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Abstract: Traditionally in credit and behavioural scoring one assumes that as all 

consumers have essentially the same product , its features will not affect whether the 

consumer defaults or not. Hence one coarse classifies the characteristics concentrating 

only on the default ratio. As one increasingly customises products and their operational 

features  for each individual, ( the very  purpose of acceptance scoring), then decisions 

like whether the customer will accept the product or not must depend on the features 

offered. This paper investigates how one can deal with this dependency when coarse 

classifying the characteristics. 
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Introduction 
In classification problems like credit scoring one seeks to relate a consumer’s characteristics, such 

as age, income or years with bank to an outcome variable, such as whether the consumer will 

default or not. The relationship is almost always non-linear and often non-monotonic. To cope 

with that one could either seek to fit some non-linear function of age to likelihood of default (by 

cubic splines for example) or coarse classify the characteristics. The latter, in which one splits the 

range of the characteristic into a number of separate sets or “bins” and defines a new binary 

variable for each set so formed, is almost exclusively used in practice. It is easy to understand 

because the characteristic is defined by a set of scores – one for each bin. It is robust to data 

changes and it can be used for categorical characteristics like occupancy status as well as 

continuous ones, so one might put owner occupier and living with parents in one bin and tenant of 

unfurnished occupancy and tenant of furnished occupancy in another. 

 

Coarse classification revolves about which “bins” or bands (usually called attributes) should be 

created, i.e. is splitting age into age intervals, 18-25, 26-35, 36-55, over 55 better than splitting 

into age groups 18-21, 22-30, 31-50 and over 50. This is done by comparing how well these splits 

discriminate on the dependent variable (whether the consumer defaults or not). Normally what 

happens in the case of continuous variables is that one splits the characteristics into far more bins 

than one is expecting to use ( maybe groups of deciles or bins each of which have 5% of the 

population in them) and then combines adjacent bins if they are have similar relationships with 

the dependent variable. Table 1 shows the situation in an acceptance scorecard (one is trying to 

estimate which people will accept a financial product being offered to them) of the dependent 

variable (accept/reject) with age. This was data relating to student bank accounts which explains 

the unusual age distribution. 
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Age 16-18 19 20 21-22 23-24 25-26 27-28 29-33 34-39 
Above 

40 
Total 

Accept 3 12 8 10 10 6 8 6 7 6 76 

Reject 2 13 3 4 3 4 3 3 3 3 41 

Total 5 25 11 14 13 10 11 9 10 9 117 

Table 1. Numbers of offers accepted and rejected in 10 age bands. 

 

Three statistic – the χ2  statistic, the F information statistic and Somer’s D concordance statistic- 

are commonly used to describe how good a particular coarse classification is at differentiating the 

tow outcomes on the dependent variable. The most commonly used is the χ2 statistic which wants 

the splits that are most unlikely to support the hypothesis that all the attributes draw from 

populations which have the same proportion of accepts in them. Using that statistic here, let 

ia and ir  be the number of accepts and rejects with attribute i  and let a and r  be the total 

number of accepts and rejects. Let   )()(ˆ and )()(ˆ rarrarraaraa iiiiii ++=++=  be the 

expected number of accept and rejects with attribute i  if the proportion of accepts is the same for 

all attributes. Then the χ2 statistic is defined by 
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The larger the value of χ2 , the better is the coarse classifying in that it less likely that the different 

attributes have the same distribution of accepts and rejects. In the above example for ease of 

understanding, we only look at splits of age into two attributes, so there are 9 possible splits into 

two intervals by combining adjacent “ bins” .  Table 2 gives the χ2 values for these 9 splits and 

shows that splitting between 19 and 20 is optimal. 
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Split Chi-square value 

16-18, Above 19 0.0564 

16-19, Above 20 3.9652 

16-20, Above 21 2.1766 

16-22, Above 23 1.1205 

16-24, Above 25 0.2115 

16-26, Above 27  0.4694 

16-28, Above 29 0.1360 

16-33, Above 34 0.1196 

16-39, Above 40 0.0125 

Table 2. Chi square value for age splits 

 

Even in this case if one wanted to look at all possible splits there would be  29  =  512 different 

combinations to consider and in most problems this is not a realistic thing to do.  A crude but 

quite effective method of dealing with this problem is to use subjective judgment based on the 

ratios of accepts to rejects in the different bands. In this one combines adjacent bands if they have 

somewhat similar ratios, and one always considers non-adjacent intervals of a characteristic as 

separate attributes even if their ratios are very close. Normally one computes the log odds for 

each band i.e. )log( arra ii  for band i  and so for the bands given in Table 1 one would have the 

following diagram 
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Figure 1:Log-odds for age
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Looking at this one is still led to the 16-19,20 and over split or if one wanted to put in two splits 

possibly 16-19, 20-24, 25 and over. 

