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ABSTRACT
The cargo stowage process in ships consists in arranging itemshalds. This paper
approaches the problem of finding the maximum number of stowed unitscafpwip into
holds of dedicated maritime international ships. This problenengafly three-dimensional
can be reduced for the two-dimensional case due to constraints proyidee transport, and
becomes similar to the manufacturer’s pallet loading problem.pvésent in this paper a
formulation to the woodpulp stowage solved by a lagrangean relaxaiibn clusters
(LagClus) that considers the conflict graph generated by overlapsootipulp units.
Computational tests are performed and compared with the reakrebtdined in Brazilian
ports. The results obtained by LagClus were better than theesedis, and consequently, it

can provide savings if we look at the shipping logistics costs.
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INTRODUCTION

Cargo stowage consists in arranging items (units of cargogaitransportation unit in view of
the most economic conveyance (Branch, 1996). The stowage planagigonsider the kind
of cargo to be loaded, the kind of transportation unit, nature of ,cargong other factors
(Handabaka, 1994).

We consider in this work the woodpulp stowage problem in holds of dedicaaritime
international ships. Figure 1 (a) presents a sketch of a woodpulp usitnply unit, (b)

presents the holds through the ship, and in (c) is presentedilalgpegsvage of one hold.

The Woodpulp Stowage Problem (WSP), essentially, can be dedsm@ three-dimensional
packing problem of units into a large box (hold). A woodpulp unit is compokeadset of
small bales, where each one is composed of cellulose shattwe tied with a wire. In the
literature, the WSP can be seen as a particular case afhree-Dimensional Bin Packing
Problem (3D-BPP). In 3D-BPP we have a sat i¢ms, each one has a widtk){ height f)

and lengthlf) for all i£1={1,2,...,n}, and a number of limited bins (boxes), which initially we
consider that there are at leaghree-dimensional identical bins with the same dimensions, i.
e., width @), height d) and lengthl(). The 3D-BPP aims to obtain an orthogonal packing of

all itemsn using the smallest number of bins as possible.

In WSP, all units to be stowed present the same dimensionshendre positioned in one
hold at a time. Thus, this problem can be reduced to the casekaigalentical items in one
hold. Besides, the stowage is achieved by tiers of units, usang@s< The number of tiers is
limited by the hold’s height.

Figure 1: Woodpulp unit (a), layout of the holds (b), and (c) a stowagsisol

Each woodpulp unit is also tied by a wire (See Figure 1 (ad)loivs an efficient shipment
with the cranes at commencement. However, during the transportatth the balance
yielded by ship, the units can move changing positions between twoltighe new positions

produced crossed wires they can be ruptured and the cargo will bgethma even worse



they can produce fire. Thus, to avoid these crossed wires arsgguently damages, in
practical operations once the first tier is defined, atiaiming tiers are identical to this first

one, and the WSP can be reduced to the two-dimensional bimgakblem.

According to the typology proposed by Dyckhoff (1990), the WSP can beifiddsas
2/B/O/C (two-dimensional, selection of items, one obje&niidal items) therefore it can be
seen as a manufacturer’s pallet loading problem (MPLP) (Hodd€8%2), a well-known
problem in the literature. The MPLP consists in arranging theimum number of identical
boxes into a pallet. Considering their practical applications gblty et al 2000), several
optimization methods have been developed for MPLP. The exactthifgs work, basically,
with a tree search structure (Dowsland, 1987; Bhattacledrgth 1998; Alvarez-Valdeet al,
2005b). Heuristics can be constructive, dividing the pallet in blockary-Gun and Maing-
Kyu, 2001; Smith and De Cani, 1980), recursive methods (Morabito andegoi®98) and
techniques based in identified structures known as G4 (Scheitaadérerno, 1996) and L
(Lins et al, 2003; Birginet al, 2005). Some other works applied metaheuristics, such as Tabu
Search (Pureza and Morabito, 2006; Alvarez-Valeeal, 2005a) and Genetic Algorithms
(Herbert and Dowsland 1996). There is also lagrangean relaxatoam d® seen in Morabito
and Farago (2002) and in Ribeiro and Lorena (2005a).

However, if we look at the MPLP and WSP from another point af Miey are equivalent to
the classic Maximum Independent Set Problem (MISP) (Dowsland, .188G&iro and

Lorena (2005a) explored the relationship of MPLP and MISP to propose dagrangean
relaxation approach to MPLP. A conflict graph is first gerssratonsidering overlapping of
items and is subsequently partitioned in clusters. The lagaangelaxation with clusters
(LagClus) considers the relaxing of the constraints (edged)fferent clusters producing

quality bounds.

