
A risk averse approach to the capacity allocation
problem in the airline cargo industry
Masato Wada2, Felipe Delgado2* and Bernardo K. Pagnoncelli1
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In air cargo transportation, capacity can be reserved via allotment, which are long-term contracts with fixed price,
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the departure date, and normally higher tariffs are charged. The demand, the tariff, and the show-up rate for the
free mode are stochastic. We consider risk neutral and risk averse formulations, using the Conditional Value-at-
Risk as a risk measure. We solve the resulting problems using the Sample Average Approximation and test our
models with nine experiments representing different demand patterns using real data from a major airline.

Journal of the Operational Research Society (2017) 68(6), 643–651. doi:10.1057/s41274-016-0135-x;

published online 1 December 2016

Keywords: air transport; stochastic programming; risk

1. Introduction

The average annual growth of passengers in the airline industry

in the last years has been around 5% (International Air

Transport, 2012). Despite this growth, costs such as fuel have

increased significantly, which yielded a net profit per passenger

transported of only $2.56 USD in 2012 (International Air

Transport, 2013). Such modest results have forced airlines to

search for other sources of revenue, focusing on businesses such

as cargo transportation. One of the main tools that have been

used to increase profits in cargo transportation is Revenue

Management. However, the implementation of such tools in this

industry is still in its infancy given its higher complexity when

compared to passenger transportation (Kasilingam, 1997).

One important difference between the industries is the

possibility that cargo customers can place reservations in two

forms: allotment and free. In the allotment mode, the customer

signs a long-term agreement (approximately 6 months long)

specifying the weight of the load to be transported, for instance

on a weekly basis, paying a fixed tariff. The free mode

corresponds to the space available in the airplane that was not

assigned to allotment contracts, and reservations usually take

place closer to the departure date. Free reservations can, for

example, be urgent deliveries, and typically airlines charge

more for those types of reservations.

The decision of how much space to assign to each

reservation mode is a very difficult one mainly because of

show-up rates. American Airlines, in the context of passen-

gers, estimated that near 50% of all reservations made became

no-shows or were cancelled (Smith et al, 1992). In cargo,

show-up rates are defined as the percentage of load that shows

up in the day of the flight to be transported. Unlike passengers,

for whom the show up is a binary event, in the cargo industry

the show-up rate has a continuous behaviour. The actual load

that the customer drops at the airport can be anything between

nothing (a complete no-show) until a load greater than what

was previously established (Becker and Dill, 2007). Such

events happen very often in the free mode, especially because

there are no penalties for any of the sides for doing so: it may

happen that the airline will not transport 100% of previously

agreed load, and it may the case that the customer shows up a

fraction of the load that was negotiated. The system works

mainly based on trust, so the incentives for the airline to

provide a good service, or for the customer to have a show-up

rate of 100%, are mainly dictated by the necessity of being in

good terms for future deals. To illustrate this point, suppose

that, during the allotment contract, a high demand season takes

place followed by a low demand one. During the first period,

airlines have the incentives to accept only free bookings and

not to commit themselves to allotments contracts already

signed. However, if the airline does not honour the contracts,

customers will send their cargo through another carrier during

the low demand period, taking advantage of the excess of

supply from different carriers in the market.

The impact of uncertainty can be significant to the airline:

since free reservations are typically placed a few hours before

the flight, the airplane may fly with empty spaces, which in a

tight margin industry means losses. Therefore, airlines must aim
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at maximizing their profits by finding the right balance between

the higher profit per kilogram offered by the free reservations,

and the safer but less profitable allotment contracts.

There are several papers in the air cargo literature devoted to

the determination of optimal overbooking levels. In the works

Becker and Wald (2008) and Popescu et al (2006), the authors

focus on the prediction of the show-up rate in order to compute

the optimal overbooking levels. The publications Yunmiao

Gui et al (2008) and Luo et al (2009) solve an optimization

problem considering fixed capacity for weight and volume in a

single-leg flight, while Wang and Kao (2008) incorporates

stochastic capacity and uses fuzzy logic to determine the

optimal overbooking level using scenarios to represent uncer-

tainty. Unlike their predecessors, Zou et al (2013) consider

multiple leg routes and solve the resulting optimization

problem using a newsvendor problem with two locations. In

Lei et al (2009), the authors propose a Conditional Value-at-

Risk (CVaR) framework in which they consider spoilage and

oversale costs. To the best of our knowledge, this is the only

work that incorporated risk measures in the context of air

cargo overbooking.

