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ABSTRACT 

The cargo stowage process in ships consists in arranging items into holds. This paper 

approaches the problem of finding the maximum number of stowed units of woodpulp into 

holds of dedicated maritime international ships. This problem, essentially three-dimensional 

can be reduced for the two-dimensional case due to constraints provided by the transport, and 

becomes similar to the manufacturer’s pallet loading problem. We present in this paper a 

formulation to the woodpulp stowage solved by a lagrangean relaxation with clusters 

(LagClus) that considers the conflict graph generated by overlaps of woodpulp units. 

Computational tests are performed and compared with the real results obtained in Brazilian 

ports. The results obtained by LagClus were better than the real results, and consequently, it 

can provide savings if we look at the shipping logistics costs.  

 

Keywords: Sea Transport, Logistics, Cost Benefit. 



 2 

INTRODUCTION 

 

Cargo stowage consists in arranging items (units of cargo) into a transportation unit in view of 

the most economic conveyance (Branch, 1996). The stowage planning must consider the kind 

of cargo to be loaded, the kind of transportation unit, nature of cargo, among other factors 

(Handabaka, 1994).  

 

We consider in this work the woodpulp stowage problem in holds of dedicated maritime 

international ships. Figure 1 (a) presents a sketch of a woodpulp unit or simply unit, (b) 

presents the holds through the ship, and in (c) is presented a possible stowage of one hold. 

 

The Woodpulp Stowage Problem (WSP), essentially, can be defined as a three-dimensional 

packing problem of units into a large box (hold). A woodpulp unit is composed of a set of 

small bales, where each one is composed of cellulose sheets that are tied with a wire. In the 

literature, the WSP can be seen as a particular case of the Three-Dimensional Bin Packing 

Problem (3D-BPP). In 3D-BPP we have a set of n items, each one has a width (wi), height (hi) 

and length (l i) for all i∈I={1,2,...,n}, and a number of limited bins (boxes), which initially we 

consider that there are at least n three-dimensional identical bins with the same dimensions, i. 

e., width (W), height (H) and length (L). The 3D-BPP aims to obtain an orthogonal packing of 

all items n using the smallest number of bins as possible. 

 

In WSP, all units to be stowed present the same dimensions, and they are positioned in one 

hold at a time. Thus, this problem can be reduced to the case of packing identical items in one 

hold. Besides, the stowage is achieved by tiers of units, using cranes. The number of tiers is 

limited by the hold’s height.  

 

Figure 1: Woodpulp unit (a), layout of the holds (b), and (c) a stowage solution. 

 

Each woodpulp unit is also tied by a wire (See Figure 1 (a)). It allows an efficient shipment 

with the cranes at commencement. However, during the transportation with the balance 

yielded by ship, the units can move changing positions between two tiers. If the new positions 

produced crossed wires they can be ruptured and the cargo will be damaged, or even worse 
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they can produce fire.  Thus, to avoid these crossed wires and consequently damages, in 

practical operations once the first tier is defined, all remaining tiers are identical to this first 

one, and the WSP can be reduced to the two-dimensional bin packing problem.      

 

According to the typology proposed by Dyckhoff (1990), the WSP can be classified as 

2/B/O/C (two-dimensional, selection of items, one object, identical items) therefore it can be 

seen as a manufacturer’s pallet loading problem (MPLP) (Hodgson, 1982), a well-known 

problem in the literature. The MPLP consists in arranging the maximum number of identical 

boxes into a pallet. Considering their practical applications (Morabito et al, 2000), several 

optimization methods have been developed for MPLP. The exact algorithms work, basically, 

with a tree search structure (Dowsland, 1987; Bhattacharya et al, 1998; Alvarez-Valdez et al, 

2005b). Heuristics can be constructive, dividing the pallet in blocks (Young-Gun and Maing-

Kyu, 2001; Smith and De Cani, 1980), recursive methods (Morabito and Morales, 1998) and 

techniques based in identified structures known as G4 (Scheithauer and Terno, 1996) and L 

(Lins et al, 2003; Birgin et al, 2005). Some other works applied metaheuristics, such as Tabu 

Search (Pureza and Morabito, 2006; Alvarez-Valdes et al, 2005a) and Genetic Algorithms 

(Herbert and Dowsland 1996). There is also lagrangean relaxation as can be seen in Morabito 

and Farago (2002) and in Ribeiro and Lorena (2005a). 

