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Abstract

We introduce a binary regression accounting-based model for bankruptcy prediction

of small and medium enterprises (SMEs). The main advantage of the model lies in

its predictive performance in identifying defaulted SMEs. Another advantage, which is

especially relevant for banks, is that the relationship between the accounting character-
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istics of SMEs and response is not assumed a priori (e.g., linear, quadratic or cubic) and

can be determined from the data. The proposed approach uses the quantile function of

the generalized extreme value distribution as link function as well as smooth functions

of accounting characteristics to flexibly model covariate effects. Therefore, the usual

assumptions in scoring models of symmetric link function and linear or pre-specified

covariate-response relationships are relaxed. Out-of-sample and out-of-time validation

on Italian data shows that our proposal outperforms the commonly used (logistic) scoring

model for different default horizons.

Keywords: logistic regression, generalized extreme value distribution, penalized regression

spline, scoring model, small and medium enterprises.

1 Introduction

A significant innovation of the Basel II regulatory framework (BCBS, 2005) is the greater

use of risk assessments provided by banks’ internal systems as inputs to capital calculations.

Based on the internal ratings-based approach of the revised framework, banking institutions

are allowed to use their own measures as input for their minimum regulatory capital calcula-

tions. The main input for these calculations is the probability of default forecasted one year

ahead. Therefore, in many credit risk models, such as CreditMetrics (Gupton et al., 1997),

CreditRisk+ (Products, 1997) and CreditPortfolioView (Wilson, 1998), default probabilities

are essential input parameters. Even if default risk could be estimated for different kinds

of loans, i.e. corporate loans, those for small and medium enterprises (SMEs), and the cre-

ation of a rational and comprehensive policy for them, play a central role in the European

Union (EU) economy (see Small Business Act for Europe, 2008, Brussels: European Com-

mission, http://ec.europa.eu/enterprise/entrepreneurship/docs/sba/SBA IA). Banks have re-

alized that small and medium sized companies are a distinct kind of clients with needs and

peculiarities which require specific risk management tools and methodologies (e.g., Altman
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and Sabato, 2006; Dietsch and Petey, 2004; Saurina and Trucharte, 2004).

SMEs are important for the economic system of many countries. Since lending to SMEs is

riskier than lending to large corporations (Altman and Sabato, 2006), Basel II (BCBS, 2005)

established that banks should develop credit risk models that are specific to SMEs. This gen-

erated a lot of interest in the community, which resulted in a number of solutions (e.g., Altman

and Sabato, 2006; Berger and Udell, 2002; Ciampi and Gordini, 2008; Fantazzini and Figini,

2009; Lin et al., 2012; Saurina and Trucharte, 2004). We propose a binary generalized extreme

value additive (BGEVA) model for predicting SMEs defaults. Specifically, since employing a

symmetric link function for a rare event such as default may be problematic (see King and

Zeng, 2001, for the use of the logit link), we consider the quantile function of a generalized

extreme value (GEV) random variable as link function (Calabrese and Osmetti, 2013; Wang

and Dey, 2010). Moreover, because the assumption of a linear or pre-specified (e.g., quadratic

or cubic) relationship between the accounting characteristics of SMEs and default is rarely

satisfied in practice, we use penalized regression splines to flexibly determine covariate effects

from the data (e.g., Ruppert et al., 2003; Wood, 2006). We apply the BGEVA model, and its

traditional competitors, to data on 50,160 Italian SMEs for the period 2006−2011, an impor-

tant time horizon since it includes the financial crisis of 2008. Our empirical analysis shows

that the relationship between accounting characteristics and default is not linear and that our

proposal outperforms the commonly used scoring model in terms of predictive performance.

The contribution of this article is twofold. From a methodological point of view, we

present a penalized likelihood estimation framework for a binary regression model where the

link function is allowed to be asymmetric and the functional dependence of the response on

continuous covariates is flexibly determined from the data. Importantly, the methods discussed

in this article are implemented in the R package bgeva (Calabrese et al., 2013), which makes

it feasible for practitioners to fit BGEVA models. We elected to follow a frequentist approach

because it can particularly appeal to researchers already familiar with traditional frequentist

techniques and usually has the advantage of being computationally fast.
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From an applied perspective, we improve on the prediction results obtained using classic

alternatives. This is crucial for financial institutions and the economic system. If banks

can discriminate better between defaulting and non-defaulting SMEs, then the credit system

may become more efficient. This is pivotal for small businesses since their financial structure

typically depends heavily on financial institutions that provide external funding. This means

that shocks to the banking system can have a significant impact on the credit supply to small

businesses. As a consequence, SMEs may be subject to funding problems and credit access

may be problematic during recession periods in financial markets. As this topic is pivotal in

the EU and USA (Berger and Udell, 2006; Pederzini, 2012), we would expect our proposal to

be generally useful for analyzing the SMEs of many countries.

