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ABSTRACT 

This paper describes a fast approach to automatic point label de-confliction on interactive maps. The general Map Labeling 

problem is NP-hard and has been the subject of much study for decades. Computerized maps have introduced interactive 

zooming and panning which has intensified the problem. Providing dynamic labels for such maps typically requires a time-

consuming pre-processing phase. In the realm of visual analytics, however, the labeling of interactive maps is further complicated 

by the use of massive datasets laid out in arbitrary configurations, thus rendering reliance on a pre-processing phase untenable. 

This paper offers a method for labeling point-features on dynamic maps in real time without pre-processing. The 

algorithm presented is efficient, scalable, and exceptionally fast; it can label interactive charts and diagrams at speeds of multiple 

frames per second on maps with tens of thousands of nodes. To accomplish this, the algorithm employs a novel geometric de-

confliction approach, the "trellis strategy," along with a unique label candidate cost analysis to determine the “least expensive” 

label configuration. The speed and scalability of this approach make it well-suited for visual analytic applications. 

CR Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/Image Generation - Viewing Algorithms; I.3.5 

[Computer Graphics]: Computational Geometry and Object Modeling - Geometric Algorithms 

 

Figure 1: A view of over 10,000 cities in the U.S. displaying 800 labels that were computed in less than 0.07 seconds. 
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1 INTRODUCTION  

The problem of placing non-conflicting labels on maps is simple in its specification: attach a label unambiguously to every point 

or feature on a map without allowing the labels to overlap each other or other features. Although it is theoretically feasible to 

solve the problem by simply enumerating all possibilities, the combinatorial explosion of this approach renders it intractable. 

Many different variants of the label placement problem have in fact been shown to be NP-hard [2, 11, 21], even in the one-

dimensional case [26]. Research is therefore directed at finding the best approximation of an optimal solution. A decade ago the 

problem was identified as one of the most important areas of research in Discrete Computational Geometry [4]. It has long been a 

critical issue for such endeavors as graph and map drawing, as well as geographic and avionic information systems. 

With the advent of information visualization and visual analytics, the challenge has only intensified. Visual analytic software 

brings unique demands: agile interactivity (including zooming and panning in 2D, or even rotation in 3D), unpredictable 

configurations (produced on the fly), and immense feature sets (multiple thousands of nodes). By way of example, the Starlight 

Visual Information System can generate a variety of models, or “views”, consisting of multiple feature points displayed 

graphically in clusters, network graphs, or geospatial distributions, etc.[25] These views, generated by user-specified queries in a 

highly interactive environment, can easily contain tens of thousands of points or more. Besides Starlight, many other systems 

exist which spatially represent the text documents of large databases (e.g.,[28, 30]). In such environments the need to preserve 

contextual awareness through rapidly produced and readable labels is critical. But despite many recent advancements, most 

computational solutions for automatic label placement have proved inadequate for the exacting demands of interactive and 

dynamic visualizations.  

The general problem of Map Labeling can be sub-divided into various categories, depending on the type of feature being 

labeled, whether points [5, 27], lines [18, 34], or polygonal areas [8, 19]. This paper will address the point label problem for 

dense point-clouds (cf. Figure 4). The remainder of the paper is organized as follows: Section 2 provides a brief overview of the 

literature. Section 3 specifies the precise problem.  Section 4 describes an algorithmic solution. Section 5 outlines the results 

obtained by applying the algorithm to maps with dense feature sets. Finally, Section 6 summarizes the findings and offers 

suggestions for further study.  

2 RELATED WORK 

Research on the problem of automatic label placement stretches back for decades and has proceeded along a number of parallel 

tracks; researchers in cartography, computational geometry, and geographic information systems have been the principal 
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developers. Accordingly, a wide variety of strategies have been applied over the years: from greedy and exhaustive rules-based 

approaches, to “divide and conquer,” gradient descent, simulated annealing, genetic algorithms, linear/integer programming 

techniques, tabu search, ant colonies, and many more. In addition, the research has addressed various different label types in 

regard to their size, shape, and configuration. For example, labels have been modeled as squares, circles, fixed-height rectangles, 

or elastic frames. Other parameters to the problem include label orientation (axis-aligned or arbitrary), the number of label 

candidates per feature (2, 4, 8, or more), candidate space configuration (fixed,  slider, or non-adjacent with leader-lines), 

optimization goal (size- or count-maximization), metric of success (speed or thoroughness), user-dependence (automated or 

guided), and application-domain (cartography, geographic information systems, information visualization systems). The 

influence of cartographic principles on information visualization is discussed in [28]. For comprehensive information on map 

labeling, see A. Wolff’s excellent website and associated bibliography [33]. 

Historically, most of the literature has centered on the cartographic problem of finding the best solution: producing a map with 

the most labels, for example. Little consideration was given to the speed of the algorithm. Within the past few years, however, 

new breakthroughs have been made to provide faster algorithms for label generation. This has become increasingly important in 

the age of dynamic, computer-generated maps and displays. For example, until a few years ago, the best solutions in the scientific 

literature operated on the order of seconds or minutes, which is acceptable when generating a static map for printing. It is too 

slow, however, for dynamic maps that allow zooming and panning. In these applications, the label positions must be re-calculated 

with every change of scale or scope. An acceptable algorithm, therefore, must operate in real-time (i.e., “on the wheel of a 

mouse”) for such an application to be useful.  

Wagner et al. were among the first to provide a faster approach, suggesting heuristic rules that brought a significant 

improvement over previous approaches but that were still too slow for large sets, measuring in minutes for large sets [32]. 

Petzold followed by providing real-time labeling, albeit with a high pre-processing cost [23]. A so-called “Real-Time Method,” 

intended to be suitable for personal navigation applications, was described in [37], but the authors concede that “for real-time 

applications . . . we find our current implementation not efficient enough.” In a related paper an algorithm is presented that is 

indeed “fast enough for  most real-time map applications,” however the authors offer this efficiency only for datasets with about 

100 points[15]. A recent approach utilizing a “greedy randomized adaptive procedure” provides good results but requires well 

over a minute for datasets of 1000 points and does not test sets larger than this [7]. Most promising, perhaps, is a graph-theoretic 

algorithm described in [27] that offers a theoretical runtime of O( n n ). The authors provide tabulated results indicating a sub-

second speed for instances of size 1000. Much larger sets require multi-second time, however, and the approach does not appear 

to lend itself to feature prioritizing or label placement preference. A number of other recent approaches, all with a common 

strategy of using an expensive pre-processing phase, will be discussed further in Section 4.1, below. 