 

However, if we look at the MPLP and WSP from another point of view, they are equivalent to 

the classic Maximum Independent Set Problem (MISP) (Dowsland, 1987). Ribeiro and 

Lorena (2005a) explored the relationship of MPLP and MISP to propose a new lagrangean 

relaxation approach to MPLP. A conflict graph is first generated considering overlapping of 

items and is subsequently partitioned in clusters. The lagrangean relaxation with clusters 

(LagClus) considers the relaxing of the constraints (edges) in different clusters producing 

quality bounds.   

 

The WSP can be represented by a conflict graph where each vertex corresponds to the left-

lower-corner of the one woodpulp unit in the hold, and the edges indicate the possible 

overlaps between woodpulp units. The conflict graph can be partitioned (Ribeiro and Lorena, 

2005b), and this work follows the approach of Lorena and Ribeiro (2005a), presenting a 

formulation for the WSP and applying a LagClus. The LagClus was tested on real instances 
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for the WSP obtained at some Brazilian ports. The results found for the WSP were better than 

practical solutions used at these ports, allowing 70 more woodpulp units per hold to be 

transported. 

 

The structure of the paper is as follows. The next section presents a formulation for WSP 

based on the two-dimensional non-guillotine cutting problem proposed by Beasley (1985) and 

the LagClus steps to solve the WSP.  After that, we present the computational results for the 

real instances. Finally, some comments are given. 

 

FORMULATION OF THE WSP 

 

Let L and W be the hold length and width, respectively, such that L≥W, and, l and w, the 

woodpulp unit length and width, respectively, such that l≥w and l≤Min(L,W). To represent all 

possible ways of packing a woodpulp unit, let (l1,w1)=(l,w) and (l2,w2)=(w,l). Thus, these 

possible positions can be represented by (l i,wi)i=1,2 that indicates the unit length and width 

considering the orientation i. Figure 2 presents these possible orientations onto the hold’s 

floor. 

 

Figure 2: Possible orientations of one woodpulp unit. 

 

To represent the woodpulp unit positions onto the hold’s floor, let X and Y be two sets that are 

used to define the coordinates (p,q) of the unit left-lower-corner. These sets can be described 

by:   ====≥≥≥≥−−−−≤≤≤≤≤≤≤≤====∈∈∈∈==== ∑
====

++++ 2,1,0,0,|
2

1

i  integer and b  wLp  blpZpX i
i

ii     (1)  ====≥≥≥≥−−−−≤≤≤≤≤≤≤≤====∈∈∈∈==== ∑
====

++++ 2,1,0,0,|
2

1

i  integer and b  wWq  bwqZqY i
i

ii   (2) 

 

These sets were introduced by Christofides and Whitlock (1977) and they are called normal 

sets. The restriction of the woodpulp unit positions to these sets does not imply loss of 

generality. 
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Let a be a function that describe overlapping constraints between units. This function can be 

obtained in advance for each vertex (p,q) in relation to some other vertex (r,s), for each 

orientation i, where p∈X|p≤L-l i, q∈Y|q≤W-wi, r∈X, s∈Y, and i=1,2. Thus, this function can be 

expressed by:  −−−−≤≤≤≤−−−−++++≤≤≤≤≤≤≤≤≤≤≤≤−−−−≤≤≤≤−−−−++++≤≤≤≤≤≤≤≤≤≤≤≤
====

Otherwise  

Wwqsq  and  Llprp  If  
a ii

ipqrs ,0

110110,1
 (3) 

 

Now, let xipq∈{0,1} be a binary decision variable for all p∈X|p≤L-l i, q∈Y|q≤W-wi, and i=1,2. 

If xipq=1, one woodpulp unit is placed in hold coordinates (p,q) with orientation i, otherwise, 

xipq=0. 

