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MIP models for production lot sizing problems with
distribution costs and cargo arrangement
Flavio Molina1, Reinaldo Morabito2* and Silvio Alexandre de Araujo3
1Universidade Federal do Triângulo Mineiro, Uberaba, Brazil; 2Universidade Federal de São Carlos, São
Carlos, Brazil; and 3Universidade Estadual Paulista, São José do Rio Preto, Brazil

This study presents mixed integer programming (MIP) models for production lot sizing problems with distribution
costs using unit load devices such as pallets and containers. Problems that integrate production lot sizing decisions
and loading of the products in vehicles (bins) are also modelled, in which constraints such as weight limits, volume
restrictions or the value of the cargo loaded in the bins are considered. In general, these problems involve a trade-
off between production, inventory and distribution costs. Lot sizing decisions should take into account production
capacity and product demand constraints. Distribution decisions are related to the loading and transport of products
in unit load devices. The MIP models are solved by the branch-and-cut method of an optimization package and the
results show that these approaches have the potential to address different practical situations.

Keywords: lot sizing; distribution costs; cargo unitization; bin packing; integrated problems

1. Introduction

The production lot sizing problem can be seen as a problem of
optimization of production plans, consisting in defining the
quantity of each product or item to be produced in one or more
machines in each period of a time horizon, in order to meet the
demand for each item and optimize some performance goals.
Effective production planning usually involves several factors,
such as the production costs involved, the time available for
production, the availability of resources and raw materials, the
deadlines for meeting the products demands and the setups of
the machines when they are relevant to the production process.
Each of these factors may have important influences on the total
costs and overall performance of the production plan. Reviews
of different aspects of lot sizing problems can be found, for
example, in Karimi et al (2003), Brahimi et al (2006), Jans and
Degraeve (2007, 2008), Robinson et al (2009), Glock et al
(2014), Holmbom and Segerstedt (2014) and Beullens (2014).
The costs considered in lot-sizing problems are usually

limited to costs of production, inventory, setup and overtime,
and other related costs that may be relevant to the production
and logistics of the final product are disregarded. For example,
in some organizations, end products are packed and placed on
pallets to be stored or transported along the supply chain to the
customers or distribution centres. The transport cost of products
from the factories to the warehouses is directly related to

production lot-sizing decisions. Transport costs may behave
differently in relation to lot size, for example, in an economy of
scale, that is, high production of the items can make the
transport costs per product cheaper. According to Norden and
Velde (2005), although transport costs can represent more than
50% of the logistics cost of a product, in general, they are
virtually neglected in modelling lot-sizing problems. Vroblefski
et al (2000) highlighted that one of the biggest costs in
distribution systems is the cost of transportation and this cost is
highly dependent on the volume of the products being
transported.
Molina et al (2013) investigated some mathematical models

for lot sizing problems with transport costs based on load
unitization and presented some preliminary results with these
models. This work is an extension of that study where those
models are revisited considering decisions about distribution
costs and also load arrangement decisions of the products in
vehicles, yielding in integrated production lot sizing and
product loading (both on pallets and in containers) problems
under constraints of limited weight, volume or load value in
bins. Several mixed integer programming (MIP) models are
presented, which represent these problems and support produc-
tion planning decisions and the products distribution involved.
The models are useful for research and development of more
effective solution methods, exploring particular structures,
model decomposition, model relaxations, etc. They are also
helpful for the performance evaluation of heuristic methods,
since they allow (at least for problems of moderate size) an
estimation of the optimality gap of heuristic solutions. The
performance of these models and the results obtained on solving
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them with the CPLEX optimization package are also discussed
and analysed. The results show that these models can be useful
for treating various real-life situations.
This paper is presented as follows. Section 2 presents a brief

literature review of studies on coupled production planning and
distribution decisions. In Section 3, the MIP models are
presented that take into account the lot sizing problem with
distribution costs using cargo unitization devices such as pallets
and containers, as well as a model that integrates lot sizing and
loading problems with restrictions of weight, volume or value
of cargo loaded in vehicles. In Section 4, an analysis of the
computational results obtained with the models in several
randomly generated problem instances is performed and Sec-
tion 5 presents the concluding remarks and some possibilities
for future research.

2. Literature review and background

To the best of our knowledge, there are only a few studies in the
literature that are directly related to the problems studied in this
paper, so we first review some papers that have partial
connection with this work. Some surveys presented literature
reviews on production and distribution planning problems. For
example, in Thomas and Griffin (1996) three categories of
integrated problems were distinguished: planning the purchase
of raw materials and production; production and distribution
planning; and also inventory and distribution planning.
In Erengüç et al (1999), mathematical models were presented
that take into account three different stages of the supply chain.
The first looks at suppliers that provide goods or services for
various plants, the second is related to the production of finished
items to meet a given demand and in the third, the distribution
of the final products is taken into consideration. In Rizk and
Martel (2001), the authors presented a literature review and a lot
sizing model with multiple lines of production and delivery of
the demand for customers in the supply chain. A review that
considers extensions of the classic lot sizing with transport costs
problem appears in Bertazzi and Speranza (1999). Other
reviews of integrated lot sizing with distribution problems can
be found in Vidal and Goetschalckx (1997) and Sarmiento and
Nagi (1999). It is worth noticing that these literature reviews did
not present the problem we are dealing with.
More recently, but still not directly related with the problem

considered in the present paper, Lee et al (2005) analysed the
carrier capacity that is associated with the number of containers
(or pallets) needed to load all the production. The items are
produced and assigned to containers and the goal is to minimize
the number of containers used. The authors proposed a heuristic
based on the problem representation as a network flow. Anily
and Tzur (2006) considered the demand of the retail stores
being met directly from the factory or a warehouse, taking into
account the transportation costs. Stecke and Zhao (2007)
studied a problem with the make-to-order type of production
system. The shipping of the items is outsourced and different