4 

 

Dr. Herbert Freeman, whose work in this field spans decades, offers an excellent synopsis of the last 25 years of progress on 

automated cartographic text placement systems. He concludes his overview with the promise that “the day of one-second quality 

labeling of an electronically displayed…map or…chart is not far off” [12]. 

3 STATEMENT OF PROBLEM 

The goal of this research is to identify a method for labeling the features on dynamic maps in real time without a pre-processing 

stage. The term “maps” will be used in this paper to refer to any chart, view, or diagram produced by information visualization 

and visual analytic software, in which the main features (i.e., elements to be labeled) are represented as points. These “point-

features” will be referred to henceforth as simply “features”. The set of all features will be called the map set. These maps are 

considered “ad hoc” in that they are generated on the fly in unpredictable configurations and require a labeling method that can 

be calculated instantly. Moreover, the data sets can be massive: ranging up to tens of thousands of features or more.  

The precise scope of the problem can be defined as follows: Given a map with a pre-defined set of prioritized features, swiftly 

find the largest possible set of non-intersecting, axis-aligned rectangular labels, giving preference to the highest-prioritized 

features and to the cartographically preferred candidate locations. Each label must: (a) touch its referent (parent) feature at one of 

its four corners, (b) obscure as few other features as possible, and (c) obscure no other labels. 

In seeking to address this problem, the following design decisions have been made in the algorithm to address the specific 

challenges posed by dense feature-sets in interactive displays: 

It does not restrict labels from obscuring other features in the view. This approach represents a significant departure from 

most previous schemes, but it is clearly unavoidable when working with the dense clusters produced by visualizations of massive 

data sets.  The on-screen density of these visualizations often provides little or no white space for non-conflicted labels. To 

prohibit occlusion of features in these cases would mean that very few features (if any) would be labeled at all. Worse, because 

the highest-prioritized features are often buried deep in clusters, only the marginal outliers would be labeled, in direct opposition 

to our stated goal of priority preference. That being said, this algorithm attempts to allow the fewest features possible to be 

obscured, and then, only by higher priority feature labels. 

It is optimized for uniformly-sized labels. The trellis strategy, as described in Section 4.1 below, is designed primarily for 

labels of equal size. Nevertheless, non-uniform labels can be accommodated, albeit with diminishing quality. For example, users 

could specify that longer-than-average labels may be truncated, or alternatively, may be allowed to overlap other labels by a 

certain percentage. Experimentation has demonstrated that a combination of these two options can produce very acceptable and 

readable labelings with variably sized labels. 

It exploits priority-ranked features. It is common in visual analytic applications that the individual features are associated with 

a specific value representing their “importance” to the view. This value may be derived or assigned. For example, if the view 

represents a geographic map with features pinpointing the cities, the features might be ranked according to the population of 
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those cities. Or if the view was a complex scatter-plot displaying the results from a web search, the feature priority might 

correspond to their weight, Google™ page-rank, chronological order, or any other ordered numeric attribute of the data. The use 

of such preference information, if available, can greatly increase the efficiency of the algorithm. See [2] for similar use of priority 

rankings. 

It prefers speed over optimal label configurations. This design decision is based squarely on the interactive nature of dynamic 

maps. The assumption here is that any sub-optimal configuration or indistinct labeling can in most cases be disambiguated with a 

minor amount of user interaction (e.g., zooming). While this allows us to relax our expectations slightly with regard to perfect 

labelings, experimental results demonstrate that quality is only marginally degraded. 

It is based on a label model of size four. A “label model” refers to the number of possible positions, or “candidates,” in which 

a label may be located around a given feature. Many mapping utilities and geographic information systems use label models 

offering more than four candidates per feature. Some offer the “slider” model, where labels are allowed to “slide” around the 

feature so that the feature may appear anywhere on the boundary of the label (cf. [31, 38]). However, the contention here is that 

such extended label models are inappropriate for dense visualizations. Given the magnitude of screen-space density in high-

volume visualizations, particularly when labels are allowed to over-post features as discussed above, referent-ambiguity increases 

uncontrollably as the label model grows. Because so many features may feasibly appear on or near the boundary of a label, only 

by constraining the labels so that their referent feature appears at one of their corners can we preserve appropriate contextual 

awareness. Similarly, the “excentric” model, where labels are attached by leader lines to their associated features [3, 10], is not 

particularly suited for high-density displays. 

It recognizes cartographic preference. The relative preference of each of a label’s four candidates is determined by the 

aesthetic criteria established by cartographers. Described in [17], these informal rules establish the relative value of each 

candidate. Typically, the upper-right candidate is preferred, followed by the lower-right, upper-left, and lower-left, in that order. 

Other aesthetic issues are discussed and evaluated in [16]. 

4 ALGORITHM: LABEL SELECTION BY CONFLICT- EXPENSE ESTIMATION  

This section presents a solution to the stated problem, introducing a rapid, yet effective method of determining and selecting what 

will be referred to as the “least expensive” label configuration. The algorithm is divided into the following three conceptually 

distinct steps: 

• Conflict detection 

• Expense calculation 

• Label candidate selection 
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In implementation, these steps would actually be merged. First, analyze each feature in the set, testing it against all features that 

lie in close proximity, and create what is known as a “conflict graph” to keep record of label candidate intersections, or “conflict 

partners”. Although this step would normally be quite expensive, an efficient approach—the trellis strategy—will be introduced 

to expedite these calculations. Second, pass through the set of label candidates and, for each one, calculate an associated expense. 

This expense will be described in detail below but is essentially a function of the sum of the label’s conflict partners along with 

their associated priorities, among a few other factors. Finally, pass through the set of features, in descending priority order, and 

for each feature, select its “least-expensive” label candidate, while de-selecting that feature’s remaining candidates. In essence, 

this algorithm uses an informed but greedy approach to approximately minimize the expense of the total label set. 