The focus of this work is to develop a planning model that

provides decision makers with guidelines regarding the total

space to be assigned to allotment and free reservations. We

consider three sources of uncertainty: the demand, the show-up

rates, and the amount charged for the free load. In the

literature, some works isolate the free demand problem, and

others consider allotment and free jointly. In Amaruchkul et al

(2007), the authors use Markov decision processes to maxi-

mize the expected income of the free reservations in single-leg

flights. The results show a 2.7% increase in the profits in

comparison with the first-come first-booked policy. The work

Huang and Chang (2010) develops a new heuristic using

sampling methods, and improved the results obtained in

Amaruchkul et al (2007). A dynamic programming model is

proposed in Huang and Hsu (2005) to solve the problem under

uncertain capacity. The goal is to find an optimal capacity

control policy that tells when to accept an order. Their

numerical results indicate that the reservations of smaller sizes

should be accepted when uncertainty on demand increases. In

Levin et al (2012), the authors develop a dynamic program-

ming formulation that simultaneously selects allotment con-

tracts and finds a booking control policy for the free market.

Bing and Bhatnagar (2013) also use dynamic programming for

the capacity booking problem, from the perspective of a

freight forwarder who needs to determine his purchase

strategy. The authors propose a single flight model for long-

term capacity planning, and a multi flight model for the short

term when more accurate demand information is revealed.

A very important point that was not considered in previous

publications is the management of the risk associated with

losses. The expected value is the most common tool to deal

with uncertainty, but its use implies that the decision maker is

risk neutral. In reality, decision makers tend to be risk averse

(Lei et al, 2009). As pointed out by Hubbard (2009),

maximizing the expected revenue is not the only concern—it

is also necessary to control the impact or the variability of

losses. This is especially the case in the air cargo industry,

which strongly depends on economic cycles (April IATA

Economic Briefing, 2009). In the context of finance, the

seminal work (Markowitz, 1952) was the first to explicitly

incorporate the need to balance risk and return, using the

variance as way to control risk. Another risk measure that is

widely used in practice is the Value-at-Risk (VaR) (Jorion,

1997; Duffie and Pan, 1997), which is based on the quantile of

the loss distribution. Although it is a very intuitive risk

measure, the VaR lacks convexity, which complicates signif-

icantly its practical use.

Artzner et al (1999) proposed the concept of coherent risk

measures, which are a set of desirable properties a risk

measure should have. The Conditional Value-at-Risk (CVaR),

introduced by Rockafellar and Uryasev (2000), is a coherent

risk measure and therefore is suitable for optimization

problems. In this work, our objective function consists of a

weighted sum of the expected value and the CVaR.

Our contribution is twofold: first we propose a two-stage

stochastic programming planning model to determine the total

weight that should be assigned to allotment and free reserva-

tions, considering as random elements the demand, the tariff,

and the show-up rate for the freemode. Themodel aims at giving

guidelines in a planning stage about the space allocation to each

type of reservation mode. Second, we depart from the classical

expected value case and consider risk aversion in the objective

function using the CVaR. To the best of our knowledge, our

work is the first to address risk in the problem of reserving

allotment space in air cargo transportation. We show that more

stable solutions, with low probability of experiencing extreme

losses, can be obtained at the expense of reducing the gains. We

construct realistic experiments, based on real data from a major

cargo company, considering nine different combinations of

demand for the freemode. Each experiment reflects the presence

of possible seasonalities experienced by the company, as well as

situations with higher than usual variability.

The rest of the paper is organized as follows. In Section 2,

we describe the problem we are modelling, discussing the

assumptions we make, and a description of the data we have

from the industrial partner. In Section 3, we formulate the

problem and discuss how it can be solved. Section 4 presents

two metrics to evaluate solution quality, and then extensive

numerical experiments are performed, based on real data, for

the risk neutral and risk averse cases. Finally, we make a

comparison between the two models. Section 5 concludes the

paper.