The WSP can be represented by a conflict graph where eaelx gertesponds to the left-
lower-corner of the one woodpulp unit in the hold, and the edges tedita possible
overlaps between woodpulp units. The conflict graph can be partiti®ieeiro and Lorena,
2005b), and this work follows the approach of Lorena and Ribeiro (2005agngirey a

formulation for the WSP and applying a LagClus. The LagClus a&ted on real instances



for the WSP obtained at some Brazilian ports. The results fauritdd WSP were better than
practical solutions used at these ports, allowing 70 more woodpulp peritkold to be

transported.

The structure of the paper is as follows. The next secticsepte a formulation for WSP
based on the two-dimensional non-guillotine cutting problem proposed byeRB¢2385) and
the LagClus steps to solve the WSP. After that, we prelserdomputational results for the

real instances. Finally, some comments are given.

FORMULATION OF THE WSP

Let L andW be the hold length and width, respectively, such kW, and,| andw, the
woodpulp unit length and width, respectively, such tatandlsMin(L,W). To represent all
possible ways of packing a woodpulp unit, lBtwi)=(I,w) and (2,w2)=(w,l). Thus, these
possible positions can be represented Iy )X-1,2 that indicates the unit length and width
considering the orientation Figure 2 presents these possible orientations onto the hold’s

floor.

Figure 2: Possible orientations of one woodpulp unit.

To represent the woodpulp unit positions onto the hold’s flook &idY be two sets that are

used to define the coordinategsd) of the unit left-lower-corner. These sets can be destribe

by:

2
X ={p|:|Z+ | p=ZIib,, 0< psL-w, b 20andinteger, i =12} 1)
=
2
Y={qIZIZ+ |q=2vvibi, 0<q<W-w, b >0andinteger, i =l2} (2)
i=1

These sets were introduced by Christofides and I8¢kit(1977) and they are callesrmal
sets The restriction of the woodpulp unit positions tteese sets does not imply loss of

generality.



Let a be a function that describe overlapping constsdigtween units. This function can be
obtained in advance for each vertgxq[ in relation to some other vertexd), for each
orientationi, wherep/X|psL-l;, gL |gsW-w, r 2X, s, andi=1,2. Thus, this function can be
expressed by:

1L If Ospsr<p+lj-1<L-land O<sg<ss<q+w -1<W-1
Qipgrs = 3)

0, Otherwise

Now, letxiq/£0,1} be a binary decision variable for plLX|psL-l;, Y |gsW-w, andi=1,2.
If Xipg=1, one woodpulp unit is placed in hold coordinatgs)(with orientationi, otherwise,

Then the WSP can be formulated as a particularafatbe Beasley (1985) formulation:

2
HsR = Z;'z{pDXIpSL-Ii}Z{qDYMSW-W}Xipq] X
i=
Subject to:
2
ZZ{pMpSL_li}z{thgN_w}a,.pqrsqu <1, OrOX andsOY (5)

i=1

Xoq 0101 0i =1...2, p0 X such thatp< L -1;,andg OY such thag <W - w; (6)

The constraints set (5) avoids overlapping betwaesitions and each constraint is a clique
that ensures that a particular “square” is covdrg@t most one unit. The constraint set (6)

ensures that all variables are binaries.

The WSP graph of conflicts is created directly frimrmulation (4) — (5), where overlappings

represent edges and units are the corresponditigeserThe conflict graph presents some
grouped areas (clusters) that do not have influemagther areas, as for instance, the hold
lower-left-corner has a disposition of units thatrebt affect the opposite side, the hold upper-

right-corner. Thus, using this characteristic, tagClus is created in the following lines:



a) Create the conflict graph from WSP formulation aagply a graph partitioning

heuristic to divide the conflict graph int® clusters. This step generat&s sub-
graphs (sub-problems);

b) Relax the constraints present in the WSP formulati@mt correspond to vertices in
different clusters. In each relaxed clique, veiifhere are pairs of vertices that are in
the same cluster, and if they exist, add to eadpedive cluster one adjacent

constraint between each pair found;

c) The lagrangean relaxation obtained is divided Rtsub-problems and solved.
Figure 3: Example of how decompose a clique to be relaxed.

Note what happens at step b) and consider Figulé $me clique constraint is relaxed
(constraint defined in (5)), it must be decomposed each one of its edges must be analyzed.
If some edge is connecting two vertices in the safoeter, it must be appended to the
respective cluster. This procedure is essentialake the relaxation stronger and to avoid an
invalid solution for some cluster. Figure 3 showaddly this approach. Note that if we do not
addx; + x2 < 1to Cluster 1 ands + x4 < 1 to Cluster 2, both clusters could provide invalid
solutions, i. e.x; andx, could appear together in solution of the Clustas vell a<z andx,

in solution of the Cluster 2.