 

Then the WSP can be formulated as a particular case of the Beasley (1985) formulation: 

{{{{ }}}}{{{{ }}}} ==== ∑∑ ∑
====

−−−−≤≤≤≤∈∈∈∈ −−−−≤≤≤≤∈∈∈∈

2

1
| |

)(
i

lLpXp wWqYq ipq
i i

xMaxWSPv     (4) 

Subject to: 

 { }{ } YsXrxa
i

lLpXp wWqYq ipqipqrs
i i

∈∈∀≤∑∑ ∑
=

−≤∈ −≤∈
  and     ,1

2

1
| |

   (5) 

 { } iiipq wWqYqlLpXpix −≤∈−≤∈=∀∈ such that   and ,such that   ,2...1  1,0  (6) 

 

The constraints set (5) avoids overlapping between positions and each constraint is a clique 

that ensures that a particular “square” is covered by at most one unit. The constraint set (6) 

ensures that all variables are binaries. 

 

The WSP graph of conflicts is created directly from formulation (4) – (5), where overlappings 

represent edges and units are the corresponding vertices. The conflict graph presents some 

grouped areas (clusters) that do not have influence in other areas, as for instance, the hold 

lower-left-corner has a disposition of units that do not affect the opposite side, the hold upper-

right-corner. Thus, using this characteristic, the LagClus is created in the following lines:  
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a) Create the conflict graph from WSP formulation and apply a graph partitioning 

heuristic to divide the conflict graph into P  clusters. This step generates P  sub-

graphs (sub-problems); 

b) Relax the constraints present in the WSP formulation that correspond to vertices in 

different clusters. In each relaxed clique, verify if there are pairs of vertices that are in 

the same cluster, and if they exist, add to each respective cluster one adjacent 

constraint between each pair found; 

c) The lagrangean relaxation obtained is divided into P  sub-problems and solved.  

 

Figure 3: Example of how decompose a clique to be relaxed. 

 

Note what happens at step b) and consider Figure 3. If some clique constraint is relaxed 

(constraint defined in (5)), it must be decomposed and each one of its edges must be analyzed. 

If some edge is connecting two vertices in the same cluster, it must be appended to the 

respective cluster. This procedure is essential to make the relaxation stronger and to avoid an 

invalid solution for some cluster. Figure 3 shows exactly this approach. Note that if we do not 

add x1 + x2 ≤ 1 to Cluster 1 and x3 + x4 ≤ 1 to Cluster 2, both clusters could provide invalid 

solutions, i. e., x1 and x2 could appear together in solution of the Cluster 1 as well as x3 and x4 

in solution of the Cluster 2. 

 

Figure 4: Lagrangean relaxation with clusters. (a) Conflict graph, (b) edges connecting the 

clusters, and (c) clusters or sub-problems. 

  

The example in Figure 4 explains the entire process of the LagClus. Figure 4(a) has a conflict 

graph with two well-defined clusters. Figure 4(b) shows all edges connecting the clusters that 

are relaxed in LagClus, and Figure 4(c) shows the two sub-graphs (or two sub-problems) 

similar to the original problem that can be separated and solved independently.  

 

For the computational tests, we have implemented a subgradient algorithm to solve the 

lagrangean dual (Parker and Rardin, 1988; Narciso and Lorena, 1998). At the subgradient 

optimization process, when all sub-problems are solved, we re-grouped these sub-problems to 
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update the lagrangean multipliers, and again all sub-problems are separated and solved 

independently, and so on until the algorithm reaches some stopping condition. 

 

The step size control in the algorithm was the one proposed by Held and Karp (1971), 

beginning with 2 and halving it whenever the upper bound does not decrease for 30 

successive iterations. The stopping tests used are: step less than or equal to 0.005; difference 

between the best lower and upper bounds less than 1; and the length of the subgradient vector 

equal to zero. The lagrangean multipliers are initialized with zero. 

 

Before the first iteration of the subgradient algorithm, we used a simpler form of the block 

heuristic proposed by Smith and De Cani (1980) for the MPLP to generate an initial solution 

for the WSP. This solution is used in step size definition and can be substituted by a solution 

provided by the LagClus, made feasible to WSP. This heuristic, called VI, identifies all 

vertices present in the relaxed solution that are in conflict, removing from this solution the 

vertex with the largest number of vertices in conflict. This process is repeated until the 

heuristic produces a feasible solution to WSP. After that, it tries to introduce other vertices in 

this solution aiming to get the maximum number of independent vertices. These other vertices 

are the remaining vertices, not including the first vertices removed from the relaxed solution. 