2. Model description

We describe the cargo problem we want to model, including

the variables, the data provided by the cargo company, and

how uncertainty was modelled.
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2.1. Allotment and free demand

Our model assumes the cargo company is planning its cargo

policy for a fixed time period in the future, say 6 months, and

needs to define before the period starts how much kilograms

will be assigned for contracts, the so-called allotment. The

remaining capacity can be filled with the free demand; that is,

demand that is random and is not attached to any type of

contract. The price paid for the allotment is usually lower than

that of the free demand, but it offers a safer alternative because

the latter exhibits great variability in terms of tariffs and of

show-up rates.

Airlines have different types of allotment agreements

(Hellermann, 2006). In this work, we consider that allotment

contracts have a fixed duration, specified at the moment the

contract is signed, and they are valid for all flights that connect

a specific origin and destination pair in a specific day and time

within the contract’s time window (Gupta, 2008). The cargo

company has to decide how much of the allotment demand it

will sell via contracts. In our model, we will assume there is

only one contract during the time horizon under study. One

can think this contract is a proxy for all contracts that were

signed for this period. Thus, the allotment contract space is

composed by different individual allotment contracts from

different customers. During the contract’s time window, some

customers will arrive, others will leave, but the airline wants to

use the initial estimation as a guideline for the total space

dedicated to allotment.

According to the data provided, the demand magnitude,

tariffs, and show-up rate for the allotment contracts do not

vary significantly and are considered deterministic parameters

in our model. For the show-up rates, we assume that all the

assigned allotment show up for the flight, reflecting the fact

that clients do not have the incentive to show up partially. If

the allotment contract is not honoured by the client then the

airline will end the contract or will not renew it for the

following period.

On the contrary, the free demand, which is the sum of the

individual booking requests, is characterized by a magnitude, a

tariff and a show-up rate. The free demand is considered to be

random and have different characteristics for each flight. The

reason to consider an aggregated free demand is because often

airlines do not keep the information needed to estimate the

distribution of each booking request. Given that free demand

arrives only hours before the flight, there is a significant

variability in the types of reservations that arrive, e.g., urgent

deliveries willing to pay higher than usual tariffs. Moreover,

unlike allotment contracts, in the free reservations, partial

show-up rates are common and difficult to predict, especially

because there are no penalties for showing up with a fraction

of the load that was reserved. Figure 1 illustrates the problem

of allotment and free reservations when the number of flights

in the time horizon under consideration is three. In the

rectangle, representing each flight we have the demand, tariff,

and show-up rate for allotment (DA; TA and SURA) and free

demand (Di
F; T

i
F and SURi

FÞ; i ¼ 1; 2 and 3. In the next two

sections, we describe how we model the random elements of

the free demand.

2.2. Uncertainty modelling

The uncertain parameters of the model are all related to the

free customers: the demand at each flight, the tariff that will be

charged to those customers, and their show-up rate. We

assume those variables to be independent, and demand and

tariff are modelled as a lognormal distributions (Pak and

Dekker, 2004). The use of a lognormal distribution to model

individual booking requests has been widely used in the

literature (Boonekamp et al, 2013; Levin et al, 2012; Pak and

Dekker, 2004). Following Cobb et al (2012) we assume that

the free demand of a flight, which is the sum of the individual

booking requests, follows this same distribution with the same

first and second moments. Aside from being positive and

allowing values that are significantly greater than the mean,

the lognormal distribution generates values that resembles the

data we encountered in practice. The same applies to the tariff

charged to free customers.

Finally, to model the show-up rate, we use a discrete

distribution similar to the one proposed by Popescu et al

(2006). To generate this distribution, we create different bins,

representing show-up rate ranges, with different probabilities

of occurrence to each one. To set the optimal number of bins,

we started with the methodology developed by Birgé and

Rozenholc (2006) that uses bins of equal size and then

adjusted bin sizes due to the scarcity of data available.

2.3. Data description

The test data for this model are based on real data provided by

a major cargo airline for a single market between December

2013 and March 2014. In this market, three flights are

scheduled each week. In total, we collected 10011 shipment

orders of the 37 flights flown during this period. The database

includes information of each flight, with specific details of

each shipment order: the client name, number of the order,

Figure 1 An example with three flights.
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flight date, shipment origin and destination, load reserved,

load flown, tariff, and reservation mode. However, the

database does not record the date of each booking, and

bookings that were not accepted. For confidentially reasons,

we used synthetic data based on the information received from

the airline.