By computing each candidate in priority order, we can have high confidence that a large majority of the highest priority 

features will be labeled at the default zoom level, assuming an approximately uniform distribution of the visualization data 

features. This system does not offer demonstrable asymptotic guarantees of performance, as it claims only to be a useful 

approximation. Nevertheless, the author’s implementation provides strong evidence that this approach is fast, effective, and 

reliable in many real-world scenarios. Furthermore, it should be reiterated that this system requires no extended pre-processing 

stage, making it ideal for information visualization and visual analytic applications in which maps, diagrams, and charts are 

constructed on the fly. This is particularly true of three-dimensional feature maps, for which preprocessing every conceivable 

orientation is entirely unfeasible. 

4.1 STEP ONE: CONFLICT DETECTION  

One of the most common approaches in the literature to solving the point-label problem uses a concept referred to as a “conflict 

graph [29]”, an “overlap graph” [19], or a “label graph” [27]. These terms refer to a graph whose nodes correspond to labels and 

whose edges correspond to intersections between labels. Using this model, the objective of the label placement problem is to find 

the maximum independent set of the conflict graph [1]. The concept of a conflict graph can also be understood more generally, in 

a non-graph-theoretic sense, as an “adjacency matrix” storing intersection information for all feature pairs. This paper generalizes 

the concept of a conflict graph, defining it simply as a list of conflict partners associated with each feature. This list will act as a 

look-up table to determine the total number of conflicting pairs of label candidates or, more specifically, the total number of 

occluded labels for any given candidate, and to keep record of the label candidates that must be removed due to occlusion. 

Although constructing the conflict graph is typically quite expensive, this step is often disregarded in the literature. The 

conflict graph is quite often assumed as input to many algorithms (see for example [2, 32, 35]). Such papers generally describe 

how to determine or identify the largest independent set of label candidates, given a pre-determined conflict graph. This approach 

is appropriate if the size of the dataset is relatively small, or if the pre-processing time available for conflict graph construction is 

irrelevant. Unfortunately, neither of these assumptions holds true in the realm of dynamic information visualization applications. 
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Indeed, even though many of these approaches are offered for their efficiency, this overlooked step can often be the bottleneck of 

performance. 

In fact, some more recent papers have sought greater efficiency in label-selection by intensifying this requirement, rather than 

abbreviating it. In [22, 23], for example, an approach is described for determining a “reactive conflict graph.” This graph stores 

information about all potential conflicts at all zoom levels. It is constructed during a several-minute-long “pre-processing” phase 

and rapidly accessed during an interactive phase. In [24], a line-stabbing approach to conflict graph generation is used, building 

low-height hierarchies to better ensure the quality of the final layout at multiple zoom levels. This approach has the advantage of 

offering asymptotic guarantees of performance but requires O(n2) time for two-dimensional maps. Likewise, interactive speed is 

achieved in [2], but “all of the selection and placement decisions are moved into the preprocessing stage.” These approaches, 

with their reliance upon a time-consuming pre-processing stage, make them unsuitable options for the ad hoc map generation of 

dense information visualization applications.  

Conceivably, one could attempt to eliminate conflict graph construction altogether by simply estimating the number of 

conflicts for any given feature. By using, for example, a modification of the “trellis” approach described in this paper such 

estimates could indeed turn out to be reliable and sufficient. However, such an approach does not address the second purpose of 

the conflict graph mentioned above; that is, it provides no way to determine which specific labels must be removed due to 

occlusion. For this reason, a conflict graph of some form must be generated and must be available and accurate at all zoom-levels 

and orientations of the feature set. Although the construction of a globally complete graph is not feasible for any fast de-

confliction algorithm, the ideal solution must at least include a strongly reliable approximation of the graph. This necessity will 

require a considerably more sophisticated and informed approach to conflict graph generation than the naïve O(n2) method of 

testing all candidates against all others. The following section will describe in detail a strategy that can in principle offer an 

efficiency gain of nearly three orders of magnitude over the elementary approach. The dual goal of this new approach is to 

accelerate the detection of intersecting label candidates, and to avoid all unnecessary testing of feature pairs. 

4.1.1 THE TRELLIS STRATEGY 

The strategy employed here is based on a geometric subdivision of the feature set in screen-space. This subdivision, called a 

“trellis,” can be conceived as a two-dimensional array of equally sized cells, sub-dividing the screen-space view into rows and 

columns. Each cell in the trellis has an associated list of all the features that are located in that cell’s defined pixel space. The 

trellis, of course, would never actually be rendered in any visualization, but if it were it would resemble a cross-hatch lattice of 

horizontal and vertical lines—like a garden trellis. This trellis is similar in many respects to the “grid of buckets” described in [2]. 

The approach described here, however, exploits the characteristics of a slightly more sophisticated subdivision of map space. 

One very significant and strategically determined characteristic of the trellis is the size and aspect ratio of the cells. Each cell is 

defined as a “quarter-region”; that is, it is exactly one-fourth the area associated with a label, the size of which we assume to be 



8 

 

fixed and constant (cf. Section 3). It also shares the same aspect ratio of the label. In other words, if one were to slice a label in 

half both vertically and horizontally, the resulting four quarter regions define the trellis cell (cf Figure 2). (Henceforth, “trellis 

cell” and “quarter-region” will be used interchangeably.) The purpose for this particular size and shape will be explained shortly. 

All the cells in the trellis are, hence, identical, with the possible exception of the rightmost column and the bottom-most row of 

cells, which may be smaller if view-space constrains them. For a view of size 1500x1000 pixels, with labels of size 150x20, there 

would be 2000 cells in the trellis. 

  

    

    

    

    

 
   

 
Label for fA 

 
Feature fA 

 
 

Figure 2: A portion of the trellis. The label of feature point fA
  is displayed to demonstrate that each trellis cell is one-fourth the 

size of the labels. Other features are shown in the neighborhood of fA. 

 

The trellis is populated by testing each feature f, performing the following two calculations to determine which row and 

column of the trellis contains the feature. 

Trelliscolumn(f) = floor(fx/quarter_region_width) 

Trellisrow(f) = floor(fy/quarter_region_height) 

where fx and fy represent the x and y pixel coordinates of f, respectively, relative to the view window. Hereafter the trellis cell in 

which feature fA lies will be referred to as CELL(fA). The expense of this series of calculations is, of course, linear in n.   