The VI heuristic is shown in Figure 5. The step sizes of the subgradient algorithm are updated 

considering the LagClus solutions and the feasible solutions obtained with VI. 

 

Figure 5 – Verify and improvement heuristic used in LagClus process. 

 

3. COMPUTATIONAL RESULTS 

 

The computational experiments were conducted on some real instances of WSP, obtained 

with Brazilian ports. Table 1 shows the instances data, where columns H and h represent the 

hold height and woodpulp unit height, respectively. The last column indicates the practical 

solution used at the ports. Observe that the largest instances in the literature have 150 boxes at 

maximum for the related MPLP problem (Alvarez-Valdez et al, 2005b).  

 

Table 1: Real instances of the WSP obtained at Brazilian ports. 
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The formulation shown for the WSP was applied over the real problems reported at Table 1, 

and the CPLEX 7.5 was used to prove the optimality. However, it was not possible to ensure 

the optimal solutions after 10 hours of execution. So, we used the LagClus to approximately 

solve the WSP.  

 

Figure 6 depicts an example of conflict graph representing the instance L2. Note that there are 

many edges (4,792,819) that complicate our visualization of several areas. This graph allowed 

us to feel the complexity of the WSP. 

 

Figure 6 – Conflict graph generated for the instance L2: 22,870 vertices and 4,792,819 edges. 

 

Table 2 shows the results provided with the LagClus. The second column indicates the 

number of clusters used in the partition phase, the “Area Bound” is given by ( ) ( ) wlWL */*  

(where  z  denotes rounding down to the nearest integer), the “Barnes bound” is provided by 

the formula described in Barnes (1979), the “Lower bound” is the bound found by the VI 

heuristic, the “Upper bound” is the bound provided by LagClus, and the column “Gap (%)” 

indicates the gap found between the lower and upper bounds: 

 

 
(((( ))))

100*
Bound Upper

Bound LowerBound Upper
Gap

−−−−====      (7) 

 

The number of clusters was obtained previously. We analyzed the tradeoff between the 

quality of the upper bounds and the computational times. We used a number of clusters that 

provide good upper bounds with an acceptable time.  

 

Our results for these instances of the WSP were interesting. For the instance L2 we obtained a 

better upper bound than the area bound. For the instances L3, L4 and L7 the LagClus 

provided upper bounds better than the area and the Barnes bound together. In only one 

instance was the upper bound not good, the instance L15. However, note that all these results 

can be better if we reduce the number of clusters.  

 

Table 2: LagClus computational results for real instances of the WSP. 
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Table 3 compares our results with the practical results used by Brazilian ports. The column 

“Difference” represents the difference between our lower bounds and those practical 

solutions. The column “Number of tiers” is calculated using hH / . 

 

As can be seen, the average lower bound provided by the LagClus yielded a stowage that has  

8.67 more woodpulp units per tiers and 69.33 (1804.44 – 1735.11) more woodpulp units per 

hold. Considering that a ship has on average 10 holds, we are able to transport more 693.3 

woodpulp units per trip. Given that one ship realizes several trips in one year, the 

transportation amount in one year with our solutions can generate a significant decrease in the 

logistic shipping costs.  

 

Table 3: Results for the real instances of the Brazilian ports. 

 

Figure 7 shows stowage plans used at the ports and the stowage plans provided by LagClus. 

The portion gray indicates wasted areas. Note that visually our solutions are better than the 

solutions used at the ports. 

 

Figure 7 – Solutions provided by LagClus for real instances of the WSP. 

 

The code in C++ and the tests are performed in a computer with Pentium IV processor with 

512 MB of RAM memory. The sub-problems, either for LagClus or for sub-problems, were 

solved by CPLEX 7.5 (ILOG, 2001). For the graph partitioning task, we have used METIS 

(Karypis and Kumar, 1998) that is a well-known heuristic for graph partitioning problems. 

Given a conflict graph G and a pre-defined number P  of clusters, the METIS divides the 

graph in P clusters minimizing the number of edges with terminations in different clusters.  

 

4. CONCLUSIONS 

 

This work presented the woodpulp stowage problem (WSP) in holds of dedicated maritime 

ships. The problem is reduced to a two-dimensional case and consequently a mathematical 

formulation based on the formulation for the two-dimensional non-guillotine cutting problem 
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proposed by Beasley (1985) can be adapted to the WSP. CPLEX 7.5 was not able to solve all 

real instances with this new formulation. Thus, we developed and used a lagrangean 

relaxation with clusters (LagClus) to obtain good bounds.  