 

This is the norm for coarse classifying as outlined in McNab and Wynn1 or Thomas, Crook and 

Edelman2. However recently there has been a move to customization of offers and differential 

customer relationships which means that different versions of a product are offered to different 

applicants (or the credit rules and limits applied to the borrowers are different). Clearly the choice 

of the version of the product offered must affect the likelihood of the person accepting that 

product for otherwise there would be no point in offering different versions of the product. Hence 

this choice affects the accept reject ratio and so the choice of bands to arrive at in coarse 

classifying the characteristics. The purpose of this note is to investigate possible ways of dealing 

with this problem using as an illustration the example outlined above. Although we concentrate 

on modelling the likelihood of acceptance when there are different versions of the product 

offered, an identical analysis would need to be performed to model the likelihood of a consumer 

defaulting if different consumers are subject to different credit regimes. 
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Ways of coarse classifying in acceptance scorecards 

 

Customer relationship management in financial organisation means trying to ensure that the 

service provided to the customer meet their needs and their aspirations. This begins with the 

choice of product to offer them as increasing a financial organisation has a generic product – 

credit card, mortgage or current account with overdraft facility- which has a number of features 

that can be varied from customer to customer. Thus for the credit card this would be the overdraft 

limit, the interest rate charged, whether there is an annual fee, what free air miles of other points 

are available For a current account this would be the overdraft limit, the interest rate charged on 

overdrafts, the interest rate paid when the account is in credit, what free gifts are given on joining, 

and  whether there is no fee on foreign exchange transactions.  

 

The objective of an acceptance scorecard is to estimate the probability p(x,o) that a consumer 

with characteristics x is likely to accept a product with offer characteristics o.  One can do this by 

taking the result (they accepted/they rejected) of the offers made to a sample of previous 

customers. This is very similar to credit scoring (estimating how likely customers with 

characteristics x are likely to default in a given period) and so one can use exactly the same 

methodology as is used in credit scoring including the idea of coarse classifying the 

characteristics. However it is clear that whether a consumer accepts the product offered depends 

heavily on the features of the particular offer made to them as well as on their characteristics. 

This is substantially different to what traditionally was assumed in credit scoring namely that the 

lending product features like the credit limit did not affect the probability of default. So if we 

believe there is this interaction between the outcome variable and the offer characteristics  how 

do we coarse classify a consumer characteristic like age? 
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To answer this question we concentrate on the example given in Table 1, which gives the 

relationship between age and acceptance/rejection of the offer of a student account in a sample of 

117 students. The student account offer had several features – what was the overdraft limit (no 

interest was charged if inside this limit), the interest paid when the account was in credit, whether 

or not there was a no fee on foreign exchange transactions, whether there was an offer of a credit 

card with the account and the free gift offered initially. A questionnaire of the students confirmed 

that the overdraft limit was by far the most important of these features and in this case there were 

five levels of overdraft limit offered - £1000, £1250, £1400, £1800 and £2000.  

 

We considered three main approaches to the problem – ignore the connection of acceptance with 

overdraft limit, consider each overdraft limit separately and try to find the best coarse 

classification overall or coarse classify the impact of the overdraft limit and then consider each 

bin of overdraft limits separately and try to find the best coarse classification over all these bins.  

 

Ignoring the connection leads to the analysis in the introduction where one takes the numbers of 

accepts and rejects in each bin irrespective of what  overdraft limit was offered to each consumer. 