Once we have iterated the feature set, every trellis cell is associated with a list of the features that appear within its boundaries. 

Conversely, every feature has an associated trellis coordinate. By taking advantage of the specific geometric structure and layout 

of the trellis, the conflict graph can be generated in an extremely efficient way. 

4.1.2 THE TRELLIS ADVANTAGE 

The first and most obvious advantage offered by the trellis is the ability to specifically and instantly define a neighborhood 

around any given feature. As a result, we will not have to test each feature against every other feature in the set (an n2 operation). 

Instead, we can limit our conflict search so that, for any given feature, we will test it only against those features that are located in 

the immediately neighboring cells. Specifically, we will inspect only those cells that have a possibility of containing conflicting 

label candidates. This approach was similarly described in [2]. 

By the nature of the design of the trellis dimensions, it is a simple task to determine which cells have potential conflicts. 

Because quarter-regions are ¼ the size of a label, it may be observed that a label candidate of feature fA can conflict with a label 

candidate of feature fB if and only if fB resides in a four-cell radius of fA, or no more than four rows or four columns away from fA. 
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Such a radius defines a 9x9 array of cells, centering on the home, or “parent” cell of fA (cf. Figure 3). This array will hereafter be 

referred to as the “neighborhood” of fA, and features within those cells, as “neighboring features” of fA.  All features outside of 

this neighborhood can be disregarded with respect to fA; their label candidates have no possibility of conflicting with those of fA 

beyond a coincident edge. On the other hand, the label candidates of all neighboring features of fA are regarded as potential 

conflict partners with the candidates of fA. 

 

           

           

           

           

           

           

           

           

           

           

           

  

 
 

fA

 

 

Figure 3: A portion of the trellis displaying the entire neighborhood (bold line) of feature fA. Four candidate label locations are 
shown (dashed lines). Note that regardless of where fA is located in its parent cell (blue), it is guaranteed not to conflict with the 

labels of any features outside this neighborhood. 

 

Referring to the example view mentioned above, we can see that this has reduced the target range of test cells from 2000, 

which was the number of cells in the entire view, to 81. If at least a nominally uniform distribution of features is assumed, it can 

be seen that this strategy has reduced the number of potential conflict tests by roughly one order of magnitude. 

The benefit of subdividing our space into quarter-regions is that it can significantly reduce the number of conflict tests 

necessary. For instance, consider a feature fA in CELL(fA), and a second feature fB in one of the neighboring cells. Because 

CELL(fB) is in the neighborhood of CELL(fA), their label candidates are potentially in conflict. Imagine next that CELL(fB) is 

exactly four cells to the left of CELL(fA). Due to this fixed Cartesian relationship we can narrow the list of potential conflicts, thus 

eliminating the need to test all of them. The complete list of possible conflicts between the label candidates of fA and  fB in this 

case are as follows: 

[A0:B2, A0:B3, A1:B2, A1:B3] 

We therefore only have to test those particular candidates for conflicts rather than all 16 possible conflict pairs. Tables 1-3 

delineate precisely all the possible conflicts that can occur in each cell in the neighborhood of a central feature. Moreover, as we 

continue to exploit the known Cartesian relationships between the cells, we gain an additional advantage. Note that, typically, 

conflict graph generation requires the detection of rectangle intersections, which is not necessarily an inexpensive test. Many 

approaches to the general problem of rectangle intersection-pair identification have been published within the field of 

computational geometry (e.g., [6, 14]), but the problem itself is a difficult one. Even the simple case of testing a single pair of 

rectangles is fairly incompressible, with essentially no way to abridge it beyond four atomic operations, such as 

IntersectionExists(rectA, rectB) =    
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 ((rectA.left < rectB.right) && (rectA.right > rectB.left) &&  (rectA.top > rectB.bottom) && (rectA.bottom < rectB.top)) 

Fortunately, however, the use of the trellis method eliminates the need to perform any rectangle intersection tests at all. 

Consider the example described above, in which fB lies 4 cells to the left of fA, and four possible candidate intersections exist 

between them. Rather than testing each one of the four pairs for intersection, we will exploit the information provided to us by 

the geometric orientation within the trellis. In this particular case, then, we merely have to test whether the distance from fA to fB 

is greater than the width of two labels, in which case no conflicts are possible. If the distance is less than two label-widths then 

we additionally test whether fA is higher (in the y-direction) than fB. The result of these two tests determines precisely which of 

the four possible label conflicts actually occur. 

We can use similar observations in each cell of a given neighborhood to greatly reduce the number of required tests. Table 1 

represents one quadrant of the trellis neighborhood and outlines all the tests required for each cell in that area. As the table 

demonstrates, none of the cells in the entire 81-cell neighborhood require more than two atomic tests; many require only one; and 

a few require none at all. If one feature were to reside in every cell of the neighborhood of fA there would then be at most 90 tests 

required to build the complete conflict graph with respect to fA. Note that the simplest rectangle intersection approach would 

require testing all four of fA’s label candidates against the four candidates of each of its 80 neighbors, or 4x4x80=1280 total tests. 

If the cost of the four-operation intersection test were included, the total count would approach 5000 atomic operations. Contrast 

this with the 90 operations of the trellis strategy, and it can be seen that the efficiency has been increased by a factor of nearly 

500:1. The trellis strategy has, hence, reduced the cost of the problem by a second order of magnitude, for the uniformly-

distributed case.  

This demonstrates the tremendous benefit offered by the trellis method. For the low (O(n)) cost of a single pass through F to 

populate the trellis, a potential speed-up of nearly 2½ orders of magnitude has been achieved over a rudimentary approach to 

conflict graph generation. In addition, another characteristic of the trellis will be used shortly in calculating the values of each 

label candidate.  
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Table 1: The Trellis Neighborhood Test Outline (showing only the upper-left quadrant of the neighborhood, due to space 
constraints). The central cell is bottom right (in blue). The other three quadrants (not shown), are symmetric, but not identical, to 
this one. Each cell is defined as a “quarter-region” being one fourth the size of an actual label. The specific tests, in bold, are 
explained more fully in Table 2. The result of each test is a particular label conflict configuration, abbreviated with codes such as 
 α1 or β1, and delineated precisely in Table 3. 