For all our experiments, we consider that the flight capacity

(C) is fixed and equals to 100000 kg, representing the capacity

of a CAO Boeing 777, while V represents the number of flights

under consideration. We set V ¼ 3 emulating the presence of

three different seasons of equal length during the planning

process where the allotment contracts take place. Our

commercial partner plans their scheduling in seasons, repre-

senting events such as holidays, harvesting. Although the

model can handle larger number of seasons, V ¼ 3 captures

the variability observed in the data we had access. Table 1

summarizes the values of the deterministic parameters.

Regarding free reservations, we consider that DF � lnð11:32
ðkgÞ; 0:3652Þ and TF � lnð1:525 ðUSD=kgÞ; 0:0442Þ, where

lnðl; r2Þ represents a lognormal random variable with param-

eters l and r estimated based on the data we had available. The

show-up rate follows a discrete distribution as was explained in

Section 2.2. Table 2 shows the show-up rate ranges with the

probabilities of occurrence. From the table, we can observe that

the last bin allows SURF [ 1 reflecting the possibility that

certain customers arrivewithmore load than reserved. To obtain

one sample for the random variable show-up rate, two indepen-

dent random numbers are used. The first follows aU(0, 1) and is

used to identify the bin, and the second is uniform between the

lower and upper bounds that define the value.

3. Formulation

In this section, we show the explicit optimization formulation

of the problem, and discuss how the Sample Average

Approximation will be used to solve it.

3.1. Risk neutral formulation

The risk neutral formulation aims at maximizing the average

income obtained with contracts plus free demand. The

problem fits into the framework of two-stage stochastic

programming: the airline has to decide how much should be

assigned for allotment before uncertainty is revealed, and

when the values of the random elements are known, the

assignment for the free demand must be chosen. We formulate

the problem as follows:

Max
0�XA �DA

TAXASURA þ 1

V

XV

i¼1

E QðXA;xiÞ½ � ð1Þ

The constraint means that the capacity XA destined for

allotment contracts must be smaller than or equal to the total

demand DA for such contracts. The objective function of (1)

has two terms: the first represents the profit obtained through

contracts in any flight, which is the tariff TA multiplied by the

assigned capacity times the show-up rate for allotment SURA,

and the second represents the average return per flight

obtained through free contracts. Thus, the objective function

value can be interpreted as the average income per flight when

using a contract with demand DA and tariff TA. Function

QðXA;xiÞ represents the profit obtained with one flight given

amount reserved for the contract XA, and realizations of

demand, tariff, and show-up rate for the free customers for

each flight xi. The second stage can be explicitly written as

the optimal value of a maximization problem:

QðXA;xiÞ ¼ Max
0�Xi

F
�Di

F

Ti
FXi

FSUR
i
F ð2Þ

s.t. XASURA þ Xi
FSUR

i
F �C: ð3Þ

Constraint (3) states that the sum of effective cargo for

allotment and free customers cannot exceed the airplane’s

capacity C.

The random variables are continuous, and the expectation of

the function QðXA; �Þ is impossible to compute explicitly.

Following Linderoth et al (2006), we can approximate the

problem using the Sample Average Approximation (SAA)

method. Each sample j represents a vector of three compo-

nents: ðDij
F; SUR

ij
F; T

ij
F Þ. For N samples, the problem becomes

Max
0�XA �DA;X

ij
F

TAXASURA þ 1

V

1

N

XV

i¼1

XN

j¼1

T
ij
FX

ij
FSUR

ij
F

s.t. XASURA þ X
ij
FSUR

ij
F �C; i ¼ 1; . . .;V; j ¼ 1; . . .;N;

0�X
ij
F �D

ij
F; i ¼ 1; . . .;V; j ¼ 1; . . .;N:

The expected value model is a completely valid formulation,

but as discussed before it does not take into account risk. We

now turn our attention to the risk averse model with CVaR.