The paper is organized as follows. The next section provides a review of the main literature

on scoring models for SMEs. In Sections 3 and 4, we discuss the main drawbacks of the

commonly used (logistic) regression for credit default applications and introduce the BGEVA

scoring model. Section 5 shows the results obtained from applying the traditional and proposed

approaches to data on Italian SMEs. The last section is devoted to the conclusions.

2 Literature review

Credit risk models which can separate defaulting and non-defaulting firms as well as predict

corporate bankruptcy can be classified into two groups: market-based models and accounting-

based models. The majority of them belong to the first group and are based on structural

and reduced-form approaches (Merton, 1974; Jarrow and Turnbull, 1995). Since these models

make use of capital market information, which is not available for small firms owing to their

information opacity and unattainability, we focus on the second group which uses accounting

variables of firms from financial statements. More details on credit risk assessment can be

found in Hand and Henley (1997).

Altman (1968) was the first to introduce an accounting-based model for estimating the

default probabilities of firms. This was achieved calculating his well-known Z-Score using a
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standard discriminant model. Since then, different methodologies, such as linear regression,

logistic regression, classification trees and neural networks have been employed for credit risk

assessment (Thomas et al., 2002). The widely used model is logistic regression (Altman and

Sabato, 2006; Lin et al., 2012), which shows, however, some important drawbacks for default

prediction. Since default can be viewed as a rare event (because the number of defaults in a

sample is typically very small) and the logit link function is symmetric, the default probability

could be underestimated (Calabrese and Osmetti, 2013). Moreover, the bias of maximum

likelihood parameter estimators for logistic regression is amplified in rare event studies (King

and Zeng, 2001).

Accounting-based models can be applied to different kinds of firms. As mentioned in the

introduction, because of the Basel II regulatory framework, many scholars have focused on

developing tools specifically designed for SMEs. In Italy, SMEs form the 99.9% of the firms

(see the SBA fact sheet 2012 for Italy). These employ around the 81% of the individuals

in the workforce and contributed for the 68.3% of the Italian Added Value in 2011 (EC,

2012). More generally, SMEs play a pivotal role in many countries. For example, Altman

and Sabato (2006) analyzed 2,010 US SMEs for the period 1994 − 2002. They stressed the

importance of using a model designed for assessing the rating of an SME, instead of employing

a generic model built for both SMEs and large corporations. According to Altman and Sabato

(2006), using different models for small/medium enterprises and large firms may lead banks

to lower the required capital as established by Basel II (BCBS, 2005). In a later work,

Altman et al. (2009) significantly improved the default prediction power of risk models for

UK SMEs by using explanatory variables such as legal action by creditors to recover unpaid

debts, company filing histories and comprehensive audit report/opinion. Lin et al. (2012)

analyzed UK SMEs adopting different definitions of a failing small business. Specifically, for

429 SMEs, whose performance at the end of 2004 and financial ratios from 2001 were observed,

they investigated the impacts that several default definitions have on the choice of predictor

variables and model’s predictive accuracy.
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3 Main drawbacks of the traditional credit scoring model

The most commonly used model for credit scoring applications is logistic regression (e.g.,

Altman and Sabato, 2006; Becchetti and Sierra, 2002; Lin et al., 2012; Zavgren, 1998). Let yi

be a binary response which describes the event default (yi = 1) and non-default (yi = 0) for

the ith SME. The logistic model can be written as

logit(PDi) = ln

(
PDi

1− PDi

)
= α +

p∑
j=1

βjxji = ηi, j = 1, 2, ..., p, i = 1, 2, ..., n, (1)

where PDi is the default probability, α is an intercept, the xji are p financial and economic

continuous variables, the βj are regression coefficients and n represents the sample size. Details

on estimation methods and inferential procedures can be found in McCullagh and Nelder

(1989).

There are two main drawbacks associated with model (1). First, PDi may be underesti-

mated. Since the number of defaults in a sample is usually very small (e.g., Kiefer, 2010; Lin

et al., 2012), default can be viewed as a rare event. Hence, the use of the logit link function

may not be appropriate because of its symmetry around 0.5, which implies that the response

curve, PDi = 1/{1 + exp(−ηi)}, approaches zero at the same rate as it approaches one. This

is not ideal as the characteristics of defaults are more informative than those of non-defaults

and as a consequence PDi will be underestimated. This suggests using an asymmetric link

function as in Calabrese and Osmetti (2013) and Wang and Dey (2010). Second, model (1)

assumes a linear relationship between the accounting characteristics of SMEs and response

(e.g., Chuang and Lin, 2009; Gestel et al., 2005; Huang et al., 2006; Lee and Chen, 2005; Ong

et al., 2005). One could easily include quadratic or cubic terms to relax the assumption of

linearity but such a procedure would require choosing a priori the order of the polynomial

function for each covariate and it is not in general recommended (e.g., Marra and Radice,

2010; Wood, 2006). This issue can mask possibly interesting non-linear patterns which can

help improve our understanding of the underlying covariate-response relationships and per-
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haps improve the prediction accuracy of the scoring model as well. This calls for an approach

which can flexibly determine covariate effects from the data (see, for instance, Berg (2007)

who employed a logistic additive model).