Figure 4. Lagrangean relaxation with clusters. (a) Confliiph, (b) edges connecting the

clusters, and (c) clusters or sub-problems.

The example in Figure 4 explains the entire prooé$ke LagClus. Figure 4(a) has a conflict
graph with two well-defined clusters. Figure 4(hpws all edges connecting the clusters that
are relaxed in LagClus, and Figure 4(c) shows tin@ sub-graphs (or two sub-problems)

similar to the original problem that can be sepatand solved independently.

For the computational tests, we have implementesllzgradient algorithm to solve the
lagrangean dual (Parker and Rardin, 1988; Naramb laorena, 1998). At the subgradient

optimization process, when all sub-problems areeshlwe re-grouped these sub-problems to



update the lagrangean multipliers, and again ai-moblems are separated and solved

independently, and so on until the algorithm reagdwme stopping condition.

The step size control in the algorithm was the pnaposed by Held and Karp (1971),

beginning with 2 and halving it whenever the uppeund does not decrease for 30
successive iterations. The stopping tests usedstap:less than or equal to 0.005; difference
between the best lower and upper bounds less theamdlthe length of the subgradient vector

equal to zero. The lagrangean multipliers areat#ed with zero.

Before the first iteration of the subgradient aitjon, we used a simpler form of the block
heuristic proposed by Smith and De Cani (1980HerMPLP to generate an initial solution
for the WSP. This solution is used in step sizenitedn and can be substituted by a solution
provided by the LagClus, made feasible to WSP. Haaristic, called VI, identifies all
vertices present in the relaxed solution that areanflict, removing from this solution the
vertex with the largest number of vertices in cohfl This process is repeated until the
heuristic produces a feasible solution to WSP. rAthiat, it tries to introduce other vertices in
this solution aiming to get the maximum numbermafépendent vertices. These other vertices
are the remaining vertices, not including the firsttices removed from the relaxed solution.
The VI heuristic is shown in Figure 5. The stesinf the subgradient algorithm are updated

considering the LagClus solutions and the feasiblations obtained with VI.

Figure 5 — Verify and improvement heuristic used in LagQbuscess.
3. COMPUTATIONAL RESULTS
The computational experiments were conducted oneswmal instances of WSP, obtained
with Brazilian ports. Table 1 shows the instancasmdwhere columnd andh represent the
hold height and woodpulp unit height, respectivdiflie last column indicates the practical
solution used at the ports. Observe that the largstances in the literature have 150 boxes at

maximum for the related MPLP problem (Alvarez-Vaa¢ al 200%).

Table 1 Real instances of the WSP obtained at Brazil@sp



The formulation shown for the WSP was applied dierreal problems reported at Table 1,
and the CPLEX 7.5 was used to prove the optimahtywever, it was not possible to ensure
the optimal solutions after 10 hours of executi®a, we used the LagClus to approximately
solve the WSP.

Figure 6 depicts an example of conflict graph repnéing the instance L2. Note that there are
many edges (4,792,819) that complicate our visatin of several areas. This graph allowed
us to feel the complexity of the WSP.

Figure 6 — Conflict graph generated for the instance L282Q vertices and 4,792,819 edges.

Table 2 shows the results provided with the LagCllise second column indicates the

number of clusters used in the partition phasejAnea Bound” is given b){(L*W)/(I * W)j
(where \_zj denotes rounding down to the nearest integer);Bhenes bound” is provided by

the formula described in Barnes (1979), the “Loweund” is the bound found by the VI
heuristic, the “Upper bound” is the bound providadLagClus, and the column “Gap (%)”
indicates the gap found between the lower and uppends:

UpperBound- LowerBoun

Gap= ( d) *100 (7)
UpperBound

The number of clusters was obtained previously. Walyaed the tradeoff between the
quality of the upper bounds and the computatiomags. We used a number of clusters that

provide good upper bounds with an acceptable time.

Our results for these instances of the WSP wereeistieg. For the instance L2 we obtained a
better upper bound than the area bound. For thanoss L3, L4 and L7 the LagClus

provided upper bounds better than the area andB#raes bound together. In only one
instance was the upper bound not good, the instabseHowever, note that all these results

can be better if we reduce the number of clusters.

Table 2 LagClus computational results for real instarmfethe WSP.



Table 3 compares our results with the practicalltesised by Brazilian ports. The column
“Difference” represents the difference between ouwelo bounds and those practical

solutions. The column “Number of tiers” is calcuthtesind H /h .