options concerning the delivery time are offered. The goal is to
plan lot sizes with transportation costs. Melo and Wolsey
(2010) presented an alternative formulation for the problem
proposed in Stecke and Zhao (2007). In Xiao and Taaffe
(2010), models were developed for a problem in which the lot
sizing is solved taking into account the costs of production and
the delivery rate to final consumers. Other works that treated
logistics decisions and lot sizing problems are: Wong (2010)
and Seliaman and Ahmad (2009).
Several studies dealt with the lot sizing problem together

with decisions on the transport of final products. However,
the focus in these articles was not on the loading problem of
produced items; rather, it is on other costs involved
in the distribution process, such as the routing costs of
vehicles that distribute these items (Baumol and Vinod,
1970; Fumero and Vercellis, 1999; Vroblefski et al, 2000;
Amorim et al, 2013). There are also some studies that
considered the design of integrated lot sizing and transport
decision problems between various plants in the same
company, that is, they did not take into account transport
decisions for customers. Among these articles, we have:
Kaminsky and Simchi-Levi (2003), de Matta and Miller
(2004), Sambasivan and Schmidt (2002), Sambasivan and
Yahya (2005), and Nascimento et al (2010).
More related to the present paper, in Norden and Velde

(2005), cargo costs depend on the type of contract established
with the logistics operator, that is, they are not only dependent
on the volume of items to be transported. The model proposed
by the authors was motivated by a practical problem of a
European company with monthly fluctuations in the distribu-
tion of products between its factory and its warehouses. The
company negotiates a long-term contract with the carrier, in
which a fixed cost per period is associated with the transport
of the items; however, a limited number of pallets or contain-
ers are made available at a lower unit cost than the standard
cost. The limit to the number of pallets or containers is
stipulated based on the forecast demand. If a company needs
a larger number of these units in a given period, new units
may be used but at higher unit costs. The aim is to minimize
the cost of production and distribution of items from the
factory to the warehouses. In this problem, transport costs
weigh in favour of increasing setups and reducing stocks.
This behaviour occurs in this model because transport costs
force production of a wider mix of items for better use
of pallets or containers. Furthermore, to avoid the use of
expensive pallets or containers in a given period, the transport
costs force more setups being made and less inventory.
Molina et al (2009) proposed a heuristic method to solve the

problem presented in Norden and Velde (2005) and proposed
an extension of the model by taking into account the delay
in delivery of demand and production capacity constraints.
In Molina et al (2013), other extensions of the models originally
proposed in Norden and Velde (2005) and Molina et al (2009)
representing more general cases, that occur in practice, were
analysed and, also, a solution method based on Lagrangian
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relaxation was implemented for one of the proposed extensions.
In the present paper, we further extend the models from the
literature mainly by considering the combination of the produc-
tion lot sizing decisions and truck loading decisions without
intermediate cargo unitization devices such as pallets and
containers. We have not found any paper in the literature that
considers such combination.
The main contributions of the present paper are: the proposi-

tion of several innovative MIP models considering decisions
about distribution costs and also load arrangement decisions of
the products in vehicles, yielding in integrated production lot
sizing and product loading (both on pallets and in containers)
problems under constraints of limited weight, volume or load
value in bins; the performance analysis of these models obtained
on solving them with the CPLEX optimization package. The
results show that these approaches are able to address different
practical situations.

3. MIP models

This section presents three MIP models for lot sizing problems
with transport costs, where the goods are transported using unit
load devices such as pallets or containers, as well as a model for
an integrated MIP problem by combining production lot sizing
and trucks loading decisions. The first model considers the case
wherein is required to load the items onto pallets without
mixing items, that is, each pallet can be loaded only with a
single type of item, which is usual in most production
processes, especially in manufacturing environments, such as
soft drinks companies, canned food warehouse, spinning
industries, among others. The transport costs are directly related
to the number of pallets required to transport the items.
The second and third models extend the first one by

considering that, after allocating the items on pallets, the latter
are loaded on trucks of a homogeneous fleet (second model)
and heterogeneous fleet (third model), and the trucks go to the
same destination (ie a warehouse). In practice, the second and
third models appear most commonly in companies with high
production, unlike the first case, in which the amount produced
is not always large enough to request the dedication of a truck.
Observe that in these cases the transport costs are directly
related to the number of trucks required to transport the pallets.
The fourth model represents the practical situation where the
produced items are loaded directly onto trucks, without inter-
mediate cargo unitization devices. This case occurs, for exam-
ple, when items are large enough to be loaded on pallets or
other unitization devices, as in some furniture companies.

3.1. Model 1—Loading onto pallets without mixing items

Unlike the models reviewed in the literature, for example in
Norden and Velde (2005), the first MIP model considers
production of items that have different sizes and cannot be
mixed on the same pallet (Figure 1). Therefore, it is necessary to

define the capacity of the pallet for each type of item. These
data can be obtained in advance by solving the so-called
Manufacturer’s Pallet Loading Problem (eg Alvarez-Valdes
et al, 2005; Morabito and Pureza, 2009; Birgin et al, 2010) as
a pre-processing step for each type of item. This loading
problem assumes that the items are arranged in horizontal layers
on the surface of the pallet, which is a usual practice for
producers to facilitate the arrangement and load stability. The
parameters and variables of the model are described below.

Parameters:

i= 1,2,…,n Number of types of items.
t= 1,2,…,T Number of periods in the planning horizon.
sit Setup cost for the production of item i in

period t.
h+
it Unit inventory cost of item i in period t.
h-
it Penalty for delay of one unit of item i in

period t.
dit Demand for item i in period t.
bi Time required to produce a unit of item i.
qi Setup time for the production of item i.
Capt Production capacity in period t.
M A sufficiently large positive number.
Pi Number of items of type i that can be placed

on the same pallet (data obtained beforehand
by solving a Pallet Loading Problem for each
item i).

c0 Fixed monthly cost of the contract.
c1 Unit transport cost of first R pallets used.
c2 Unit transport cost of the other pallets used

(c2> c1).
R The contracted number of hired pallets with

cheaper cost c1.