 

The computational results over real instances of the WSP showed that LagClus heuristic 

provided better results than the original practical results, in some cases almost one unit of the 

optimal. The duality gaps were less than 1.44%. When we compared our results in a whole 

stowage of one hold, our results have shown that we can create stowage plans with 

approximately 70 units more than the practical solutions. As shown, considering average 

results, in one shipment we yielded stowage plans with more 700 units which can represent a 

saving of logistic costs. Thus, these new plans can be useful to ports replacing the ones 

currently used.  

 

Simpler and faster heuristics exist, but the port authorities have the time to wait for a more 

complex approach to deliver a solution closer to optimality. They have pre-defined stored 

stowage plans of the known fleet and when a known ship is coming, they have the exact 

stowage plan for its holds.  Besides, they also have a schedule of all shipments in the current 

year. So, when a different ship will arrive, they perform the stowage plans of the holds before 

it arrives at the port. Therefore, in one year, the time to define these new plans varies from 

months to days.     

 

Now comparing WSP and pallet loading problems, our LagClus heuristic have solved 

instances with 273 units that are larger than the largest instances of the MPLP. 

 

Points for further research are connected with the estimation of the ideal number of clusters 

given a time limit and a quality of the solution desired, and also the dynamic construction and 

management of conflict graphs to allow the treatment of instances of greater dimension. 

 

We believe that LagClus can be useful to solve large-scale related practical problems like 

harvesting, anti-covering, frequency assignment and map labeling. Besides, it can be used in 

branch-and-price algorithms, or even in a column generation approach.    
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Figure 1: Woodpulp unit (a), layout of the holds (b), and (c) a stowage solution. 
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Figure 2: Possible orientations of one woodpulp unit. 
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x1

x2

x3

x4

Clique to be relaxed 

x1 + x2 + x3 + x4 ≤ 1

Decomposing 

x1 + x2 ≤ 1 (Add this constraint to Cluster 1)
x1 + x3 ≤ 1
x1 + x4 ≤ 1
x2 + x3 ≤ 1
x2 + x4 ≤ 1
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Figure 3: Example of how decompose a clique to be relaxed. 
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Figure 4: Lagrangean relaxation with clusters. (a) Conflict graph, (b) edges connecting the 

clusters, and (c) clusters or sub-problems. 

Adapted from Ribeiro and Lorena (2005a) 
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Verify and Improvement Heuristic - VI
1. Make feasible solution vector equal to the relaxed 

solution given by LagClus;
2. While not obtain a feasible solution Do

3. For each vertex i in feasible solution vector, 
define the number of vertices j that are in 
conflict with i;
4. Sort in decreasing order the feasible solution 
vector according to the number of conflicts;
5. Remove the first vertex from the feasible 
solution vector;

6. End while;
7. Verify among the other vertices not present in 

feasible solution and not present in that set 
removed from the feasible solution in step 2, if 
there are vertices that can be inserted in the 
feasible solution.

 

Figure 5 – Verify and improvement heuristic used in LagClus process. 
 
 
 
 

 

 
Figure 6 – Conflict graph generated for the instance L2: 22,870 vertices and 4,792,819 edges. 
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L1 - Port L1 - LagClus

L2 - Port L2 - LagClus

L3 - Port L3 - LagClus

L4 - Port L4 - LagClus

L5 - Port L5 - LagClus

L6 - Port L6 - LagClus

L7 - Port L7 - LagClus

L8 - Port L8 - LagClus

L9 - Port L9 - LagClus

L1 - Port L1 - LagClus

L2 - Port L2 - LagClus

L3 - Port L3 - LagClus

L4 - Port L4 - LagClus

L5 - Port L5 - LagClus

L6 - Port L6 - LagClus

L7 - Port L7 - LagClus

L8 - Port L8 - LagClus

L9 - Port L9 - LagClus

 

Figure 7 – Solutions provided by LagClus for real instances of the WSP.
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Table 1: Real instances of the WSP obtained at Brazilian ports. 