3.2. Risk averse formulation: the k-CVaR model

The k-CVaR model incorporates risk in the objective function,

using the weight k to balance risk and return. For the sake of

completeness, let us define the CVaR rigorously. The Value-

Table 1 Deterministic parameters

Parameter DA TA SURA C V

Value 51847 (kg) 2.5 (USD/kg) 1 100000 (kg) 3
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at-Risk of a random variable X that represents losses at

confidence level a is defined as:

VaRa½X� :¼ minft j FðtÞ� ag ¼ minft j PðX � tÞ� ag: ð4Þ

The Conditional Value-at-Risk (CVaR) of a continuous

random variable X with cdf Fð�Þ, and risk level a 2 ½0; 1�, is
defined as the average of losses given that such losses were

higher than the VaR:

CVaRa½X� ¼ E½XjX [VaRa½X��: ð5Þ

Albeit simple, definition (5) is of little use in an optimization

context. The key result in Rockafellar and Uryasev (2000) is

the proof that CVaR can be expressed as the optimal value of

the following optimization problem:

CVaRa½X� ¼ min
h2R

hþ 1

1� a
E½ðX � hÞþ�

� �
; ð6Þ

where ðaÞþ :¼ maxða; 0Þ. Since we assume positive values are

losses, we switch to minimization and write the k-CVaR
model as

Min
0�XA �DA

� TAXASURA þ 1

V

XV

i¼1

kE �QðXA;xiÞ½ � þ ð1

� kÞCVaRa½�QðXA;xiÞ�: ð7Þ

Using expression (6) and defining auxiliary variable uij to

linearize the CVaR, problem (7) can be approximated by

Min
XA;X

ij

F

�TAXASURAþ
1

V

XV

i¼1

k
1

N

XN

j¼1

�T
ij
FX

ij
FSUR

ij
F

" #
þ

(
ð1�kÞ

hþ 1

Nð1�aÞ
XN

j¼1

uij

" #)

s.t. 0�XA�DA;

uij�0; i¼1;...;V ; j¼1;...;N;

uijþhþT
ij
FX

ij
FSUR

ij
F�0; i¼1;...;V ; j¼1;...;N;

XASURAþX
ij
FSUR

ij
F�C; i¼1;...;V ; j¼1;...;N;

0�X
ij
F�D

ij
F; i¼1;...;V; j¼1;...;N:

Such formulation can be efficiently solved by standard

optimization software, and different values of the parameter

k generate different risk profiles. The choice of k is problem

dependent, and there are very few studies on the topic. In

Shapiro et al (2015), the authors run several numerical

experiments for a hydrothermal scheduling problem and

propose a criteria to find the optimal choice of the parameter

based on some problem-dependent regret criteria. They also

note that for values too close to one the problem is essentially

risk neutral, and for choices close to zero risk averseness

increases costs significantly, generating solutions with little

practical value. The numerical results with different values of

k will be shown in Section 4.

4. Numerical experiments

4.1. Benchmark policies

In the literature of stochastic programming, it is common to

use two metrics to obtain additional information about the

usefulness of a model. The first metric is the Value of the

Stochastic Solution (VSS), which is a measure of the gain in

considering randomness in the formulation. If the VSS is zero

then replacing the random parameters by their averages yields

the same results as the two-stage stochastic programming

model.

The other metric is the Expected Value of Perfect Informa-

tion, or EVPI. The EVPI measures how much a decision maker

would be willing to pay for perfect information, that is, for

accessing the outcomes of the random variables before they

are revealed. An EVPI of zero means that the solution of the

two-stage problem, which is obtained without knowing the

outcomes of the random variable, is as good as the solution

with complete information. More details can be found in Birge

and Louveaux (2011). In the next section, we will present our

numerical results, including the value of both metrics for each

of our experiments.

4.2. Experiment design

In order to test the model under a broader array of demand

patterns, we construct a set of nine different experiments. Each

of the nine experiments consists in choosing one demand

category for each of the three flights. The categories, which

are expressed in Table 3, represent different demand patterns

for the free demand, depending on the mean and standard

deviation of the underlying random variable.

In the base category MM, we assume a demand mean of

88560 kg and a standard deviation of 33503 kg. Both values

were obtained from the data provided by our industrial partner.