Decision variables:

Xit Amount to be produced of item i in period t.

Figure 1 Pallet loading (authorship: http://www.freedigitalphotos.
net).
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I +it Inventory of item i in period t.
I -it Backlog of item i in period t.
Yit Binary variable indicating the production of

item i in period t (Yit= 1 if Xit> 0; Yit= 0
otherwise).

Ait Number of pallets transported containing item
i in period t with unit cost c1.

Bit Number of pallets transported containing item
i in period t with unit cost c2.

The transport costs are piecewise linear and convex in
relation to the number of pallets used. Note that from the quantity
R, the transportation cost per unit changes from c1 to c2.
Model 1 is defined by:

Model 1:

z ¼min
Xn
i¼1

XT
t¼1

h +
it I

+
it + h

-
it I

-
it + sitYit

� �

+
XT
t¼1

c0 + c1
Xn
i¼1

Ait + c2
Xn
i¼1

Bit

 !
ð1Þ

Subject to:

I +i;t - 1 - I
-
i;t - 1 +Xit - I +i;t + I

-
i;t ¼ dit

i ¼ 1;¼; n; t ¼ 1;¼; T ð2Þ

Xit -M Yit ⩽ 0 i ¼ 1;¼; n; t ¼ 1;¼; T (3)

Xn
i¼1

ðbiXit + qiYitÞ⩽Capt t ¼ 1;¼; T (4)

Bit +Ait ⩾
Xit

Pi
i ¼ 1;¼; n; t ¼ 1;¼; T (5)

0⩽
Xn
i¼1

Ait ⩽R t ¼ 1;¼; T (6)

I +i0 ¼ I -i0 ¼ I -iT ¼ I -iT ¼ 0; i ¼ 1;¼; n (7)

Xit ⩾ 0; I +it ⩾ 0; I -it ⩾ 0 i ¼ 1;¼; n; t ¼ 1;¼; T (8)

Ait; Bit 2 Z + ; Yit 2 0; 1f g i ¼ 1;¼; n; t ¼ 1;¼; T (9)

The objective function (1) minimizes the total cost given by
the sum of the production costs (inventory, backlog and
machine setup) with the transportation costs (contract cost, cost
of cheaper pallets and cost of more expensive pallets).

Constraints (2) refers to the balancing constraints of production,
demand, inventory and backlog of items. Constraints (3) ensure
that there is production only when the setup cost and time have
been considered. Constraints (4) are restrictions on production
capacity. Constraints (5) ensure that a sufficient number of
pallets to transport each item type is used. Constraints (6) limit
the use of pallets at a lower cost to R. Constraints (7) impose
that initial and final inventory and backlog levels are equal to
zero and constraints (8) ensure the non-negativity of production,
inventory and backlog variables. Finally, in (9), the domains of
binary and integer variables are defined. For this model,M is set
as the sum of the demands of all items throughout the planning

horizon, M ¼Pn
i¼1

PT
t¼1 dit.

To get a sense of the model dimension, it can easily be shown
that the model has (3nT) real variables, (2nT) integer variables
and (nT) binary variables. Furthermore, the model has T
(3n+ 2) + 4n constraints. Thus, for an example with 12 periods
and 20 types of items, the model has 720 real variables, 480
integer variables, 240 binary variables and 824 constraints.

3.1.1. Example problem:. The following is a simplified
example to illustrate the importance of the solution of the
integrated lot sizing problem with transportation costs. Con-
sider the following values for a problem with n= 5 items and
T= 5 periods. The inventory cost per item and per period is
h+
it ¼ 3 8i; t, the cost of delay per item and per period is h-

it ¼
30 8i; t and the machine setup cost for the production of items
is sit= 100 ∀ i,t. The production time of each item is bi= 1 ∀ i.
The machine setup time for production of items is equal to
q= (17,17,12,10,17). The capacity in each period is Capt=
316 ∀ t. The pallet loading capacity for each item is
P= (56,101,87,124,89). The unit cost of the cheaper pallets is
c1= 50 and of the more expensive pallets cost is c2= 200. The
maximum number of cheaper pallets that can be used for each
period is R= 3. The demand for the items is given by the fol-
lowing matrix, the rows being the items and the columns being
the periods.

d ¼

7 11 8 13 11

58 94 79 108 64

39 46 85 33 32

61 75 73 51 47

33 62 41 50 34

0
BBBBBBBB@

1
CCCCCCCCA
:

Solving this problem disregarding the transport of items, that
is, first solving the lot sizing problem, regardless of transporta-
tion decisions, and then with the solution of the lot sizing
problem determining the number of pallets and the transport
costs, we obtain a solution with a production cost equal to 2793.
To transport the quantities produced, five pallets are needed in
the first period, four pallets in the second and third periods, and
five pallets in the fourth and fifth periods, resulting in a shipping
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cost of 2350. Thus, the total cost of production and transporta-
tion is 5143.
On the other hand, by solving the problem using Model 1, we

obtain an optimal solution with a total cost of 4907, with
production costs equal to 3157 and shipping costs equal to
1750. That is, a total cost lower than that calculated separately
in the previous paragraph. With this small example, we can see
that solving the problems of production and transport separately
and sequentially, as is usually done in practice, may not provide
the best solution for the integrated problem.