        

Instance L(cm) W(cm) H(cm) L(cm) w(cm) h(cm) 
Port’s 

Solution 
        

L1 2296 1230 1600 136 94 184 213 

L2 2536 1312 1600 144 84 190 269 

L3 2252 1470 1652 144 84 190 265 

L4 1470 1458 1652 144 84 190 170 

L5 2296 1230 1600 135 92 183 217 

L6 1804 1230 1600 137 95 190 158 

L7 2466 1230 1600 137 95 190 222 

L8 1804 1750 1600 137 95 190 234 

L9 2426 1230 1640 137 95 190 204 
        

 

 

The columns contain: 

• Instance – Name of the instance; 

• L, W and H – Hold length, width and height, respectively; 

• l, w and h – Woodpulp unit length, width and height, 

respectively; 

• Port’s Solution – Practical solution adopted by ports. 
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Table 2: LagClus computational results for real instances of the WSP. 

        

Instance 
Number of 

Clusters 

Area 

Bound 

Barnes 

Bound 

Lower 

Bound 

Upper 

Bound 

GAP 

(%) 

Time 

(s) 
        

L1 30 220 220 219 220.01 0.46 4768 

L2 20 275 274 273 274.48 0.54 24637 

L3 30 273 273 271 272.52 0.56 9634 

L4 20 177 177 175 176.28 0.73 2889 

L5 30 227 227 226 228.66 1.16 6268 

L6 40 170 170 168 170.45 1.44 907 

L7 30 233 233 231 232.97 0.85 7460 

L8 30 242 242 240 242.77 1.14 16249 

L9 30 229 229 227 229.31 1.00 7384 
        

 

 

 
The columns contain: 

• Instance – Name of the instance; 
• Number of clusters – Number of clusters used by 

LagClus; 
• Area Bound – Area bound given by ( ) ( ) wlWL */*  

(where  z  denotes rounding down to the nearest integer); 

• Barnes bound – Bound provided by Barnes (1979); 
• Lower bound – Lower bound found by VI heuristic; 

• Upper bound – Upper bound provided by LagClus; 
• GAP (%) – Gap found between the lower and upper 

bound:  
(((( ))))

100*
Bound Upper

Bound LowerBound Upper
Gap

−−−−==== ; 

• Time – Time in seconds elapsed by LagClas reaching 
some of the stop conditions; 
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Table 3: Results for the real instances of the Brazilian ports. 

   

Number of woodpulp units by tier Number of woodpulp units by hold 

Instance Port’s 

Solution 

Lower 

Bound 
Difference 

Number of 

tiers 

Port’s 

Solution 

Lower 

Bound 
       

L1 213 219 6 8 1704 1752 

L2 269 273 4 8 2152 2184 

L3 265 271 6 8 2120 2168 

L4 170 175 5 8 1360 1400 

L5 217 226 9 8 1736 1808 

L6 158 168 10 8 1264 1344 

L7 222 231 9 8 1776 1848 

L8 234 240 6 8 1872 1920 

L9 204 227 23 8 1632 1816 
       

Average 216.89 225.56 8.67 8 1735.11 1804.44 
       

 

 
The columns contain: 

• Instance – Name of the instance; 
• Port’s Solution – Practical solution adopted by ports; 
• Lower bound – Lower bound found by VI heuristic; 
• Difference – The difference calculated as: Lower Bound – Port’s Solution; 
• Number of tiers – Number of tiers is calculated as:  hH / . 
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Caption for Figures and Tables  

 

Figure 1: Woodpulp unit (a), layout of the holds (b), and (c) a stowage solution. 

Figure 2: Possible orientations of one woodpulp unit. 

Figure 3: Example of how decompose a clique to be relaxed. 

Figure 4: Lagrangean relaxation with clusters. (a) Conflict graph, (b) edges connecting the 

clusters, and (c) clusters or sub-problems. Adapted of Ribeiro and Lorena (2005a). 

Figure 5 – Verify and improvement heuristic used in LagClus process. 

Figure 6 – Conflict graph generated for the instance L2: 22,870 vertices and 4,792,819 edges. 

Figure 7 – Solutions provided by LagClus for real instances of the WSP. 

 

Table 1: Real instances of the WSP obtained at Brazilian ports. 

Table 2: LagClus computational results for real instances of the WSP. 

Table 3: Results for the real instances of the Brazilian ports. 