To generate the high (low) mean demand level, we took the

base demand level and amplified (reduced) by 25%. Analo-

gously, high (low) levels of standard deviation were created by

increasing (decreasing) the coefficient of variation by 15%

with respect to the base case level.

Table 2 SURF distribution

Range [0.46, 0.65) [0.65, 0.80) [0.80, 0.90) [0.90, 1.00) [1.00, 1.08]

Probability 0.14 0.31 0.19 0.31 0.05
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Observing patterns in the data, we built nine experiments,

displayed in Table 4. They were chosen to represent specific

demand patterns as a result of events such as Mother’s Day,

San Valentine’s day or harvesting season, that generate peaks

and valleys on demand. For instance experiment 2 the mean

demand is equal to the base case, but the standard deviation is

high for all three flights, while in experiment 5 we have a

changing pattern for the mean. We will test risk neutral and

risk averse models presented in Section 3 for all nine

experiments described in Table 4. The results of these

experiments are presented in the next section.

4.3. Results

As is usually the case with stochastic programming problems,

we cannot solve the resulting problem directly since the

expected value cannot be computed explicitly. As mentioned in

Section 3.1, we will approximate the problem using SAA in

order to obtain good candidate solutions, as well as statistical

upper bounds for the true optimal value. We use the risk neutral

formulation and experiment 1 to test the influence of the

number of samples N and the number of experiments M in the

stability of the objective function. To solve the optimization

problem, we use Gurobi 5.6.2 (Gurobi Optimization, 2012).

4.3.1. Risk neutral results We use SAA to obtain lower and

upper bounds for the unknown optimal value v� of problem (1)

for each of the nine experiments. For the upper bound, we ran

M ¼ 100 experiments with N ¼ 500, which generated 100

candidate solutions and 100 objective function values. The

values of M and N were chosen for computational tractability.

We performed experiments with different values of M and N,

and the results were similar to the ones we are reporting.

According to Linderoth et al (2006), the average of those

values is an (statistical) upper bound for v�, and confidence

intervals can be constructed. Among those 100 candidates

generated, we selected the best candidate x̂�A in terms of

objective function value, which is feasible by construction, to

compute the lower bound. By fixing the allotment capacity

equals to x̂�A, we performed out-of-sample experiments with

much higher value of N 0 [N to construct accurate statistical

estimates of the objective function value associated with x̂�A,

including confidence intervals.

By constructing lower and upper bounds, we have not only a

candidate solution that can be implemented in practice, but we

also can infer about the quality of such candidate by

comparing its objective function value with the upper bound.

Results for each of the nine experiments considering a value of

N 0 ¼ 1	 106 are shown in Table 5.

In the second column, f ðx̂ j
NÞ represents the objective

function value evaluated at candidate point x̂
j
N . We report

the best candidate obtained over M runs, for each case. The

third column is the statistical upper bound, obtained as

described in Linderoth et al (2006). The last column uses

information of the first two to obtain a statistical optimality

gap for each experiment.

From Table 5, we observe that the length of the confidence

intervals for the upper bounds is around ten times larger than

the ones for the objective function value estimation. The

reason is due to the difference in the values of sample sizes N

and N 0. Note that in the former case, we have to solve

optimization problems, while in the latter we are simply

generating a statistical estimate. Tighter estimates can be

obtained using variance reduction techniques such as Latin

Hypercube Sampling (Linderoth et al, 2006). More

Table 4 Description of free demand experiments

Experiment Characteristic Flight 1 Flight 2 Flight 3

1 Base case MM MM MM
2 Variability increase MH MH MH
3 Demand increase HM HM HM
4 Demand decrease LM LM LM
5 3 different seasons MM LM HM
6 1 high demand season MM HM MM
7 1 low demand season MM LM MM
8 3 seasons, high variability MH LH HH
9 Variability decrease ML ML ML

Table 3 Free demand categories

Demand mean Standard deviation

High (H) Medium (M) Low (L)

High (H) HH HM HL
Medium (M) MH MM ML
Low (L) LH LM LL
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importantly, lower and upper bounds for each of the nine

experiments are remarkably close, showing that SAA provides

excellent approximations for this problem. The (stochastic)

optimality gap as a percentage of the approximate objective

function value f ðx̂ j
NÞ is never greater than 0.5% for all nine

experiments.