3.2. Model 2—Transport of pallets on homogeneous fleet

The second MIP model for the lot sizing problem with transport
costs considers that the items to be produced have different
types and sizes and cannot be mixed on the same pallet, in the
same way asModel 1. However, in addition, the model assumes
that, after allocating the items on pallets, the latter are loaded on
trucks of a homogeneous fleet (Figure 2).
In this case, transport costs are not directly related to the

number of pallets used, but to the number of trucks required to
transport the pallets. In addition to the problem of loading items
(equal-sized) on pallets (one problem for each item type), there
is the problem of loading pallets (of equal size) in the truck.
Both packing problems can be considered in a pre-processing,
solving the Manufacturer’s Pallet Loading Problem and assum-
ing that the pallets are arranged in horizontal layers within the
truck bed, which is also usual in practice. With this pre-
processing, the maximum number of pallets that can be
transported on a truck is calculated. Thus, besides the number
of items of type i that are loaded on each pallet (Pi), it is now
also necessary to previously calculate the number of pallets,
assuming equal dimensions (length and width), can be loaded
on the truck (P′) (usually, no more than two layers of each pallet
on the truck due to its height limitation).

Additional parameters of Model 2:

P′ Maximum number of pallets that can be
transported on a truck.

c1 Unit cost of the first R′ used trucks.

c2 Unit cost of other trucks (c2> c1).
R′ Contracted number of hired trucks with

cheaper cost c1 (similarly to R of Model 1).

Additional decision variables:

At The number of trucks used in period t with
unit cost c1.

Bt The number of trucks used in period t with
unit cost c2.

Zit Number of pallets required to transport the
items of type i produced in period t.

Model 2 is given by:

Model 2:

z ¼min
Xn
i¼1

XT
t¼1

h +
it I

+
it + h

-
it I

-
it + sitYit

� �

+
XT
t¼1

c0 + c1At + c2Btð Þ ð10Þ

Subject to :

2ð Þ; 3ð Þ; 4ð Þ; 7ð Þ; 8ð Þ

Bt +At ⩾
1
P′
Xn
i¼1

Zit t ¼ 1;¼; T ð11Þ

Zit ⩾
Xit

Pi
i ¼ 1;¼; n; t ¼ 1;¼;T (12)

0⩽At ⩽R′ t ¼ 1;¼; T (13)

At;Bt; Zit 2 Z + ; Yit 2 0; 1f g
i ¼ 1;¼; n; t ¼ 1;¼; T

(14)

The objective function (10) and constraints (13) and (14)
were simply adapted from (1), (6) and (9), respectively, for the

Figure 2 Trucks of a homogeneous fleet (authorship: http://www.freedigitalphotos.net).
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problem on hand. Constraints (11) determine the number of
trucks required to transport the pallets at the lower cost and
at the more expensive cost. Constraints (12) refer to the number
of pallets required to transport each item type in each period.
As the items are transported to the same destination (ie a
warehouse) and the pallets are considered to be of equal
dimensions, there is no need for transport variables with
information on which items are being carried by each truck.
Model 2 has 2T(n+ 1) integer variables while the remaining

variables keep the same numbers as Model 1. Furthermore,
Model 2 has T(3n+ 3)+ 4n constraints. For example, for a
problem with 20 types of item and 12 time periods, the model
has 720 real variables, 264 integer variables (216 less than
Model 1), 240 binary variables and 836 constraints.

3.3. Model 3—Transport of pallets on heterogeneous fleet

The third MIP model for the lot sizing problem with transpor-
tation costs extends the models of Sections 3.1 and 3.2.
It includes the existence of various types of trucks with different
capacities and costs, which occurs in practice in heterogeneous
fleet situations. In the same way as for the cases in Sections 3.1
and 3.2, the packing problem for loading pallets (of equal size)
in each truck can be resolved by pre-processing, solving the
Manufacturer’s Pallet Loading Problem (a different problem for
each type of truck).
Note that the following model involves deciding how

many trucks of each type to use, which differs from
previous models in that it provides only a number, whether
pallet or trucks, without the need to choose between
different options of trucks with different costs. Therefore,
the decision is now related to the cost of each truck. Smaller
trucks have lower unit cost, but have restricted capacity for
fewer pallets, not necessarily proportional to the reduction
in cost. For example, a truck can transport half of the
volume of another truck and it does not necessarily cost
half the price. Consider the following data and variables in
addition to those from Models 1 and 2:

Additional parameters of Model 3:

k= 1,…,K Number of different types of trucks.
P′
k Maximum number of pallets that can be

carried in the truck of type k.
c1k Unit cost of the first R′

k trucks of type k used.
c2k Unit cost of additional trucks of type k

(c2k> c1k).
R′
k Contracted number of trucks of type k with

cheaper cost c1k (similarly to R and R′ of
Models 1 and 2).

Additional decision variables:

Akt Number of trucks of type k used in period t
with unit cost c1k.

Bkt Number of trucks of type k used in period t
with unit cost c2k.

Z ′
kt Number of trucks of type k to transport pallets

in period t.

Model 3 is given by:
Model 3:

z ¼min
Xn
i¼1

XT
t¼1

h +
it I

+
it + h

-
it I

-
it + sitYit

� �

+
XT
t¼1

c0 +
XK
k¼1

c1kAkt + c2kBktð Þ
 !

ð15Þ

Subject to :

2ð Þ; 3ð Þ; 4ð Þ; 7ð Þ; 8ð Þ; 12ð Þ

Akt +Bkt ⩾
Z

0
kt

Pk
t ¼ 1;¼; T; k ¼ 1;¼;K ð16Þ

XK
k¼1

Z ′
kt ¼

Xn
i¼1

Zit t ¼ 1;¼; T (17)

0⩽Akt ⩽R′
k t ¼ 1;¼; T; k ¼ 1;¼;K (18)