The next section describes a methodology that can overcome the two aforementioned

model (1)’s drawbacks by blending the strengths of using an asymmetric GEV link function

(Calabrese and Osmetti, 2013; Wang and Dey, 2010) and an additive predictor (Berg, 2007).

4 The BGEVA model

Since the percentage of defaults is typically very low, even for SMEs, the defaulters’ character-

istics are more informative than those of non-defaulters (Berg, 2007; Kiefer, 2010; Lin et al.,

2012). This means that defaulters’ features are better represented by the tail of the response

curve for values close to one, which can be modeled using a GEV random variable (Kotz and

Nadarajah, 2000; Falk et al., 2010). Because our focus is on defaulters, as in Calabrese and

Osmetti (2013), we exploit the quantile function of a GEV random variable and specify the

link function

[− ln(PDi)]
−τ − 1

τ
, (2)

where τ ∈ < is the tail parameter. Hence, in (1) we replace logit(PDi) with (2). Since a

GEV link can be asymmetric, underestimation of the default probability may be overcome.

As discussed, for instance, in Calabrese and Osmetti (2013), depending on the value of τ ,

several special cases can be recovered; e.g., when τ → 0 the GEV random variable follows a

Gumbel distribution and its cumulative distribution is the log-log function (Agresti, 2002).

Moving on to the right hand side of equation (1), as explained in the previous section,

the assumption of linear or pre-specified covariate-response relationships may be restrictive

in applications. Therefore, we replace α +
∑p

j=1 βjxji with α +
∑p

j=1 fj(xji), where the fj(·)

are unknown one-dimensional smooth functions of the continuous covariates xji. The smooth

terms are represented using the regression spline approach (Eilers and Marx, 1996; Ruppert
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et al., 2003; Wood, 2006). Specifically, fj(xji) is approximated by a linear combination of

known (e.g., cubic or thin plate regression) spline bases, bk(xji), and unknown regression pa-

rameters, γjk. That is, fj(xji) =
∑Kj

k=1 γjkbk(xji), where Kj is the number of basis functions.

In other words, calculating bk(xji) for each observation point and k yields Kj curves encom-

passing different degrees of complexity which multiplied by some real valued parameters γjk

and then summed give an estimated curve for the smooth component (see Ruppert et al.

(2003) for a more detailed introduction). Smooth terms are typically subject to identifiability

centering constraints such as
∑n

i=1 fj(xji) = 0 ∀j (Wood, 2006).

The use of both a GEV link and smooth components leads to

[− ln(PDi)]
−τ − 1

τ
= α +

p∑
j=1

fj(xji) = ηi, (3)

where ηi can be written as BT
i δ with BT

i = [1, b1(x1i), . . . , bK1(x1i), . . . , b1(xpi), . . . , bKp(xpi)]

and δT = (α, γ11, . . . , γ1K1 , . . . , γp1, . . . , γpKp). This represents the BGEVA model that will be

employed in Section 5. For our case study, a more general additive predictor was not deemed

to be required. It is worth mentioning, however, that the R package bgeva (Calabrese et al.,

2013) supports the inclusion, for instance, of parametric terms (i.e., binary and categorical

predictors), of terms obtained by multiplying one or more smooth components by some pre-

dictor(s), and of smooth functions of two or more continuous covariates (see Wood (2006) for

details on these alternative specifications). Of course, Bi and δ would have to be modified

accordingly but this is a minor change. Finally, note that model (3) is only defined for those

observations for which 1 + τηi ≥ 0 (e.g., Calabrese and Osmetti, 2013).

4.1 Parameter estimation

In model (3), replacing the smooth terms with their regression spline expressions yields es-

sentially a parametric model whose design matrix includes spline bases. This means that a

BGEVA model can be estimated by maximum likelihood (ML). However, classic ML estima-
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tion of (3) is likely to result in smooth function estimates that are too rough to be useful for

empirical analysis (e.g., Ruppert et al., 2003). This issue can be overcome by penalized ML,

where the use of penalty matrices allows us to suppress that part of smooth term complexity

which has no support from the data (e.g., Ruppert et al., 2003; Wood, 2006). Specifically, each

smooth has an associated penalty, γT
j Sjγj, where γT

j = (γj1, . . . , γjKj) and Sj is a positive

semi-definite square matrix of known coefficients measuring the roughness of the jth smooth

component; for instance, the second-order roughness measure for a univariate spline penalty

evaluates
∫
{f ′′(xj)}2dxj. The formulas for the bk(xji) and Sj depend on the type of spline

basis employed and we refer the reader to Ruppert et al. (2003) and Wood (2006) for these

details.