Table 6 shows the results compared with our benchmark

policies explained in Section 4.1. The EVPI in this case

represents a sample estimation of the maximum willingness to

pay for having perfect information of the demand magnitude,

tariffs, and show-up rates that a particular flight will face. The

results shows us that this willingness to pay considering all

nine experiments is on average 37,690 [USD] per flight. In

contrast, the sample estimate of the VSS yields on average a

1% gain for considering the randomness in the problem.

Nevertheless, the VSS increases in scenarios 2 and 8, in which

the free demand has higher variability, and also present

seasonalities, reaching a 1.64% and 1.35% improvement.

4.3.2. Risk averse results In this section, we discuss the

influence of considering risk in the objective function using

the CVaR. First, we study the influence of the weight k, which
gives the desired balance between risk and return. Second, we

explore the impact of the confidence level a, which calibrates

how strict the CVaR measure is with respect to extreme losses.

For both analysis, we use experiment 1, which is the base case

experiment. Our main goal is to understand how the inclusion

of risk affects the first stage decision, that is, the percentage

destined to the allotment.

Figure 2 shows how the optimal allotment capacity

changes for different values of k, considering a confidence

level a ¼ 0:95. Note that a value of k ¼ 1 represents the risk

neutral approach where only returns matter, whereas k ¼ 0

only gives importance to risk. For k� 0:5, which represents

high levels of risk aversion, the optimal solution is to assign

the maximum available capacity to allotment. The intuition

behind this result is clear: risk averse decision makers try to

avoid variability, and the allotment is a stable, albeit less

profitable, strategy. As the parameter k increases the weight

of the CVaR decreases, and the allotment allocation is much

smaller. Less risk averse decisions makers are willing to bet

that the more profitable free demand will generate greater

profits. As discussed in Shapiro et al (2015), values of k
close to one or to zero are probably too extreme to be used in

practice.

The value of a indicates that the average of losses greater or

equal than the a-quantile will be considered. Values closer to

one imply that the decision maker is extremely risk averse and

wants to be protected against extreme losses. In the limit, the

CVaR turns into the worst-case risk measure. Figure 3 shows

the allotment capacity that should be reserved for different

values of a, considering a fixed k ¼ 0:6. It is interesting to see

the sharp increase towards the maximum allotment capacity as

a approaches one. Even for k ¼ 0:6 we observe that a small

value of a, e.g., 0.3, leads to an aggressive allotment allocation

around 40%.

4.3.3. Comparison between risk neutral and risk averse

results So far, we have not analysed the optimal value of

the k-CVaR model because, except in the case where k ¼ 1

where the problem is identical to the risk neutral model, the

objective function value of the k-CVaR model has no physical,

i.e., monetary interpretation. It is fundamental to have an

estimation of the expected gain for the CVaR solution in order

to observe the risk return trade-off of the model. We showed

Figure 2 Allotment capacity as a function of k for a ¼ 0:95.

Figure 3 Allotment capacity as a function of a for k ¼ 0:6.

Table 5 Lower and upper bound estimates for v�

Experiment Best f ðx̂ j
NÞ

(95% CI)

Upper bound
(95% CI)

Optimality gap (%)
(95% CI)

1 353779 ± 57 354360 ± 443 0.30
2 339820 ± 62 340490 ± 496 0.36
3 379334 ± 75 380491 ± 608 0.48
4 328087 ± 41 328160 ± 348 0.14
5 347937 ± 51 348392 ± 397 0.25
6 360925 ± 63 361395 ± 530 0.29
7 343086 ± 56 343286 ± 415 0.19
8 335351 ± 72 335538 ± 494 0.22
9 368109 ± 53 368773 ± 408 0.30

Masato Wada et al—A risk averse approach to the capacity allocation problem 649



that the CVaR offers protection against variability; now we

want to estimate the cost of such protection.

We fix the allotment decision xRAA ¼ 49:2% obtained for

k ¼ 0:7 and the allotment decision xRNA ¼ 33% obtained for

the risk neutral case. We then generate 100 new experiments,

each with 500 scenarios, and compute the expected income

obtained by those two solutions. Finally, we compute the

average income and standard deviation over all scenarios. The

results are displayed in Table 7.