Akt;Bkt; Zit;Z
′
kt 2 Z + ; Yit 2 0; 1f g

i ¼ 1;¼; n; t ¼ 1;¼; T; k ¼ 1;¼;K ð19Þ
The objective function (15) has been modified with respect

to (1) to depict the new transport costs. Constraints (16)
calculate the number of trucks needed to transport the pallets
in period t. Constraints (17) ensure that the number of pallets
transported by trucks is equal to the number of pallets required
to convey the production of each period. Note that the model
does not have any information on which item is being loaded
onto what type of truck, but this information is not relevant for
the solution of the problem because we are considering that the
pallets have the same size and the items have the same
destination (ie the warehouse). Constraints (18) limit the use of
type k trucks with lower cost R′

k.
Model 3 has (nT+ 3nK) integer variables and the same

number of real and binary variables as the other models.
Regarding the number of constraints, Model 3 has (3nT+2T+
4n+2KT) constraints. For example, for a problem with 12
periods and 20 different kinds of items and 2 types of trucks, the
model has 720 real variables, 312 integer variables, 240 binary
variables and 872 constraints.
Model 3 can be modified for the specific case in which

there is only one kind of contract cost (c1k) for each type of
truck k. In this case, the variables Bkt are not considered and
the decisions only involve the choice of each type of truck,
which, in turn, are only available in limited quantities (R′

k).
The problem can become unsolvable if the number of trucks
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is not sufficient to carry the entire production. This change
can be seen as an adaptation of Model 3 in which the cost
c2k is artificially set to a sufficiently high value. For the
computational tests presented in the next section, we used
the modified version of Model 3.

3.4. Model 4—Integrated model for lot sizing and bin
packing

The following is a model for the integrated MIP problem by
combining the production lot sizing decisions and truck
loading decisions without intermediate cargo unitization
devices such as pallets and containers (Figure 3). Note that
with this condition, unlike previous models, the item pack-
ing parameters cannot be calculated a priori, because the
packing of an item depends directly on the sizes and
quantities of other items that are being produced in the same
period. It is therefore necessary to develop models that
integrate the lot sizing problem with the packing problem
in a monolithic and simultaneous way, such that the
decisions of the two problems are interdependent.
Due to the difficulty of developing and solving integrated

lot sizing models with the packing problem taking into account
the three dimensions involved in the physical arrangement
(lengths, widths and heights of the items and vehicles), this study
considers only one dimension for packing problem. In this case,
one can think that this dimension is the weight, volume or value
of the goods. The cargo value constraint may happen with some
carriers on the basis of the insurance value limits imposed when
insuring the load, which is common in some countries, such as
Brazil. It can be seen that the proposed one-dimensional packing
model is based on the Kantorovich’s (1960) model, adapted to
represent the fact that loading is done in every period.

Model 4 parameters:

wi Length (or weight or volume or value) of the
item type i.

W Capacity of each truck given in length (or
weight or volume or value limit).

M Sufficiently large positive number.
c Unit cost per truck used for the transport of

produced items.

Decision variables:

Zikt Number of items of type i allocated to truck k
in period t.

Akt Binary variable indicating whether truck k is
used in period t.

In Models 1, 2 and 3, the transport variables are integer
(instead of binary) and indicated how many trucks are used.
In this model, the carrier is a binary variable indicating whether
the truck k is used or not in each period t. Moreover, the cost of
transport (c) is considered simply as linear (rather than piece-
wise linear convex). However, the model is still valid for the
convex case and, in this case, it simply replaces the constant c
for a cost vector, where R first trucks have value c1 and the
others are of value c2. In addition, to consider piecewise linear
concave costs, one need to simply add a constraint ordering the
variables Akt to ensure that truck k+ 1 will only be used if truck
k is already in use.

Model 4:

z ¼ min
Xn
i¼1

XT
t¼1

ðh +
it I

+
it + h

-
it I

+
it + sitYitÞ +

XT
t¼1

XM
k¼1

cAkt: (20)

Subject to :

I +iðt - 1Þ - I
-
iðt - 1Þ +Xit - I +it + I

-
it ¼ dit

t ¼ 1;¼; T; i ¼ 1;¼; n ð21Þ

Xn
i¼1

ðbiXit + qiYitÞ⩽Capt t ¼ 1;¼; T (22)

Xit ⩽
XT
j¼1

dijYit t ¼ 1;¼; T ; i ¼ 1;¼; n (23)

Xn
i¼1

wiZikt ⩽WAkt t ¼ 1;¼; T ; k ¼ 1;¼;M (24)

XM
k¼1

Zikt ¼ Xit t ¼ 1;¼; T ; i ¼ 1;¼; n (25)

Figure 3 Transportation directly in trucks—without pallets (authorship: http://www.freedigitalphotos.net).
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Xit; I
+
it ; I

-
it ⩾ 0; Zikt 2 N t ¼ 1;¼; T ; i ¼ 1;¼; n;

k ¼ 1;¼;M ð26Þ

Yit;Akt 2 f0; 1g t ¼ 1;¼; T ; i ¼ 1;¼; n; k ¼ 1;¼;M (27)

Note that, unlike Models 1, 2 and 3, Model 4 contains
information on loading the items in each truck. This is due
to the variables Zikt, obtained from the packing problem.
Remember that Models 1, 2 and 3 contain, due to pre-
processing, only the maximum number of pallets that can be
loaded in a truck. Constraints (21), (22) and (23) are related
to the lot sizing problem and Constraints (24) and (25) to
the packing of end products. Constraints (25) are the
coupling constraints to integrate the lot sizing and packing
decisions, as they relate the production variables to the
loading variables. The model consists of determining the lot
sizes and the number of trucks in order to minimize the sum
of the costs of production and transport (20). Note that
Constraints (24) may represent weight limit or volume
limit or maximum value. Optionally, we could have more
than one of these limits in Constraints (24) representing
these maximum values and, thus, limiting the model
simultaneously.
Model 4 contains nT(M+ 1) integer variables, T(n+M)

binary variables and T(3n+M+1) restrictions. Note that there
is a need to set the value of M, because if it is too large, the
number of variables and constraints will also be large. On the
other hand, if this number is too small, it may be that the problem
becomes infeasible. In this work, the number of available trucks
(M) is determined by multiplying the lower bound on the number
of bins required to transport the total demand. In other words, the

number of available trucks is defined by the equation with M ¼
β
Pn

i¼1

PT
t¼1 widit=W

� �
with β>1. It should be noted that the

value ofM obtained in this way is much greater than the number
of trucks required to transport the production because, for each
period, the problem will haveM trucks available. In practice, the
value of M is set by the company (as a parameter of the
problem), being equal to the number of trucks available in each
period. If the fleet is considered unlimited, that is, there is no
upper limit on the number of trucks that can be used in each
period, Model 4 remains valid but it is then necessary to obtain
an upper bound on the number of trucks.
It should be mentioned that, for the specific case of the

integrated model where there is only one production period and
without any capacity constraints, the integrated lot sizing
problem with one-dimensional packing could be just seen as a
one-dimensional packing problem. According to Coffman et al
(1997), this problem is classified as NP-complete and, thus, this
current integrated problem is also NP-complete.