For a fixed value of τ , the BGEVA model is estimated by maximization of

`p(δ) = `(δ) +
1

2

p∑
j=1

λjγ
T
j Sjγj w.r.t. δ, (4)

where

`(δ) =
n∑
i=1

−yi(1 + τηi)
−1/τ + (1− yi) ln{1− exp[−(1 + τηi)

−1/τ ]}, ηi = BT
i δ.

Penalized log-likelihood (4) is essentially maximized iterating

δ̂[a+1] = δ̂[a] + (J [a] − Sλ)−1(Sλδ̂
[a] − U [a]) (5)

until convergence, where a is the iteration index, Sλ = diag(0, λ1S1, . . . , λpSp) (when the

additive predictor is specified as in (3)),

U(δ) =
∂`(δ)

∂δ
=

n∑
i=1

{
yi(1 + τηi)

−1− 1
τ + (1− yi)

exp[−(1 + τηi)
−1/τ ](1 + τηi)

−1− 1
τ

1− exp[−(1 + τηi)−1/τ ]

}
Bi
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and

J (δ) =
∂2`(δ)

∂δ∂δT
=

n∑
i=1

[{
−exp[−2(1 + τηi)

−1/τ ](1 + τηi)
2− 2

τ

(1− exp[−(1 + τηi)−1/τ ])
2 − exp[−(1 + τηi)

−1/τ ](1 + τηi)
2− 2

τ

1− exp[−(1 + τηi)−1/τ ]
+

+
exp[−(1 + τηi)

−1/τ ](1 + τ)(1 + τηi)
2− 1

τ

1− exp[−(1 + τηi)−1/τ ]

}
(1− yi)− (1 + τ) (1 + τηi)

2−1/τ yi

]
BT
i Bi.

In practice, we use the more efficient and safe trust region algorithm, which is based on (5)

(Nocedal and Wright, 2006).

The λj are smoothing parameters controlling the trade-off between fit and smoothness,

and in the above optimization problem they are fixed to some values. This is because joint

estimation of λ = (λ1, . . . , λp) and δ via maximization of (4) would clearly lead to over-

fitting since the highest value for `p(δ) would be obtained when λ = 0. In fact, λ should

be selected so that the estimated smooth components are as close as possible to the true

functions. Automatic multiple smoothing parameter selection can be achieved in several

ways; see Ruppert et al. (2003) and Wood (2006) who provide excellent overviews. Here, we

elected to use a generalization of the approximate unbiased risk estimator (UBRE, Craven

and Wahba, 1979). Specifically, λ̂ is the solution to the problem

minimize
1

n
‖
√

W(z−Xδ)‖2 − 1 +
2

n
tr(Aλ) w.r.t. λ, (6)

where
√

W is a weight diagonal matrix square root, zi = BT
i δ

[a] + W−1
[ii]di, di = ∂`(δ)i/∂ηi,

W[ii] = −∂2`(δ)i/∂ηi∂ηi, Aλ = B(BTWB+Sλ)−1BTW is the hat matrix, B = (BT
1 , . . . ,B

T
n)T

and tr(Aλ) the estimated degrees of freedom (edf) of the penalized model. (Superscript [a]

has been suppressed from di, zi and Wi to avoid clutter.) The working linear model quan-

tities are constructed for a given estimate of δ, obtained from a trust region iteration. (6)

will then produce an updated estimate for λ which will be used to obtain a new parameter

vector estimate for δ. The two steps, one for δ and the other for λ, are iterated until conver-

gence. Problem (6) is solved employing the approach by Wood (2004) which can evaluate the
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approximate UBRE and its derivatives in a way that is both computationally efficient and

stable.

As for the tail parameter in the GEV link, it is in principle possible to estimate jointly τ

and δ by maximizing (4). As shown by Smith (1985), however, in a certain range of values of

τ the usual regularity conditions for the ML estimator of this parameter do not hold. For this

reason, we propose fitting as many BGEVA models as the number of a set of sensibly chosen

values of τ and select the model that yields the best empirical predictive performance. In our

case study, this proved to be a practical and effective means of handling this parameter.