1 -4/-4 2 -3/-4 3 -2/-4 4 -1/-4 5 0/-4 

Υ∆>2Υ∆>2Υ∆>2Υ∆>2L????    
/         \ 

α0   :   Χ∆>2   Χ∆>2   Χ∆>2   Χ∆>2L????    
            /        \ 

          α1  :  β1    

Υ∆>2Υ∆>2Υ∆>2Υ∆>2L????    
/     \ 

α1   :   β1    

Υ∆>2Υ∆>2Υ∆>2Υ∆>2L????    
/         \ 

  α1   :   Χ∆>1?   Χ∆>1?   Χ∆>1?   Χ∆>1?    
            /        \ 

            β1  :  γ13    

Υ∆>2Υ∆>2Υ∆>2Υ∆>2L????    
/     \ 

α1   :   γ13    

Υ∆>2Υ∆>2Υ∆>2Υ∆>2L????    
/         \ 

  α1   :   Χ  Χ  Χ  ΧΑΑΑΑ>Χ>Χ>Χ>ΧΒΒΒΒ????    
            /        \ 

            γ13  :  γ31    
10 -4/-3 11 -3/-3 12 -2/-3 13 -1/-3 14 0/-3 

    

Χ∆>2Χ∆>2Χ∆>2Χ∆>2L????    
/       \ 

α0   :   β1 
 

No test 

    

Χ∆>1Χ∆>1Χ∆>1Χ∆>1L????    
/     \ 

β1   :   γ13 
 

No test 

    

ΧΧΧΧΑΑΑΑ>Χ>Χ>Χ>ΧΒΒΒΒ????    
               /         \ 

        γ13  :  γ31 

 
19 -4/-2 20 -3/-2 21 -2/-2 22 -1/-2 23 0/-2 

ΧΧΧΧ∆∆∆∆>2>2>2>2L????    
/         \ 

α0   :   Υ∆>1   Υ∆>1   Υ∆>1   Υ∆>1L????    
            /        \ 

          β1  :  γ10 

Υ∆>1Υ∆>1Υ∆>1Υ∆>1L????    
/     \ 

β1   :   γ10 

Χ∆>1Χ∆>1Χ∆>1Χ∆>1L????    
/     \ 

Υ∆>1Υ∆>1Υ∆>1Υ∆>1L????  :  Υ∆>1  Υ∆>1  Υ∆>1  Υ∆>1L????    
      /     \             /       \ 

β1 : γ10    γ13 : δ1 

Υ∆>1Υ∆>1Υ∆>1Υ∆>1L????    
/       \ 

γ13  :  δ1 

Υ∆>1Υ∆>1Υ∆>1Υ∆>1L????    
/     \ 

ΧΧΧΧΑΑΑΑ>Χ>Χ>Χ>ΧΒΒΒΒ????  :  Χ  Χ  Χ  ΧΑΑΑΑ>Χ>Χ>Χ>ΧΒΒΒΒ

????    
       /     \                 /       \ 

γ13 : γ31      δ1 : δ

3 
28 -4/-1 29 -3/-1 30 -2/-1 31 -1/-1 32 0/-1 

    

Χ∆>2Χ∆>2Χ∆>2Χ∆>2L????    
/       \ 

α0   :   γ10 
 

No test 

    

Χ∆>1Χ∆>1Χ∆>1Χ∆>1L????    
/       \ 

γ10   :   δ1 
 

No test 

    

ΧΧΧΧΑΑΑΑ>Χ>Χ>Χ>ΧΒΒΒΒ????    

               /       \ 

 δ1  :  δ3 
 

37 -4/0 38 -3/0 39 -2/0 40 -1/0 41 0/0 

Χ∆>2Χ∆>2Χ∆>2Χ∆>2L????    
/         \ 

α0   :   Υ   Υ   Υ   ΥΑΑΑΑ>Υ>Υ>Υ>ΥΒΒΒΒ????    
              /        \ 

          γ01 : γ10 

ΥΥΥΥΑΑΑΑ>Υ>Υ>Υ>ΥΒΒΒΒ????    
/     \ 

γ01  :  γ10    
 

Υ∆>1Υ∆>1Υ∆>1Υ∆>1L????    
/     \ 

ΥΥΥΥΑΑΑΑ>Υ>Υ>Υ>ΥΒΒΒΒ????  :  Υ  Υ  Υ  ΥΑΑΑΑ>Υ>Υ>Υ>ΥΒΒΒΒ????    
        /     \         /       \ 

γ01 : γ10    δ2 : δ3 

ΥΥΥΥΑΑΑΑ>Υ>Υ>Υ>ΥΒΒΒΒ????    
/     \ 

δ0   :   δ1    
 

ΧΧΧΧΑΑΑΑ>Χ>Χ>Χ>ΧΒΒΒΒ????    
/     \ 

ΥΥΥΥΑΑΑΑ>Υ>Υ>Υ>ΥΒΒΒΒ????  :  Υ  Υ  Υ  ΥΑΑΑΑ>Υ>Υ>Υ>ΥΒΒΒΒ

????    
      /     \                /       \ 

δ0 : δ1        δ2 : δ3 

Conflict configuration. (See Table 3  for 
delineation of pair conflicts)  

 
Conditional tests;  
Yes: branches left 
No: branches right 

Trellis “neighborhood” coordinate 

 

Table 2: Legend defining the tests used in Table 1 

Conditional Tests:  
Υ∆>1Υ∆>1Υ∆>1Υ∆>1L? ? ? ?     
    �    abs(fA.y_coord - fB.y_coord) > Label_height 

Υ∆>2Υ∆>2Υ∆>2Υ∆>2L? ? ? ?         

    �    abs(fA.y_coord - fB.y_coord) > 2*Label_height    

ΥΥΥΥΑΑΑΑ>Υ>Υ>Υ>ΥΒΒΒΒ????        

    �    fA.y_coord > fB.y_coord 
 

Χ∆>1Χ∆>1Χ∆>1Χ∆>1L? ? ? ?     