4. Computational analysis of the models

In this section, a computational analysis of the models is
performed initially for Models 1, 2 and 3 that consider

distribution costs and then for Model 4, which takes into
account the integrated problem of lot sizing and loading
arrangements. The models were coded in AMPL modelling
language and solved by the CPLEX 11.1.1 computer
package with default parameters, using a Pentium Core 2
Duo 2GHZ with 2G of RAM and the Windows XP operat-
ing system.
The data used were originally inspired in a single real-life

data set that a European manufacturing company made avail-
able by Norden and Velde (2005). This manufacturing com-
pany had heavily fluctuating monthly shipments between its
manufacturing plant and its central warehouse, and had nego-
tiated a transportation capacity reservation contract with a
logistics service provider. This contract allowed the shipper to
use, in each period, any desired portion of a reservation fixed
transportation capacity in exchange for a guaranteed price,
which was lower than the expected price on the spot market.
The logistics service provider also had some benefits on such
type of contract, which included the establishment of a long-
term business relationship and the reduction on the need to find
new customers. Based on this single data set from this
company, problem instances were randomly generated in order
to reflect other characteristics of practical settings. Basically, we
varied the number of items and periods, representing different
product portfolios and different planning horizons, and the
available capacities and the transportation costs, representing
different situations imposed by the market.

4.1. Computational analysis of the lot sizing models with
distribution costs

For the classes of Model 1, the following data were used, based
on Norden and Velde (2005) and Molina et al (2009). Table 1
shows two kinds of fixed data, constant values and ranges.
When the values are represented by an interval, this means that
the given value was chosen randomly and uniformly within
this range. In the process of generating the data to simulate the
seasonality of demand, a significant increase in demand was
made every five periods, for this, the demand dit was multiplied
by 1.5. The production capacity in each period was generated in
a way that it depended on setup and production times and the

Table 1 Fixed data for the models

sit 50
h+
it 3
h-
it 10
bi 1
qi [10,30]
EDi [40,700]

dit EDi
2

� �
; 3EDi

2

� �� 	
Pi [50,150]
FR 1/4
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demand for each item, using the following formula:

Capt ¼
Pn

i¼1

PT
j¼1 ðbidij + qiÞ
αT

$ %
t ¼ 1;¼; T

where α is a parameter to control the slack in capacity. The
maximum number of inexpensive pallets, in other words the
value R, was calculated as the fraction of average demand
which is transported to the cost c1. The value of FR means that
R should be generated so that for a fraction FR of the periods
(for example, FR= 1/4), the demand must be below
RðPn

i¼1 Pi=nÞ. In this adaptation value for Model 2, we
considered the number of pallets that can be carried in the truck
(P′), that is to say, R′ must be generated so that for a fraction
FR= 1/4 of the periods, demand should be less than
R′½ðPn

i¼1 PiÞ=nÞ=P′Þ�. As Model 3 supposes different sizes of
trucks and smaller trucks are limited to R, in this case FR is
interpreted as the fraction of periods when the demand is below
R′½ðPn

i¼1 PiÞ=P′
k�.

In addition to these data, there were four other data defining
the classes for specific data instances: number of items (n),
number of periods (T), transportation costs (c1 and c2) and the
slackness control in capacity (α). Sixteen classes of problems
were generated (classes 1,2,…,16) with numbers of items equal
to 50 and 150, and numbers of periods equal to 20 and 50. For
each of the sixteen classes, 50 instances were generated, which
differ only by data that were generated randomly within the
predetermined ranges. Table 2 shows the dimensions of the
classes of instances 1–16. It is worth noticing that the periods
are all of equal length and represent typically months.
In addition to the data generated for Model 1, in Model 2, P′

was generated uniformly within the range [40,80] (ie, P′∈
[40,80]). The rest of the data was kept the same as the data for
Model 1. Note that, now, the costs are for the number of trucks.
In Model 3, as mentioned earlier, a special adaptation of
Model 1 was considered, where the costs for the use of extra

trucks are prohibitive, so that they will not be used on an
optimal solution. Thus, the model is equivalent to the case
where we only have to decide the number and types of truck to
be used, that is, without the decision whether to use the extra
trucks. Consider the following additional data for Model 3:
number of trucks K= 2, P′

1 ∈ [40,80], P′
2 ¼ 2 ´P′

1, c1= 50 and
150 and c2= 1,5 × c1.

4.1.1. Computational results: Models 1, 2 and 3. In the fol-
lowing, we present some computational results of Models 1, 2
and 3. As the models capture different realities, our main aim
in this section is to analyse the results of each model sepa-
rately. However, for convenience, the models were applied to
solve examples of the same classes and for simplicity, their
results are presented side by side in Tables 3 and 4. A runtime
limit of 180s was arbitrarily chosen for solving each of these
examples. Although the models represent tactical decisions
problems, this (short) time limit seems to be acceptable in
practice as each model may have to be solved many times for
supporting managerial decisions (eg, performing different
sensitivity analysis of the input parameters, investigating dif-
ferent alternative scenarios and applying rolling time horizons
implementations, in which a production-logistics plan is
determined for the whole planning horizon but only the deci-
sions in initial time periods are implemented against uncer-
tainties in next periods). Table 3 shows the average results for
16 × 50= 800 instances in classes 1–16 for Models 1, 2 and 3.
The results were analysed according to:

CT Computational time (in seconds) of AMPL/
CPLEX.