4.2 Confidence intervals and p-values

Inferential theory for penalized estimators is complicated by the presence of smoothing penal-

ties which undermines the usefulness of classic frequentist results (e.g., Wood, 2006). As

shown in Marra and Wood (2012), reliable point-wise confidence intervals for the terms of a

model involving penalized regression splines can be constructed using

δ|yv̇N (δ̂,Vδ), (7)

where y refers to the response vector, δ̂ is an estimate of δ and Vδ = (−J + Sλ)−1. The

structure of Vδ is such that it includes both a bias and variance component in a frequentist

sense, a fact that makes such intervals have close to nominal coverage probabilities (Marra

and Wood, 2012). Given (7), confidence intervals for linear and non-linear functions of the

model parameters can be easily obtained. For instance, for f̂j(xji) these can be obtained using

f̂j(xji)v̇N (fj(xji),Bji(xji)
TVδjBji(xji)),

where Vδj is the sub-matrix of Vδ corresponding to the regression spline parameters asso-

ciated with jth smooth term, and Bji(xji)
T = [b1(xji), . . . , bKj(xji)]. For parametric model

components, such as binary and categorical predictors, using (7) is equivalent to using classic
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results because such terms are not penalized.

For smooth components, point-wise confidence intervals cannot be used for variable selec-

tion (e.g., Ruppert et al., 2003, Chapter 6). For this purpose, p-values can be employed. To

construct them, we need the distribution of the fj, where fj = [fj(xj1), fj(xj2), . . . , fj(xjn)]T.

As shown by Wood (2013), in the context of extended generalized additive models, f̂jv̇N (fj,Vfj)

where Vfj = Bj(xj)VδjBj(xj)
T and Bj(xj) denotes a full column rank matrix such that

f̂j = Bj(xj)γ̂j. It is then possible to obtain approximate p-values, for testing the hypothesis

fj = 0, based on

Trj = f̂
T

j V
rj−
fj

f̂jv̇χ
2
rj
,

where V
rj−
fj

is the rank rj Moore-Penrose pseudo-inverse of Vfj , which can deal with rank

deficiencies. Parameter rj is selected using the established notion of edf employed in (6).

Because edf is not an integer, it can be rounded as follows (Wood, 2013)

rj =


floor(edfj) if edfj < floor(edfj) + 0.05

floor(edfj) + 1 otherwise

.

5 Case Study

The Italian SME sector is the largest in the EU, with 3,813 million of SMEs (EC, 2012). The

vast majority of Italy’s SMEs are micro-firms with less than 10 employees. In fact, Italy’s

share of micro-firms in all businesses, at 94.6%, exceeds the EU-average (92.2%). Recovery

from the financial crisis has been much weaker than that in other EU countries, and SMEs

have been the hardest hit companies.

5.1 Data

The empirical analysis is based on annual data for the period 2006− 2011 for 50, 160 Italian

SMEs. The data are from AIDA-Bureau van Dijk, a large Italian financial and balance sheet

information provider. The time horizon considered here is of some interest as it includes the
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financial crisis of 2008.

The definition of SME by the European Commission is adopted. That is, a business

must have an annual turn-over of less than 50 million of Euros and the number of employees

must not exceed 250 (http://ec.europa.eu/enterprise/policies/sme/facts-figures-analysis/sme-

definition/index.htm). In this work, default is intended as the end of the SME’s activity, that

is the status in which the SME needs to liquidate its assets for the benefit of its creditors.

In practice, we consider a default to have occurred when a specific SME enters a bankruptcy

procedure as defined by the Italian law.

Following Altman and Sabato (2006), we applied choice-based or endogenous stratified

sampling, where data are stratified based on the values of the response. Specifically, we

drew randomly observations within each stratum defined by the two categories default and

non-default, and considered all the defaulted firms. We then selected a random sample of

non-defaulted SMEs (over the same years of defaults) to obtain a default percentage in our

sample that was as close as possible to that for Italian SMEs, which is around 5% (Cerved-

Group, 2011). Choice-based sampling makes observations dependent. Since the sample size

is high, according to the super-population theory of Prentice (1986), we assume that ours is

a random sample (e.g., Altman and Sabato, 2006). We excluded firms for which information

on accounting characteristics is not available.

Financial ratio analysis uses specific formulas to gain insight into a company and its oper-

ations. The main measures based on the balance sheet are the financial strength and activity

ratios. The former provide information on how well a company is able to meet its obligations

and how it is leveraged. This gives investors an idea of the financial stability of the company

and its ability to finance itself. Activity ratios focus mainly on current accounts and show how

well a company manages its operating cycle. These ratios provide insight into the operational

efficiency of the company.

Before fitting the models, we carried out a multicollinearity analysis and discarded vari-

ables with a variance inflation factor larger than 5 (Greene, 2012, pp. 257–258). As a result,
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we considered the 21 continuous covariates: number of employees, turnover per employee,

long and medium term liabilities/total assets, current ratio, leverage, liquidity ratio, sol-

vency ratio, banks/turnover, return on sales, return on equity, added value per employee,

turnover/staff costs, return on shareholders’ funds, return on capital employed, stock turnover

ratio, profit per employee, average remuneration per year, pre-tax profit margin, cost of em-

ployees/turnover, total liquid funds and debt/equity.