This has the advantage of ease of calculation but it is counter intuitive to say that the overdraft 

limit offered is not important when the whole purpose is to calculate the change in probabilities 

that changing the level of the overdraft limit will have on the acceptance probability.  The second 

approach means looking at the consumers offered each overdraft limit separately and determining 

for each such subgroup the chi-square values for each different split combination and then 

averaging these over the groups in some suitable way. The problem in this example (and in many 

others) is that the numbers in some of the offer bands are so small that when one starts splitting 

them by age bands the numbers are too small for the χ2 statistic to have any statistical meaning. 

In  this case one was trying to calculate χ2 values on 10 cells when there were less than 20 cases 
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in a subgroup in total. Even with much larger samples than the one used here if there are large 

numbers of combinations of offer features this problem will persist. 

 

The third approach was to initially bin the overdraft limit into attributes which were consistent in 

the way they affected the accept/reject decision, just as was done for age in the introduction. This 

suggested splitting overdraft limit into two groups (£1000 and £1250) and (£1400 and above). 

There were 65 observations in the first group and 52 in the second group. Now we wish to 

determine which is the best split on age which works best over these two bands of overdraft 

limit? One could of course have different age bands for the two different overdraft limit groups as 

is done when the population is segmented but it was felt this would not be sensible if there were 

more than two or three overdraft limit bands, which might well be the case in more realistic 

examples. The way we chose to measure the effectiveness of age splits using the χ2  values was as 

follows. Let n , 1n  and 2n  be the number of observations in the whole of the original sample, the 

number in the first overdraft subgroup and the number in the second overdraft subgroup 

respectively. Let 2
1χ  and 

2
2χ  be the Chi-square values for a split on subgroup1 and subgrop2 

respectively. Then the weighted mean of the Chi-square values is defined by 

( ) ( ) 2
22

2
11

2 χχχ nnnnwm += . 

   

Table 3 shows the Chi-square value for each split in the two subgroups of the overdraft limit and 

the weighted mean of the Chi-square values for each split. From Table 3 the best split (again only 

single splits were considered) was to divide age into 16-19 and 20 and over. It is interesting that 

this best split is the same as when the original whole sample was used. However this is not 

always the case. If for example we had split overdraft limit into three groups - £1000 only, £1250 

only and £1400 or more then the best one split on age is to divide into classes 16-28 and above 29 
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and over.           

   

£1000-£1250 £1400 or more 
No. Splits 

Chi-square values Chi-square values 

Weighted mean of 

Chi-square values 

1 16-18, Above 19 1.1849 0.0384 0.6753 

2 16-19, Above 20 5.3565 0.0739 3.0087 

3 16-20, Above 21 2.3214 0.0168 1.2971 

4 16-22, Above 23 0.7753 0.0566 0.4559 

5 16-24, Above 25 1.0317 0.6017 0.8406 

6 16-26, Above 27 2.0518 0.7242 1.4618 

7 16-28, Above 29 2.2196 2.4352 2.3154 

8 16-33, Above 34 2.4074 2.6365 2.5092 

9 16-39, Above 40 0.9758 2.0377 1.0033 

  Table 3. Chi-square values with two subgroups of credit limits 

 

Using monotone property in coarse classifying 

 

 One can get more robust results on the appropriate splits in coarse classifying variables if one is 

willing to accept the idea of a monotone “ utility”  function on the continuous offer features such 

as the credit limit. By this we mean that those who rejected an overdraft limit of a given amount 

will also reject an identical but offer with an even smaller overdraft limit. This seems a very 

reasonable assumption to make. The converse assumption is slightly more  contentious, namely 

that if some one accepts an offer of an account with a certain overdraft limit they will also accept 

the identical offer if the overdraft limit is raised. The question here is whether some consumers 
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wish to restrict their ability to get into too much debt. If we take both assumptions to hold ,we say 

the monotone property exists.  

 

In that case one can add fictional results to the sample. So someone who accepted an offer with 

an overdraft limit of £1250, can also be assumed to have accepted the same offer when the 

overdraft limit was £1400, or £1800 or £2000. Someone who rejected an offer when the overdraft 

limit was £1400 will also be assumed to reject the offer if the overdraft limit was £1250 or £1000. 

Thus theoretically one could have accept/reject decisions for all the consumers in the sample at 

all overdraft limits. The reality of course is that this will not happen but it will ensure that the 

accept rate is likely to increase as the overdraft limit is increased. Using this monotone property 

for the data in Table 1 leads to the revised data set given in Table 4. Note that this idea increases 

the apparent size of the sample four fold. 

