗ ≤ TU . In each

iteration of the binary search, there is a target makespan T , and we execute procedure P(T) to

determine if there exists a feasible solution with a makespan no greater than T .

The following theorem states the main result of this note.

Theorem 2 Problem P | Mj(inclusive), rj, pj = p | Cmax is solvable in O(min{m, logn} · n logn)

time.

Proof. Note that |Λ′′| = n. Constructing set Λ′′ with its elements arranged in an ascending

order can be achieved in O(n) time. The binary search on set Λ′′ has O(logn) iterations. By

Lemma 1, each iteration requires O(min{m, logn} · n) time. Thus, TU can be determined in

O(min{m, logn} · n logn) time.

Once TU is determined, we construct set Λ′ for the main problem. Note that |Λ′| ≤ n, and

sorting the elements of Λ′ requires O(n logn) time. The binary search on set Λ′ has O(logn)

4

iterations. By Lemma 1, each iteration requires O(min{m, logn} · n) time. Hence, T ∗ can be

determined in O(min{m, logn} · n logn) time.

Table 1 provides a detailed breakdown of the running time of each component of the algorithm.

Table 1: Comparison of the two algorithms.

Li and Li’s (2015) Our algorithm

algorithm Determining TU Main problem

Constructing/sorting set Λ, Λ′, or Λ′′ O(n2) O(n) O(n log n)

Binary search O(log n) O(logn) O(log n)

Procedure P(T) O(mn) O(min{m, log n}·n) O(min{m, logn}·n)

Overall complexity O(n2 + mn log n) O(min{m, logn} · n log n)

4 Computational Experiments

To compare the performance of our algorithm with Li and Li’s (2015) algorithm, a set of computa-

tional experiments is conducted. In these experiments, we use randomly generated problems, and

the data of each test instance are generated in the same way as in Li and Li (2015). Specifically,

we set p = 1. For each job j, aj is randomly generated according to a discrete uniform distribution

within {1, 2, . . . , m}, and rj is randomly generated according to a continuous uniform distribution

within the interval [0, λ], where λ is a parameter which measures the diversity of job release dates.

We run the experiments with n = 300, 900, 2700, 8100, m = 2, 6, 18, 54, and λ = n/2m, n/m, 2n/m.

Thus, there are 4× 4× 3 = 48 different parameter settings. For each combination of n, m, and λ,

we generate 10 test instances.

From the proof of Lemma 1, procedure P(T) can be implemented more efficiently if we use Li and

Li’s (2015) original implementation when m ≤ O(logn) and use our alternative implementation

when m > O(logn). However, this saving in computational time is much less significant than

the saving obtained by the improved method for searching the optimal makespan T ∗. Hence,

for simplicity, in this computational study we use Li and Li’s (2015) original implementation of

procedure P(T) only. We coded our algorithm and Li and Li’s (2015) algorithm in Excel VBA

5

and ran the experiments on a PC with a 2.83 GHz processor and 4 GB RAM. Table 2 summarizes

the computational results, where the average computational time of the 10 test instances in each

parameter setting is reported.

Table 2: Average computational time of the 10 test instances (in seconds).

n = 300 n = 900 n = 2700 n = 8100

m = 2 λ = n/2m Our algorithm < 0.01 < 0.01 0.02 0.08

Li and Li’s (2015) algorithm 0.03 0.23 1.97 16.13

λ = n/m Our algorithm < 0.01 < 0.01 0.03 0.08

Li and Li’s (2015) algorithm 0.03 0.25 2.11 17.34

λ = 2n/m Our algorithm < 0.01 < 0.01 0.02 0.08

Li and Li’s (2015) algorithm 0.03 0.28 2.39 19.92

m = 6 λ = n/2m Our algorithm < 0.01 0.01 0.04 0.11

Li and Li’s (2015) algorithm 0.03 0.22 1.89 15.42

λ = n/m Our algorithm < 0.01 0.01 0.04 0.12

Li and Li’s (2015) algorithm 0.03 0.23 1.94 15.80

λ = 2n/m Our algorithm < 0.01 < 0.01 0.03 0.11

Li and Li’s (2015) algorithm 0.03 0.24 2.03 16.57

m = 18 λ = n/2m Our algorithm < 0.01 0.02 0.06 0.20

Li and Li’s (2015) algorithm 0.03 0.23 1.89 15.26

λ = n/m Our algorithm < 0.01 0.02 0.06 0.20

Li and Li’s (2015) algorithm 0.03 0.23 1.90 15.42

λ = 2n/m Our algorithm < 0.01 0.02 0.06 0.19

Li and Li’s (2015) algorithm 0.03 0.23 1.93 15.63

m = 54 λ = n/2m Our algorithm 0.01 0.04 0.14 0.45

Li and Li’s (2015) algorithm 0.03 0.25 1.94 15.37

λ = n/m Our algorithm 0.01 0.04 0.13 0.44

Li and Li’s (2015) algorithm 0.04 0.25 1.95 15.46

λ = 2n/m Our algorithm 0.01 0.04 0.12 0.41

Li and Li’s (2015) algorithm 0.04 0.25 1.97 15.56

From Table 2, we observe that parameter λ has little impact on the running time of our algo-

rithm. Parameter m has a small impact, while parameter n has a relatively large impact. As n

increases, the running time of our algorithm increases but its rate is much lower than that of Li

and Li’s (2015) algorithm. The reason is that Li and Li’s (2015) algorithm needs to construct and

sort the elements of an array Λ of O(n2) size, whereas both arrays Λ′ and Λ′′ in our algorithm are

of O(n) size. Overall, our algorithm is highly efficient and could solve the largest test instance in

less than 0.5 seconds.

6

5 Concluding Remarks

The technique presented in Section 3 can be applied to problems with a more general setting. Li and

Li (2015) have shown that their algorithm can be extended to solve the more general problem with

tree-hierarchical processing sets (i.e., problem P | Mj(tree), rj, pj = p | Cmax), and their extended

algorithm has an O(n2 + mn logn) running time. It is easy to check that sets Λ′ and Λ′′, as

well as the binary search routines, can be applied to problem P | Mj(tree), rj, pj = p | Cmax. The

execution of procedure P(T) requires O(mn) time (note: the alternative implementation presented

in Section 2 does not apply to tree-hierarchical processing sets). Hence, the running time of Li and

Li’s (2015) extended algorithm can be reduced to O(mn logn).

We would like to make a final remark that the technique presented in Section 2 (i.e., using a

balanced tree for merging job subsets iteratively) can be applied to other scheduling problems to

attain lower computational complexities. Ou et al. (2015) have used such a technique for solving a

single-machine scheduling problem with job rejection.

Acknowledgments

The first author was supported in part by The Hong Kong Polytechnic University under grant

1-BBZL. The second author was supported in part by PSC CUNY (The City University of New

York) Grant TRADA-46-477.

References

Knuth, D.E. (1998). The Art of Computer Programming, Volume 3: Sorting and Searching, 2nd

edition, Addison-Wesley, Reading, MA.

Leung, J.Y.-T. and Li, C.-L. (2008). Scheduling with processing set restrictions: A survey. Inter-

national Journal of Production Economics 116(2), 251–262.

Li, C.-L. and Li, Q. (2015). Scheduling jobs with release dates, equal processing times, and inclusive

processing set restrictions. Journal of the Operational Research Society 66(3), 516–523.

7

Ou, J., Zhong, X. and Li, C.-L. (2015). Improved algorithms for single machine scheduling with

release dates and rejection. Submitted for publication.

8