5.2 Model fitting results

We employed the BGEVA model, logistic additive regression as well as log-log additive re-

gression as it is a well known alternative to the logistic model. Computations were performed

in the R environment (R Development Core Team, 2013) using the package bgeva (Calabrese

et al., 2013) which can be used to fit the three models. The predictor specification was con-

sistent with that shown in (3). Smooth components were represented using penalized thin

plate regression splines with basis dimensions equal to 20 and penalties based on second-order

derivatives (Wood, 2006). Using fewer or more spline bases did not lead to tangible changes

in the results reported below and in the next section. Figure 1 shows the PD function of the

BGEVA model (obtained from equation (3)) for τ equal to −0.25, 0.001 (corresponding to the

log-log response curve) and 0.25. The skewness and approaching rate to 1 and to 0 depend on

τ . Compared with the log-log curve, for a negative value of τ the PD of the BGEVA model

approaches 0 slowly but 1 more sharply. Viceversa when τ is positive. Since in the context of

our case study we need a curve which approaches 1 rapidly, negative values for τ are the ob-

vious choice. For the BGEVA model, values of τ in the set (−1.00,−0.75,−0.50,−0.25) were

tried out. The best empirical predictive performance was produced for τ = −0.25 (see next

section). Using a finer grid of values and extending their range did not lead to improvements

in terms of prediction.

After applying a backward selection procedure at the 5% significance level, using the p-

value definition discussed in Section 4.2, only the 12 variables shown in Table 1 were kept. This
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Figure 1: PD function of the BGEVA model for τ = −0.25 (black solid line), τ = 0.001 (grey line) and
τ = 0.25 (grey dashed line).

selection result was consistent across all models. Some of the covariate effects are reported in

the parametric part of the BGEVA model since their smooth function estimates were linear

(i.e. their edfs were all equal to 1). For the other explanatory variables, the estimated smooths

exhibit edfs considerably greater than 1 and are displayed in Figure 2.

As discussed in Calabrese and Osmetti (2013), if the estimated coefficient of a covariate

is positive, an increase in its value will result in a decrease in the estimated PD, holding

constant all the other variables. Viceversa when the coefficient is negative. The leverage

result in Table 1 is consistent with financial theory. Firms with higher levels of debt are more

subject to interest rate volatility, hence must produce higher financial returns to balance the

risk associated with their financial structure (Majocchi and Zucchella, 2003). Turnover/staff

costs shows a negative relationship with PD which is coherent with Ciampi and Gordini

(2008) who considered turnover per employee. A striking result could be that profit per

employee is positively related to the likelihood of being a defaulted SME. This may be due to

government’s tax inspection on firms which announce a loss on the accounting year. To avoid

inspection, SMEs in Italy, similarly for example to Turkey (Arslan, 2009), usually attempt to
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Variable names of parametric model part Estimate Std. Error z value p-value
Intercept -1.675 2.926e-02 -57.247 < 2e-16
Leverage 0.001 4.642e-04 2.700 0.006943
Turnover/staff costs 0.004 1.061e-03 3.428 0.000607
Profit per employee -0.009 1.126e-03 -7.697 1.39e-14
Cost of employees/turnover 0.004 8.835e-04 4.902 9.46e-07
Total liquid funds 0.001 1.231e-06 117.892 < 2e-16
Variable names of smooth terms Edf Est.rank Chi.sq p-value
Long-medium term liabilities/total assets 5.42 6 124.70 < 2e-16
Solvency ratio 7.82 8 123.78 < 2e-16
Banks/turnover 3.29 4 37.33 1.54e-07
Added value per employee 4.72 5 21.64 0.000613
Return on shareholders’ funds 7.84 8 106.09 < 2e-16
Return on capital employed 7.81 8 71.22 2.81e-12
Stock turnover ratio 6.91 7 92.48 < 2e-16

Table 1: Parametric and smooth component summaries obtained from applying the BGEVA model to a sample
of Italian SMEs (2,384 defaulters and 45,296 non-defaulters) for the period 2006 − 2011. Full details on the
calculation of the test statistic for the smooth terms are given in Section 4.2.

avoid reporting a loss through manipulations on their activities out of their main operations.