GAP Value Gap= |LS−LI |/(e− 10 + |LS|) (calcu-
lations made by the optimization package).

For Model 1, note that we could not find a feasible solution
for a significant number of instances, and that, for all classes,
the optimization package used the maximum resolution time
and did not prove the optimality of the solution, although it does
gets a small GAP for some classes. It can also be seen that the
bigger the size of the problem (represented by the number of
items and time periods), the greater the difficulty in obtaining
good solutions (see the GAP column). In addition, the increase
in transportation costs (classes 9–16) also makes it difficult to
solve the problem, probably due to a trade-off between higher
setup costs and transportation costs.
For Model 2, it can be seen that the package had less

difficulty solving these instances. In classes 1 and 9, the
package proved optimality of the solution found for some
instances (note that the average time is lower in these classes).
The package found at least one feasible solution for all 800
instances generated. Again, we can see that having a larger
number of items and periods, the package has more difficulty in
solving the problem (classes 8 and 16). Another observation in

Table 2 Variable data for model 1

#Item (n) #Period (T) α c1 c2

Class 1 50 20 0.85 50 200
Class 2 50 50 0.85 50 200
Class 3 150 20 0.85 50 200
Class 4 150 50 0.85 50 200
Class 5 50 20 1.00 50 200
Class 6 50 50 1.00 50 200
Class 7 150 20 1.00 50 200
Class 8 150 50 1.00 50 200
Class 9 50 20 0.85 150 500
Class 10 50 50 0.85 150 500
Class 11 150 20 0.85 150 500
Class 12 150 50 0.85 150 500
Class 13 50 20 1.00 150 500
Class 14 50 50 1.00 150 500
Class 15 150 20 1.00 150 500
Class 16 150 50 1.00 150 500

1403



4 Journal of the Operational Research Society Vol. 67, No. 11

this table is related to the greater difficulty in solving some
instances with high transportation costs.
It can be seen that the package also had more difficulty

solving some instances for Model 3, particularly in Classes 8
and 16 (instances with more variables). For all the instances, the
package used the time limit and no solution for any sample was
shown to be the optimal solution.
We also analysed the average number of nodes of the

enumeration tree and cutting planes that the computer package
used for each model and, as can be seen in Table 4, this
highlights the importance of cutting planes in the solution of
these models. In general, the package gets good initial solutions
through the generation of cutting planes, with up to 10% of
GAP in the first solution (root node) of the instances in which a
feasible solution was found within the time limit.
From the analysis of the results shown, we can conclude that

the optimization package is reasonably effective in solving the
proposed Models 1, 2 and 3 for production lot sizing problems
with transportation cost. However, after the 180-s time limit, the
GAP is still relatively high for some classes and, particularly for
Model 1, the package had difficulty finding feasible solutions.

We also did some additional computational tests with Model
1, increasing the time limit to 7200s (Table 5). This resulted
in the optimization package using all available time (7200s),
without proving the solution optimality. However, theGAPwas
significantly reduced when compared to the results for the 180-s
time limit and, furthermore, with the additional time the
optimization package obtained a feasible solution for all classes
tested. Note that the average number of nodes in the tables
shows that the larger the number of variables, the smaller the
number of nodes. Considering that the average computational
time for each node is the same, the last column presents the
computational time spent after finding the best solution. It is
possible to see that in the classes with a smaller number of
variables (G1,G5,G9 & G13), the optimization package spent
more time trying to prove the optimality of the solution. Finally,
the average number of cutting planes are bigger for classes with
a higher number of variables (G4,G8,G12 & G16).

4.2. Computational analysis of the integrated lot sizing and
bin packing problem (one-dimensional case)

This section tested the model of the integrated lot sizing with
one-dimensional packing problem (Model 4). Initially there is a
description of how the data for the experiments were generated
and, subsequently, some computational results from the solu-
tion of the models by AMPL/CPLEX optimization package are
given, now with a 3600-s time limit due to the greater difficulty
in solving this model. To generate the data described in Table 6,
such as the size of the items and size of trucks, the data
described in Beasley (1990) was used.

Table 3 Results obtained by AMPL/CPLEX-computational time and GAP

Model 1 Model 2 Model 3

CT(s) GAP(%) CT(s) GAP(%) CT(s) GAP(%)

Class G1 180.00 1.69 163.40 0.17 179.99 0.46
Class G2 180.00 1.91 180.00 0.59 180.00 0.69
Class G3 180.00 1.66 180.00 0.19 180.00 0.21
Class G4 180.00 3.66* 180.00 0.35 180.02 0.30
Class G5 180.00 3.83 180.00 0.70 180.00 1.73
Class G6 180.00 6.15 180.00 1.41 180.00 1.56
Class G7 180.00 7.25** 180.00 0.50 180.01 1.70
Class G8 180.00 — 180.00 15.51 180.03 12.53*
Class G9 180.00 2.92** 160.87 0.29 179.99 0.89
Class G10 180.00 3.47 180.00 1.11 179.99 1.35
Class G11 180.00 6.56*** 180.00 0.36 180.00 0.43
Class G12 180.00 — 180.00 0.63 180.01 0.60
Class G13 180.00 4.34 180.00 0.92 179.99 2.25
Class G14 180.00 — 180.00 2.07 180.00 2.14
Class G15 180.00 — 180.00 0.71 180.01 2.38
Class G16 180.00 — 180.00 21.01 180.03 22.98****

* Could not find a feasible solution for nine instances, which were removed for the determination of the average.
** Could not find a feasible solution for two instances, which were removed for the determination of the average.
*** Could not find a feasible solution for 48 instances, which were removed for the determination of the average.
**** Could not find a feasible solution for 49 instances, which were removed for the determination of the average.
— Unable to find a feasible solution to 50 instances.