As can be seen, the average lower bound provideldebiagClus yielded a stowage that has
8.67 more woodpulp units per tiers and 69.33 (1804.4735.11) more woodpulp units per
hold. Considering that a ship has on average 1@shele are able to transport more 693.3
woodpulp units per trip. Given that one ship realizgeveral trips in one year, the
transportation amount in one year with our soluticaus generate a significant decrease in the

logistic shipping costs.
Table 3 Results for the real instances of the Braziliartg

Figure 7 shows stowage plans used at the portshengtéwage plans provided by LagClus.
The portion gray indicates wasted areas. Note tlsafally our solutions are better than the

solutions used at the ports.
Figure 7 — Solutions provided by LagClus for real instancethe WSP.

The code in C++ and the tests are performed inngpater with Pentium IV processor with
512 MB of RAM memory. The sub-problems, either fagClus or for sub-problems, were
solved by CPLEX 7.5 (ILOG, 2001). For the graph paring task, we have used METIS
(Karypis and Kumar, 1998) that is a well-known heigigor graph partitioning problems.

Given a conflict graptG and a pre-defined numbét of clusters, the METIS divides the

graph in P clusters minimizing the number of edges with terrtiames in different clusters.
4. CONCLUSIONS
This work presented the woodpulp stowage problem (WiSRolds of dedicated maritime

ships. The problem is reduced to a two-dimensieaagk and consequently a mathematical

formulation based on the formulation for the twadnsional non-guillotine cutting problem



proposed by Beasley (1985) can be adapted to the.\@BLEX 7.5 was not able to solve all
real instances with this new formulation. Thus, wevedloped and used a lagrangean

relaxation with clusters (LagClus) to obtain gooditds.

The computational results over real instances ef WiSP showed that LagClus heuristic
provided better results than the original practresllts, in some cases almost one unit of the
optimal. The duality gaps were less than 1.44%. Whe compared our results in a whole
stowage of one hold, our results have shown that ae aeate stowage plans with
approximately 70 units more than the practical tmhs. As shown, considering average
results, in one shipment we yielded stowage platis mbre 700 units which can represent a
saving of logistic costs. Thus, these new plans lmaruseful to ports replacing the ones

currently used.

Simpler and faster heuristics exist, but the patharities have the time to wait for a more
complex approach to deliver a solution closer ttinoglity. They have pre-defined stored
stowage plans of the known fleet and when a known ishgpming, they have the exact
stowage plan for its holds. Besides, they also lmasehedule of all shipments in the current
year. So, when a different ship will arrive, theyfpan the stowage plans of the holds before
it arrives at the port. Therefore, in one year, tilee to define these new plans varies from

months to days.

Now comparing WSP and pallet loading problems, oagQlus heuristic have solved
instances with 273 units that are larger than thgekt instances of the MPLP.

Points for further research are connected with #tenation of the ideal number of clusters
given a time limit and a quality of the solutiorsded, and also the dynamic construction and

management of conflict graphs to allow the treatneéimstances of greater dimension.
We believe that LagClus can be useful to solveelatple related practical problems like

harvesting, anti-covering, frequency assignmentraag labeling. Besides, it can be used in

branch-and-price algorithms, or even in a colummegation approach.
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Figure 1. Woodpulp unit (a), layout of the holds (b), anyid stowage solution.
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Figure 2: Possible orientations of one woodpulp unit.
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Cligueto berelaxed

Xp+ X, + X3+ X, 51

Decomposing

\’ X; + X, <1 (Add this constraint to Cluster 1
X+ X351

X+ X, 51

"Xy X+ X351

Xo+ X, <1
Cluster 2 S X3 + X, <1 (Add this constraint to Cluster 2

Figure 3: Example of how decompose a clique to be relaxed.

(b)

(c)

Figure 4: Lagrangean relaxation with clusters. (a) Confiiph, (b) edges connecting the
clusters, and (c) clusters or sub-problems.

Adapted from Ribeiro and Lorena (2005a)

16



Verify and I nprovenent Heuristic - VI
1. Make feasible solution vector equal to the rel axed
sol uti on given by Lagd us;
2. VWile not obtain a feasible solution Do
3. For each vertex i in feasible solution vector,
define the nunber of vertices j that are in
conflict with i;
4. Sort in decreasing order the feasible solution
vector according to the nunber of conflicts;
5. Renmove the first vertex fromthe feasible
sol uti on vector;
6. End whil e;
7. Verify anong the other vertices not present in
feasible solution and not present in that set

renoved fromthe feasible solution in step 2, if
there are vertices that can be inserted in the
feasi ble solution

Figure 5— Verify and improvement heuristic used in LagGbuscess.
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Figure 6 — Conflict graph generated for the instance L282Q vertices and 4,792,819 edges.