    �    abs(fA.x_coord - fB.x_coord) > Label_width 

Χ∆>2Χ∆>2Χ∆>2Χ∆>2L? ? ? ?     
    �    abs(fA.x_coord - fB.x_coord) >2*Label_width 

ΧΧΧΧΑΑΑΑ>>>>ΧΧΧΧΒΒΒΒ????        

                �    fA.x_coord > fB.x_coord 

 



12 

 

Types: Possible Label Pair Configurations 

 

 

   

aaaa    

a0a0a0a0 a1a1a1a1    a2a2a2a2    a3a3a3a3    
CPs: Ø Ø Ø Ø 

 

 

   
bbbb    

b0b0b0b0    b1b1b1b1    b2b2b2b2    b3b3b3b3    
CPs:    A0:B3 A1:B2 A2:B1 A3:B0 

 

 

   

g10g10g10g10    g13g13g13g13    g31g31g31g31    g32g32g32g32    
A0:B2, A1:B2, 

A1:B3 
A1:B0, A1:B2, 

A3:B2 
A1:B0, 

A3:B0, A3:B2 
A2:B0, A3:B0, 

A3:B1 

    

    

            

gggg    

g01g01g01g01    g02g02g02g02    g20g20g20g20    g23g23g23g23    

CPs:    
A0:B2 A0:B3 

A1:B3 
A0:B1 A0:B3 

A2:B3 
A0:B1, 

A2:B1, A2:B3 
A2:B0, A2:B1, 

A3:B1 

    dddd 

d0d0d0d0    d1d1d1d1    d2d2d2d2    d3d3d3d3    
CPs: 
A0:B0, 
A1:B1, 
A2:B2, 
A3:B3 

A0:B1, A1:B3, 
A0:B2, A2:B3, 

A0:B3 

A1:B3, A3:B2, 
A1:B2, A0:B2, 

A1:B0 

A2:B0, A3:B1, 
A2:B1, A0:B1, 

A2:B3 

A3:B0, A1:B0, 
A3:B1, A2:B0, 

A3:B2 
 

4.2 STEP TWO: COST ANALYSIS 

Having established a conflict graph for each feature, the objective of the second step of the algorithm is to determine the least 

expensive label candidate position for each feature, among its four options. Each label candidate has an inherent value based on 

the priority of its referent feature. (Recall that the features are prioritized or prioritized in order of preference.) The goal of the 

algorithm is simply to maximize the sum of all the values in a set of non-occluded candidates.  

By way of illustration, imagine a deck of playing cards randomly scattered face-up on a small table. The face value of the card 

represents its priority and the suits represent the four label candidates of a given feature. Cards resting on top of other cards 

represent conflicting label positions. Assume that the cards were dealt in sorted order, so the kings are on top. The task is to 

choose at most one suit for each card value, while removing all cards that are partially obscured by higher valued cards. Once a 

suit is selected for a given card value all cards it “conflicts” with (the ones directly under it) must be removed from the table. The 

goal is to produce a set of non-occluded cards with the highest possible total value. By using this analogy it is fairly easy to see 

that one effective strategy would be to begin with the four kings and select the one which rests on the “least expensive” pile of 

cards. We call this selected card the least expensive candidate. Once this selection is made the other three kings are removed, and 

also all the cards that were under our selected king. We can then proceed in the same way with the remaining queens and so on. 

Determining which stack of conflicting cards is least expensive is simply a matter of finding the sum of the face value of those 

  Table 3: This table represents every possible 
configuration between a given pair of features, along 
with the corresponding “conflict pairs” (CPs) among 
two label candidates, A and B. (Feature fB‘s candidates 
are smaller for illustration only). The notation [A2:B0] 
denotes: “fA’s candidate #2 conflicts with fB’s candidate 
#0.” The configurations are grouped in four types 

(α, β, γ, δ).  In α−configurations no conflict occurs 

between label candidates, whereas in  δ−configurations 

all four of fB’s candidates are obscured. 
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cards. This card game illustrates the strategy used by the algorithm of this paper. The goal, simply put, is to approximately 

maximize the set of all the values of non-occluded feature labels. 

It should be noted that, although we have spoken of maximizing the expense of the map-set, this approach is not strictly an 

optimization algorithm. It is not claimed that the global maximum of the feature set expense will be found. The algorithm is 

essentially a “greedy” one and is indeed vulnerable to local maxima. Nevertheless, as will be demonstrated, this approach will 

provide a useful and reliable approximation of the optimal outcome. Our confidence in this approximation stems from the fact 

that we are processing our features in priority order. As we pass through our feature set in descending order, choosing the least 

expensive candidate for each feature, our guarantee is that no feature will remain unlabeled unless all of its candidates are 

occluded by higher priority labels. This approach is, of course, dependent upon an accurate assessment of the inherent value of 

each label. This value will now be examined more precisely, looking both at the static base value of a given label and, 

subsequently, at some dynamic run-time modifications to that value. 

4.2.1 LABEL CANDIDATE BASE VALUE 

As has already been noted, the default value of a given label is dependent directly on the priority of that label’s referent feature. 

High priority features will obviously have more valuable labels. The model is further extended to include the “cartographic 

criteria” (described in Section 3) by assigning a higher value to the aesthetically preferred label candidates. 

One drawback of this simplistic cost model is that it allows the possibility that a small cluster of low priority labels might 

“outweigh” a few higher priority labels. For example, consider a feature fA with two label candidates, fA
0 and fA

1, where fA
0 

conflicts with a high priority feature fB and fA
1 conflicts with a group of low priority features. Ideally,  fA

1 should be selected 

because it obscures only low priority features. However, because the algorithm sums the value of the conflicts,  fA
1 may in fact be 

deemed more expensive, and consequently the high priority conflict partner fB would be occluded. To mitigate against 

circumstances such as this, the cost model requires the following adjustment. Taking VALUE(f0) = BASE_VALUE(f0), iteratively 

update the value of all remaining features like so: 

1
BASE_VALUE

VALUE VALUE
( )

( ) ( ) , {1,..., }
i

i i

f
f f i n

n
−= + =  

Thus, the increment between any two consecutively prioritized features is changed from 1 to i
n

 (where BASE_VALUE(f0) ≈ i). 