 

 16-18 19 20 21-22 23-24 25-26 27-28 28-33 34-39 
Above 

40 
Total 

Accepts 8 49 32 44 30 19 36 26 29 32 305 

Rejects 6 26 9 11 6 6 5 6 9 7 91 

Total 14 75 41 55 36 25 41 32 38 39 396 

Table 4. Numbers of accepts and rejects using monotone property 

 

We can now consider using the three approaches suggested for coarse classification in the 

previous section  but with this enhanced data set. One feels that the first approach of using the 

whole sample as is has more validity now as some of the impact of the overdraft limit on the 

accept/reject decision has now been included in the enhancement of the data set. The chi-square 

values for each binary split using this approach is given in Table 5 which is the equivalent of 
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Table 2 with the monotone property included. In this case the same split 16-19 and 20 and over 

turns out to be the most discriminating.  

 

Split Chi-square value 

16-18, Above 19 3.2399 

16-19, Above 20 10.9201 

16-20, Above 21  8.0097 

16-22, Above 23 5.1592 

16-24, Above 25  3.0112 

16-26, Above 27  3.3832 

16-28, Above 29  0.6644 

16-33, Above 34  0.2615 

16-39, Above 40  0.6187 

Table 5.Chi-Square value for age splits with monotone property assumed 

 

 

Using the monotone property overcomes one of the difficulties of the second approach of creating 

subgroups for each different overdraft limit separately in that the numbers in each subgroup are 

considerably enhanced. It also gives some connections between the separate subgroups. However 

if one has a lot of different possible overdraft limits then one still has calculate the chi-squared 

values for each possible split on each overdraft limit subgroup and that can be a considerable set 

of calculations. It may still be better to first split the overdraft limits into a few subsets. ( One 

uses the enhanced sample to do this) and then apply the weighted mean approach to the splits on 

each of the subsets or bands of overdraft limits created. Doing this in this case meant one still 

chose the best two subgroup split to be overdraft limits of £1000 and £1250 in one group and 
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£1400, £1800 and £2000 in the other group. Calculating the weighted mean of the chi-square 

values as was done in Table 3 led to Table 6 when the monotone property had been assumed. 

 

£1000-£1250 £1400 or more 
No. Splits 

Chi-square values Chi-square values 

Weighted mean of 

Chi-square values 

1 16-18, Above 19 4.0368 0.7727 2.8004 

2 16-19, Above 20 16.4425 0.1535 10.2724 

3 16-20, Above 21 8.6137 0.9960 5.7282 

4 16-22, Above 23 3.0949 1.9536 2.6626 

5 16-24, Above 25 4.6518 0.0309 2.9015 

6 16-26, Above 27 4.8795 0.0654 3.0560 

7 16-28, Above 29 5.1779 1.7219 3.8688 

8 16-33, Above 34 4.4678 2.2231 3.6175 

9 16-39, Above 40 1.6445 2.6273 2.0168 

Table 6. Chi-square values for two subgroups of credit limits when monotone property is used 

 

Thus in this example it is reassuring to see that the four ways suggested all end up with the same 

split. This is certainly not always the case. 

 

Conclusions 

 

This note identifies a new problem which arises when one  seeks to expand the use of credit 

scoring techniques to other applications such as acceptance scoring. It occurs because instead of 

seeking just to estimate, )(xp , the probability that the relevant outcome (default, acceptance) will 

occur to or be chosen by a consumer with personal characteristics x, one now wishes to estimate 
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)( ox,p  where the o are features of the product which strongly affect whether or not this relevant 

outcome will occur. Ignoring this feature can invalidate the assumption which underlie the idea of 

coarse classifying the variables x so as to allow for a simple but not necessarily monotone 

connection between x and the probability )(xp .  

 

Computational analysis on an acceptance scorecard problem suggests that if it seems reasonable 

that the particular offer feature would have the monotone property (credit limits and interest rate 

levels seem to have this property) this should be used. Whether it is used or not, the approach 

which initially bands credit limits into a small number of subgroups depending on their 

relationship to the outcome variable and then seeks to find the splits with the best weighted mean 

Chi-square value over these subgroups appears to be a robust way of coarse classifying the other 

variables. 
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