Table 4 Results obtained by AMPL/CPLEX-number of nodes and
cutting planes

Model 1 Model 2 Model 3

Average number of nodes 9805.117 19177.61 26486.07
Average number of cutting planes 10827.53 10366.25 10389.13
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The instances below are based on Beasley (1985), who used
an average of 500 items for cutting and packing problems.
Thus, we used an average demand of 100 items per period for 5
periods or 50 items per period for instances with 10 periods.
Therefore, the values of n and T are smaller than those used in
the models of the previous sections.
As in previous models, some were fixed values and others

were chosen randomly and uniformly in a range. For example,
the size of items wi was chosen randomly between 20 and 100.
The demand dit was randomly generated so that the sum of all
items in all the periods was equal to 500 (50–100 or item). For
each demand and size of generated items, five instances were
generated, one for each shipping cost. Thus, the classification of
classes of these tests is defined as follows: class *.1 with
shipping cost c = 100, class *.2 with cost c = 150, class *.3 with
cost c= 200, class *. 4 with c= 400 and class *.5 with c
= 3000. The data related to the production capacity were
generated as described in Section 4.1 with α= 0.85.

4.2.1. Computational results: Model 4. The results are
shown in Table 7 according to the size of the problem, in other
words, four sets of three columns are shown combining the

different numbers of types of items and time periods, in the
following order: 5 × 5, 5 × 10, 10 × 5, and 10 × 10. The max-
imum runtime limit (3600s) was used for all instances. OF is
the value of the objective function.
For the 5× 5 instances, it can be seen that the optimization

package used the maximum resolution time and, in general, did
not prove the optimality of the solutions but got GAPs smaller
than 0.23%. Whereas for 5 × 10 instances, one can note that
increasing the number of periods influenced the solution of the
problem. This is shown by the increase in the GAPs for
solutions found by the optimization package. Note that, in this
case, the GAPs obtained in the solution are higher than 1.2%.
The quality of the solution found by the optimization package
was not influenced by the transport costs.
When the number of types of items is increased and the time

periods remain at 5 (10× 5 instances), the optimization package
produces lower quality solutions (column GAP) compared to
5 × 5 instances. Comparing the quality of the solutions found in
the 5× 10 and 10× 5 instances, we note that increasing the
number of periods of the planning horizon further complicates
the problem, when compared to the increase in the number of
items. For the 10× 10 instances, the optimization package
found solutions withGAPs, on average, higher than those found

Table 5 Results obtained by AMPL/CPLEX—Model 1

GAP (%) Average number
of cutting planes

Average number
of nodes

Best node Computational time
(s) after best node

Class G1 0.22 3939 3153474 2528068 1467.59
Class G2 0.37 9797 1145678 1113116 210.32
Class G3 0.30 11666 979216 946611 246.39
Class G4 8.34 26737 276714 276654 1.60
Class G5 0.01 3952 691866 669197 235.91
Class G6 0.11 9022 220378 220324 1.78
Class G7 0.11 10802 153309 153269 1.87
Class G8 0.35 25284 57311 57254 7.17
Class G9 0.01 3707 2241601 2142791 317.37
Class G10 0.02 9369 691569 691481 0.92
Class G11 0.03 10972 578271 578221 0.62
Class G12 0.29 24944 179950 179894 2.26
Class G13 0.02 3894 470835 468779 31.43
Class G14 0.16 8619 111784 111724 3.83
Class G15 0.20 10741 102406 102349 4.04
Class G16 0.60 24089 31470 31374 21.89

Table 6 Fixed data for Model 4

N {5,10} The number of types of items in a problem is set at 5 or 10
T {5,10} The number of time periods in a problem is set at 5 or 10
M

M ¼ β
Pn
i¼1

PT
t¼1

widit
W


 �
The number of trucks is obtained using the expression described in Section 3.4, with the value of
β = 1,5

wi (20,100) The size of the items is randomly generated in the range of values 20–100
W 1000 The truck size is fixed at 1000
sit 100 The machine setup cost for the production of the items in the periods is equal to 100
h +
it 3 The inventory cost per unit per period is set at 3
c {100,150,200,400,3000} Transport costs are fixed at 100, 150, 200, 400 or 3000
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in the smaller problems. Again, it was not possible to detect any
specific behaviour in solving this class of problems in relation
to the differences in transportation costs.

5. Concluding remarks and future work

In this study, MIP models were given for lot sizing problems
with production capacity constraints and distribution decisions
based on cargo unitization devices and under restrictions of
weight limits, volume or value of cargo. The MIP models were
solved using the CPLEX solver’s branch-and-cut method and
the results show that these models can be used to support
integrated decisions in lot sizing and distribution of products in
some practical situations.
As mentioned, during the development of this study some

companies were visited to identify and evaluate possible real-
life applications of the models and solution methods of this
study. The application of the models and methods developed in
this work in real-world case studies to analyse the performance
in practice and the benefits of these models is suggested as an
interesting future research, as well as the development of
customized solution methods for solving some of the models
presented, investigating the specific structures and characteris-
tics of these models. Another interesting line for future work
would be to expand on these integrated models considering not
only the one-dimensional case (weight, volume or load value),
but also two-dimensional and three-dimensional cases, in which
various dimensions (eg lengths, widths and heights of the items
and of the vehicles) are relevant to the loading problem

solution. Regarding the lot sizing problem, a relevant extension
includes the possibility of a setup carryover and crossover. The
idea is to allow a setup state to be maintained from one period to
the next (setup carryover), or to allow that a setup operation can
be interrupted at the end of a period and resumed at the
beginning of the next period (setup crossover). An updated
version of the optimization solver will be used in these future
computational tests.
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