17



18

L7 - LagClus

L9 - LagClus

L6 - LagClus
e EEEEEEEEE|
N I T
L8 - LagClus

mENNNENRNNNERRNNNNRREEEN

NN NN NAAEEAN

L7 - Port
L8 - Port

L9 - Port

L1 - LagClus
L2 - LagClus
L3 - LagClus

L4 - LagClus
L5 - LagClus

Figure 7 — Solutions provided by LagClus for real instancethe WSP.
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Table 1 Real instances of the WSP obtained at Brazil@tsp

Port’s
Instance L(cm) W(cm) H(cm) L(cm) w(cm) h(cm) ]
Solution

L1 2296 1230 1600 136 94 184 213
L2 2536 1312 1600 144 84 190 269
L3 2252 1470 1652 144 84 190 265
L4 1470 1458 1652 144 84 190 170
L5 2296 1230 1600 135 92 183 217
L6 1804 1230 1600 137 95 190 158
L7 2466 1230 1600 137 95 190 222
L8 1804 1750 1600 137 95 190 234
L9 2426 1230 1640 137 95 190 204

The columns contain: * |, w andh — Woodpulp unit length, width and height,
» Instance — Name of the instance; respectively;
* L, WandH - Hold length, width and height, respectively; « Port’s Solution — Practical solution adopted bytpor
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Table 2 LagClus computational results for real instarnmfethe WSP.

Instance Number of  Area Barnes Lower Upper GAP Time
Clusters Bound Bound Bound Bound (%) (s)
L1 30 220 220 219 220.01 0.46 4768
L2 20 275 274 273 274.48 0.54 24637
L3 30 273 273 271 27252 0.56 9634
L4 20 177 177 175 176.28 0.73 2889
LS 30 227 227 226 228.66 1.16 6268
L6 40 170 170 168 170.45 1.44 907
L7 30 233 233 231 232.97 0.85 7460
L8 30 242 242 240 242,77 1.14 16249
L9 30 229 229 227 229.31 1.00 7384
The columns contain: * Upper bound — Upper bound provided by LagClus;
» Instance — Name of the instance; * GAP (%) — Gap found between the lower and upper
* Number of clusters — Number of clusters used by bound:
. ,I;\?gacl:luBSc;und — Area bound given bly{L*W)/(I*w)] Gap= (UpperBSsS:rBlz)C;VerBound)*100;
(where\_zj denotes rounding down to the nearest integer); » Time — Time in seconds elapsed by LagClas reaching
« Barnes bound — Bound provided by Barnes (1979); some of the stop conditions;

* Lower bound — Lower bound found by VI heuristic;

20



Table 3 Results for the real instances of the Braziliart

Number of woodpulp units by tier Number of woodpulp units by hold
Instance Port's Lower _ Number of Port’s Lower
Solution Bound Difference tiers Solution Bound
L1 213 219 6 8 1704 1752
L2 269 273 4 8 2152 2184
L3 265 271 6 8 2120 2168
L4 170 175 5 8 1360 1400
L5 217 226 9 8 1736 1808
L6 158 168 10 8 1264 1344
L7 222 231 8 1776 1848
L8 234 240 8 1872 1920
L9 204 227 23 8 1632 1816
| Average| 216.89 225.56 8.67 | 8 1735.11 1804.44

The columns contain:
» Instance — Name of the instance;
« Port’s Solution — Practical solution adopted bytgor
* Lower bound — Lower bound found by VI heuristic;
» Difference — The difference calculated as: Lower BRburPort’s Solution;
« Number of tiers — Number of tiers is calculated|a$7/h .



Caption for Figures and Tables

Figure 1. Woodpulp unit (a), layout of the holds (b), an)id stowage solution.

Figure 2. Possible orientations of one woodpulp unit.

Figure 3: Example of how decompose a clique to be relaxed.

Figure 4. Lagrangean relaxation with clusters. (a) Conftjiciph, (b) edges connecting the
clusters, and (c) clusters or sub-problems. Adaptdtibeiro and Lorena (2005a).

Figure 5 — Verify and improvement heuristic used in LagQduscess.

Figure 6 — Conflict graph generated for the instance L282Q vertices and 4,792,819 edges.
Figure 7 — Solutions provided by LagClus for real instanckthe WSP.

Table 1 Real instances of the WSP obtained at Brazil@sp

Table 2 LagClus computational results for real instarmfethe WSP.

Table 3 Results for the real instances of the Braziliartg
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