Cost of employees/turnover shows a negative relationship with PD which is not in agreement

with the literature as well as expectations. A coherent result is obtained by Ciampi and

Gordini (2008) for total personnel costs/added value and by Fantazzini and Figini (2009) for

personnel expenses/sales, which show a positive relationship with PD. We suspect that the

difference between our result and those obtained in the literature is due to the increasing fiscal

pressure on the labor market in Italy for SMEs since the financial crisis (Eurostat, 2012). To

explain the negative relationship between total liquid funds and PD, we refer to an interesting

European Commission paper by Ferrando et al. (2007). Here, liquid funds are higher if there

is a higher probability of a shortage of funds in the future that could be due to financial

distress in SMEs.

As for the plots in Figure 2, in line with the interpretation for the parametric components,

if the estimated smooth function of a covariate is increasing then the estimated PD decreases,

and viceversa. An interesting result is obtained for bank loans/turnover. For low values of

this covariate the relationship to PD is negative: for low debt loans, bank loans increase
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Figure 2: Smooth component estimates of the 7 (out of 12) continuous variables that exhibit a non-linear
pattern. These were obtained from applying the BGEVA model on the Italian SME data described in Section
5.1. Results are on the scale of the predictor. Shaded areas represent 95% confidence intervals and the rug
plot, at the bottom of each graph, is used to show the covariate values. The numbers in brackets in the y-axis
captions are the estimated degrees of freedom (edf) of the smooth curves.
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SME’s solvency. When the debt load is too high, an increase in bank loans to an SME results

in a slight (perhaps not significant) increase in the PD. Instead, Ciampi and Gordini (2008)

found a positive relationship between bank loans/turnover and PD. Alternatively, Altman

and Sabato (2006) considered short term debt/equity book value to model PD and found an

inverse relationship. On the contrary, Fantazzini and Figini (2009) showed that short term

debt has a positive influence on PD, which is consistent with expectations. These results

are not all in agreement. This is probably because these authors modeled covariate effects

assuming linearity whereas we employed smooth functions which allowed us to estimate flexibly

such effects. Another interesting result is obtained for long-medium term liabilities/total

assets: for low values this variable shows an inverse relationship to PD which then becomes

positive for high covariate values. When the ratio is higher than 0.7, the estimated curve is

slightly increasing although the confidence intervals are wide and hence it is not possible to

be conclusive. The fact that the positive impact of long-medium term liabilities/total assets

is overall dominant may justify the results obtained by some authors who found a positive

impact assuming linearity (e.g., Arslan, 2009).

For values of added value per employee lower than about 200 thousands of Euros, the

relationship to PD is negative and coherent with expectations as well as the results obtained

by Calabrese and Osmetti (2013) and Ciampi and Gordini (2008). For high values of this

covariate, Figure 2 shows a positive relationship, although the confidence intervals are wide

and contain the case of an inverse relationship as well. A few analyzes have included return

on capital employed as an explanatory variable in scoring models for SMEs (e.g., Toyli et al.,

2008). This covariate shows a negative relationship with the likelihood of being a defaulted

SME, except for high covariate values where the confidence intervals are so wide that many

interpretations are plausible. As for the other variables, a clear interpretation can not be

provided and further research is needed. The estimates of the parametric and smooth compo-

nents obtained by applying the logistic and log-log additive models (not reported here) did not

differ significantly from each other and are in agreement with those presented in this section.

18



5.3 Empirical predictive performance

In this section, we compare the predictive performance of the BGEVA, logistic and log-log

additive models. Predictive accuracy can be assessed using the Mean Squared Error (MSE)

and Mean Absolute Error (MAE) based on observed default and predicted PD. Scoring

models with lower MSE and MAE should forecast defaults and non-defaults more accurately.

However, it is the identification of defaulters that is a pivotal aim for banks’ internal scoring

models. In fact, it is much more costly to classify an SME as a non-defaulter when it is a

defaulter than to classify it as a defaulter when it is not. If a defaulted firm is classified as a

non-defaulter by the scoring model, then the bank will give a loan. If the borrower becomes

defaulted, then the bank may lose the whole or a part of its credit exposure. On the contrary,

when a non-defaulter is classified as a defaulter, the bank only loses interest on loans. We,

therefore, computed the MAE and MSE only for defaulted SMEs and denote them by MAE+

and MSE+. We also calculated the area under the curve (AUC) index (Hand et al., 2001) and

H-measure (Hand, 2010), using the R package hmeasure with a severity ratio of 0.01 for the

H-measure. Scoring models with higher AUC and H-measure can forecast defaults and non-

defaults more accurately. Note that the H-measure overcomes the drawbacks of AUC when

the class sizes and classification error costs are extremely unbalanced (Hand, 2009, 2010),

which is especially true for credit scoring applications.

To avoid sample dependency, models were validated on observations that were not included

in the sample used to estimate the model. Specifically, we used out-of-sample and out-of-time

tests. In the former, the models were estimated using all observations in 2006 − 2011 but a

randomly drawn control sample of size corresponding to the 10% of all observations. In the

latter, we analyzed the models’ performance for different sample sizes and default horizons.