This effectively spreads the data to give increasingly greater weight to the higher priority features requiring, for example, twice 

as many mid priority label candidates to “outweigh” a high priority candidate.  

4.2.2 LABEL CANDIDATE VALUE MODIFICATIONS 

Up to this point, the value of a given label candidate has been fixed— determined at the time of view-initialization as a function 

of its referent feature priority and its label-model (aesthetic) preference. This value has so far been independent of the conflict 
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graph. In order to increase the effectiveness of the cost-analysis approach, however, two specific modifications will now be 

introduced to adjust these values dynamically, in response to circumstances detected or produced in the conflict graph 

construction phase. 

First, the value of a candidate will be adjusted upwards each time one of its siblings is occluded. The notion behind this is that 

as a feature loses its candidate labels due to occlusion, the remaining candidates become increasingly valuable. If a feature has 

only one non-occluded candidate left, it should be considerably more expensive to de-select it. We therefore increase the value of 

each label by an amount equal to the value of the occluded siblings. Hence, the value of occluding a neighbor’s final candidate is 

equal to occluding all four of that neighbor’s candidates bcause both cases result in the de-selection of an entire feature, 

preventing that feature from receiving a label.  Therefore, the value of an “only child” should be equal to the sum of all the 

original candidates. By extending this logic, the value of any label should be incremented by the value of each lost sibling.  

The second dynamic modification to our cost analysis addresses the interactive nature of the map. The notion here is that, 

given the user’s ability to zoom, many label candidates that are occluded at one particular zoom level will be freed up as the user 

zooms in closer. Therefore, many of the features in the distant cells of the neighborhood of fA will no longer remain in the 

neighborhood at deeper zoom levels. Because of this, the value of a conflict partner of fA should increase with its proximity to fA. 

In other words, features that are in the nearest cells to fA would potentially require more zoom steps to de-conflict, and should 

therefore be more expensive to occlude. The exact amount of the value adjustment in most cases should be a function of the 

magnification factor applied to each level of zoom. The author’s own implementation uses the following adjustment schedule for 

the modified value: 

MODIFIED_VALUE(fB) =BASE_VALUE(fB) * (PROX_WT*(5-RAD_DIST(fA, fB))) 

where PROX_WT is the proximity weight factor (in this implementation it is .5), and RAD_DIST is the radial distance from fA to fB 

in cells (which ranges from 0 to 4). This distance is counted in rows or columns of separation, whichever is greater. This divides 

the neighborhood into four concentric rectangles around the parent cell of fA and increments the value between each 

progressively closer ring of cells by 50%. The ultimate effect of this adjustment is that the algorithm can “intuitively” determine 

the least expensive labels over several zoom levels. This will tend to mitigate inconsistency in label candidate choice from one 

zoom level to another. 

4.3 STEP THREE: LABEL SELECTION 

Once a weighted set of label candidates has been determined for each feature, the final label selection can be made  by simply 

comparing the non-occluded candidates of each feature and selecting the least expensive one. All other candidates will be de-

selected, which essentially disposes of them for the purposes of this algorithm, until the next viewer interaction reinitiates this 
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entire process. Finally, using the conflict graph built in the first step, all conflict partners of the selected label are de-selected by 

occlusion. They are thereby removed from their respective referent feature’s pool of label candidates.  

Two additional refinements increase the algorithm’s efficiency even further:  

First, any feature fA that has already lost all of its candidates to occlusion from higher priority labels need not be tested against 

its neighbors. Doing so would be a waste of cycles, as none of fA’s labels have any chance of being selected. In particularly dense 

sets, this can automatically prune a significant number of features. 

Second, as a feature is being tested against its neighbors, it can safely ignore all higher priority features as it is guaranteed not 

to have any conflicts with them. If a conflict had existed in the initial configuration between a candidate of feature fB and that of a 

higher priority feature fA, it would have already been detected during fA’s neighborhood traversal. In that case, either the 

conflicting candidate of fA was selected, and the occluded candidate of fB removed, or else a different candidate was selected for 

fA and the conflicting candidate was removed from contention. In both cases, the conflict is removed prior to the testing of fB. 

Using this shortcut can cut the required number of tests in half.  

As was stated previously, this algorithm was divided, for didactic purposes, into three steps: conflict graph generation, cost 

analysis, and label selection. In actual implementation these three tasks need not be performed separately. Rather, using the trellis 

strategy, the cost of each conflicting label candidate can be accumulated, the derived expense for the target candidates 

determined, and the optimal label candidate selected, all with one swift pass through the neighboring features.  

5 EXPERIMENTAL RESULTS 

The algorithm was applied to several data views generated by the Starlight Visualization System [ref]. These views had a 

dimension of 770x840. Tables 4 and 5 represents the time required to compute a full-map labeling for various (uniform) label 

sizes. The times recorded are the results of the author’s implementation of the algorithm (in C++) on a Dell Xeon, 3.2Ghz 

machine running Windows, with 3GB of RAM. See Figure 4 for an example of a typically dense point cloud, along with its 

labels. The use of progressively smaller label sizes demonstrates the ability of the algorithm to calculate all map resolutions or 

zoom levels. Note that the choice of label size does not significantly increase the time required for computation. This was true 

regardless of the ratio of label-size to map. Table 5 displays the results for small labels, some smaller than a pixel. The purpose of 

this will be discussed further below, but it essentially demonstrates the ability of the system to process all zoom levels of an 

enormous map—without time penalty.  
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Table 4: Labeling speed (in seconds) 

Label dimensions (w x h, in pixels)  

# pts: 50x8 100x10 150x12 200x14 

1K < 0.001 < 0.001 < 0.001 < 0.001 

3K 0.031 0.031 0.031 0.032 

5K 0.047 0.047 0.047 0.047 

11K 0.110 0.110 0.109 0.109 

25K 0.266 0.328 0.328 0.344 

50K 0.531 0.625 0.641 0.641 

75K 0.844 0.984 1.047 1.063 

 

Table 5: Labeling speed for much smaller labels 

Label dimensions (in pixels)  

# of pts: 16x4 3x1 1.0x0.4 

11K 0.110 0.110 0.093 

 

 

These results compare favorably against all previously published methodologies. In terms of speed, this algorithm appears to 

be orders of magnitude faster than most other approaches, including those documented in [9, 20, 27, 32, 36]. Furthermore, these 

results include tests ranging up to 130,000 features, whereas no published results to date include tests with datasets larger than 

20,000 features, with most less than 5000. (The implementation in [2] mentions a dataset of 12 million, but no timed results are 

offered).  