This was achieved in two ways. In the first case, models were fitted using data from the

intervals 2006 − 2010, 2006 − 2009 and 2006 − 2008 and their predictive accuracy evaluated

on SMEs belonging to 2011, 2010 and 2009, respectively. In the second case, we estimated

the models using data for the period 2006 − 2008 and tested them on SMEs belonging to
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Type of control sample measure BGEVA log-log logistic

Out-of-sample
MAE+ 0.754 0.791 0.889
MSE+ 0.626 0.660 0.795

H 0.184 0.050 0.018
AUC 0.682 0.680 0.811

Out-of-time 2009
MAE+ 0.837 0.849 0.883
MSE+ 0.741 0.754 0.786

H 0.136 0.052 0.020
AUC 0.697 0.692 0.809

Out-of-time 2010
MAE+ 0.770 0.798 0.881
MSE+ 0.620 0.657 0.783

H 0.081 0.078 0.020
AUC 0.722 0.722 0.811

Out-of-time 2011
MAE+ 0.843 0.862 0.894
MSE+ 0.763 0.781 0.804

H 0.050 0.027 0.030
AUC 0.619 0.599 0.808

Table 2: Forecasting accuracy measures for out-of-sample and out-of-time exercises obtained from applying
the BGEVA, log-log and logistic additive models. Default horizon is of one year.

2009 − 2010 and 2009 − 2011. The estimation period of 2006 − 2008 was chosen because it

was characterized by an economic growth in Italy which was then followed by a decline after

2008.

Table 2 reports the values of MAE+, MSE+, AUC index and H-measure for the out-of-

sample and out-of-time exercises when the default horizon is of one year. The MAE+ and

MSE+ for the BGEVA model are lower than those for the log-log and logistic additive models.

The AUC of the BGEVA and log-log models are lower than that of logistic regression in all

control samples. However, as pointed out earlier, AUC is not reliable when the class sizes

and classification error costs are unbalanced (Hand, 2009, 2010), case in which the H-measure

is more appropriate (Hand, 2010). The H-measure for BGEVA is higher than that of its

competitors in all control samples. Increasing the default horizon does not lead to different

conclusions (see Table 3). The forecasting periods considered here are important since the

effects of the financial crisis on Italian SMEs have been strong in 2009, where the number of

defaulted Italian SMEs in the sample was very high (701), and decreased in 2010 and 2011
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Type of control sample measure BGEVA log-log logistic

Two years: 2009− 2010
MAE+ 0.848 0.862 0.882
MSE+ 0.746 0.760 0.785

H 0.188 0.066 0.019
AUC 0.712 0.711 0.811

Three years: 2009− 2011
MAE+ 0.832 0.845 0.881
MSE+ 0.724 0.740 0.783

H 0.190 0.067 0.019
AUC 0.713 0.714 0.811

Table 3: Forecasting accuracy measures for out-of-sample and out-of-time exercises obtained from applying
the BGEVA, log-log and logistic additive models. Default horizons are of two and three years.

(429 and 124, respectively).

Our analysis suggests that the accounting-based BGEVA model has a superior predictive

performance in identifying defaulted SMEs than that of its traditional alternatives. Since

identification of defaulters is crucial for banks, the proposed tool could be employed as their

internal scoring model to identify defaulted SMEs.

6 Concluding remarks

We introduced a scoring model to forecast defaulted SMEs. Since lending to SMEs is risky

and because they play a crucial role in the economy of many countries, we would expect the

BGEVA model to be generally useful for analyzing SMEs.

The proposed approach is based on a penalized likelihood estimation framework where the

link function is allowed to be asymmetric (through the use of the quantile function of a GEV

random variable) and the functional dependence of the response on continuous covariates

is flexibly determined from the data (through the use of penalized regression splines). The

developments discussed in this article are implemented in the R package bgeva (Calabrese

et al., 2013) which can be particularly attractive to researchers and practitioners who wish to

fit BGEVA models.

Our proposal and its competitors were applied to data on 50,160 Italian SMEs for the
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period 2006 − 2011. The empirical results confirmed that the first main advantage of the

BGEVA model lies in its superior performance in forecasting defaulted SMEs for different

default horizons. The second is the relaxation of the linearity assumption which was not

clearly supported by the data.

Banks and financial institutions could improve their internal assessments and efficiency

by using BGEVA models in that they can better identify defaulted SMEs and can shed light

on the nature of the relationships between response and SME characteristics. It would be

interesting to explore the impact that non-random sample selection (Banasik and Crook,

2007) has on bankruptcy prediction of SMEs and future research will look at the possibility

of extending the BGEVA model to account for selection bias.
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