In order to compare this algorithm with previously reported approaches, it was also applied to some of the benchmark data 

available at [33]. It is important to note, however, that direct comparisons are difficult due to a fundamental design difference, 

viz: nearly all previous approaches assume a fixed-size map resolution and allow no features to be obscured. In contrast, this 

paper has described an algorithm suitable for maps of varying-resolutions, in which point-density necessitates feature overposting 

on most zoom levels. Moreover, previous approaches typically measured the effectiveness of an algorithm by the number of 

features labeled in the final solution. This metric is clearly unsuitable, however, when applied to a map that is so dense that the 

vast majority of its points cannot possibly be labeled. Nevertheless, some comparisons are indeed useful. The fastest recorded 

times previously reported in the literature appear in [27]. Although the authors of that approach do not specify the speed of the 

system it was run on, these results, tabulated in Table 6, indicate that the trellis strategy may be up to ten times faster. Note that 

this is true even though the trellis algorithm was processing data sets that were sometimes ten times larger.  



17 

 

Table 6: Benchmark Data 

US Cities 

 No. of sites # of labels time (in sec) 

Algorithm in [27]. 1,041 1,041 0.5 

Trellis algorithm 

 

 

10,296 

100,000 

130,000 

1,537 

6,883 

63,269 

0.078 

0.86 

1.3 

 Munich Drill Holes 

Algorithm in [27]. 19,461 11,049 7.1452 

Trellis algorithm 19,446 11,142 0.204 
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6 CONCLUSION AND SUGGESTIONS FOR FURTHER STUDY 

This paper has presented a new approach for automated feature label de-confliction operating at speeds and scalability that are 

well-suited for interactive visual analytic applications. An algorithm was offered that begins to realize Dr. Freeman’s dream of a 

“1-second quality labeling of an electronically displayed map” [12]. Indeed, the approach outlined here provides real-time, 

whole-map labeling at speeds measured in milliseconds, without the need for preprocessing. Moreover, this method has 

demonstrated an ability to scale, in sub-second time, to massive data sets, larger than what most previous approaches have even 

Figure 4: 11,000 feature points from a cluster graph. At the given resolution 3,605 labels were placed in 0.11 
seconds.  This paricular view is not meant for display, but demonstrates the caluclated label positions of one 
“zoom level.” Eight other such zoom levels can be calculated in under a second, allowing the user to zoom in  

until all labels are deconflicted.  The inset shows what the user would see at the current zoom level. 
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attempted to handle. This is a critical feature at a time when visual analytic applications routinely process tens of thousands of 

nodes in a single view. 

The speed and scalability of this algorithm opens the door to a number of options in terms of 2D and 3D interactivity. For the 

two-dimensional case, two distinct modes of operation are possible:  

“Just-in-time” view de-confliction. The original motivation for this study was to produce a de-confliction algorithm fast 

enough to operate at a rate of multiple frames per second. This goal has indeed been realized with data sets in excess of 25,000 

nodes. At these speeds a view can be efficiently labeled and re-labeled at every interactive movement of a user’s mouse. This 

was, in fact, the original design of the algorithm: for any given orientation of the data, the current view can be labeled and any 

previous labeling can be discarded. One of the drawbacks of this approach, however, is its failure to satisfy the so-called 

“desiderata,” or rules of label consistency (outlined in [2]), which seek to eliminate unexpected “popping” and re-sorting of label 

locations. For this reason, a second option can be considered: 

Multi-level pre-processing. This paper has, from the outset, presented pre-processing as inappropriate for the ad hoc nature of 

visual analytic maps. Nevertheless, the speed of this algorithm allows us to reconsider that opinion. Recall that camera zooming 

can be considered equivalent to a universal expansion of intrapoint distances along with label-size scaling. Therefore, by pre-

scaling the labels to progressively smaller sizes, the layout configuration may be computed for every zoom level at construction 

time. As seen in Table 5, such computations add only minimal expense. Hence, in 3-5 seconds, an entire map could be pre-

processed, and its label locations stored, for up to 8 or 12 zoom levels. In so doing, the undesirable “popping” of labels that 

would otherwise occur as the user pans around in lower zoom levels would be eliminated. The added memory demands can be 

addressed through subdivision of the trellis, and the small amount of extra time required would in many cases be dwarfed by the 

demands of view construction in general. This would also free up cycles that may be better spent by the expensive rendering 

engine during view interaction. It should be said that, while this would prevent any “popping” during horizontal movement 

(panning), other measures are necessary to mitigate popping between zoom levels. One option in this regard would be to “lock” 

label locations in place, once they have been determined at a higher zoom level. Such a decision would expose the unavoidable 

trade-off between label consistency and label-count maximization. 

Beyond the advantages offered for labeling in the two-dimensional case, this algorithm may also be applicable in the more 

demanding arena of three-dimensional views. Heretofore, no labeling algorithm has offered the speed required to handle the 

complexities of interactive 3D label de-confliction. When a user interacts with a three-dimensional view, the relative orientation 

and configuration of the features in the view are constantly in flux: the 2D zooming and panning capabilities are now 

supplemented with rotation (both camera and view), view angle manipulation, and dollying. The possible number of view 

orientations is literally countless and, hence, a pre-processing phase is unfeasible. Yet, by projecting the features to the view-

plane, the multi-frame-per-second rate of this algorithm may finally provide real-time labels for three-dimensional views.   
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 Another area for future study presents itself: Because the trellis strategy operates only on specific regions within a two-

dimensional array, it readily lends itself to a threaded, parallel-processing approach. In fact, the algorithm may well be classified 

as an “embarrassingly parallel” problem—easily separable into independent tasks. See [13], particularly chapter 8, for a 

description of how this might be accomplished.  But even without that, it is clear, that for a vast number of applications within the 

arena of information visualization, the trellis strategy of label de-confliction is a fast, reliable, and worthwhile tool. 
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