Table 7 shows for each experiment the percentage differ-

ence for both the expected income per flight and the standard

deviation of this income compared against the solution that

ignores uncertainty and optimizes over the average values of

the parameters. We will refer to this solution as the benchmark

case for this analysis. A negative percentage value in the

income in Table 7 represents greater profits than the

benchmark solution, while a negative percentage in the

standard deviation means a reduction with respect to the

benchmark case.

In terms of income, the expected value solution is on

average 1% greater than the benchmark solution. In the case

of the expected value the greater benefits occur for exper-

iments with high standard deviation and stationarity, while

lower benefits occurred for experiments 1 and 9, for which

the standard deviation is moderate or low, and there is no

stationarity. The average reduction in terms of standard

deviation is 22.7%, which shows that, by ignoring uncer-

tainty, the benchmark case faces a much higher variability of

gains.

For the CVaR case, even though on average the income is

0.8% worse, we observe that when facing high variability

and high stationarity, such as in experiments 2 and 8, the

solution is better than the benchmark case. More striking is

the reduction in the variability obtained by the CVaR

solution, which is on average 53.8% better than the

benchmark case. In summary, even though the income of

the CVaR case can be smaller, the decision maker adopting

this strategy will receive a significantly more stable cash

flow. This is particularly important in air cargo industry

which, as mention before, is very susceptible to economic

cycles.

5. Conclusions

In this paper we study the air cargo transportation problem

from a tactical perspective and propose a two-stage risk averse

stochastic programming model to determine the total weight

that should be assigned to allotment and free reservations over

a given time horizon. We depart from the classical expected

value formulation and consider risk aversion in the objective

function, by means of the Conditional Value-at-Risk (CVaR).

We construct nine experiments under different demand

patterns, including stationarity, and solve the resulting prob-

lems using the Sample Average Approximation (SAA) tech-

nique. We present numerical results for each of the nine

experiments, including lower an upper bounds for the optimal

value of those problems. We also compare the results against a

decision maker that ignores uncertainty and replaces the

uncertain parameters by its averages.

We show that SAA is a powerful technique to deal with the

air cargo transportation problem: the (stochastic) gap obtained

for the risk neutral formulation was never greater than 0.5% of

the objective function value of the candidate solutions we

found for any of the nine experiments. In addition, we compute

the Expected Value of Perfect Information (EVPI) and the

Value of the Stochastic Solution (VSS) for all cases. The EVPI

was around 10% of the optimal values of the stochastic

problems, and we show that there is a 1% gain on average in

considering randomness. The value increases for experiments

with higher variability.

For the risk averse model, we study the behaviour of the

solution as we change the risk aversion parameter k, and the

Table 6 Results for the risk neutral formulation

Experiment EVPI VSS

1 39137 2434
2 41323 4608
3 38580 3062
4 26052 1828
5 40613 3191
6 40734 2905
7 37259 2533
8 41545 5489
9 33968 733
Average 37690 2975

Table 7 Comparison results between risk neutral and risk averse
model

Experiment Dif RN (%) Dif k ¼ 0:7 (%)

1 Income -0.57 2.01
SD -20.86 -57.33

2 Income -1.60 -0.02
SD -27.74 -56.95

3 Income -0.65 2.37
SD -20.66 -58.78

4 Income -0.24 -0.12
SD -22.64 -29.14

5 Income -1.03 1.25
SD -23.10 -59.14

6 Income -1.21 0.83
SD -22.97 -62.34

7 Income -0.91 0.18
SD -23.55 -55.78

8 Income -2.28 -1.41
SD -29.68 -53.87

9 Income -0.14 1.95
SD -12.45 -51.09
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CVaR risk level a. For smaller values of k, the solution

reserves a high percentage of allotment, which yields safer and

more stable incomes. As k approaches one and the weight of

the CVaR in the objective function decreases, the percentage

of allotment decreases significant, converging to the value

obtained in the risk neutral solution. Similar results were

obtained for the risk level a.
Finally, we performed a more detailed comparison con-

cerning the expected income and the variability of those

incomes for the risk averse solution compared to the fully

deterministic case, in which all random parameters are

replaced by their average values. Unsurprisingly, the risk

averse model generates smaller incomes on average, which is

essentially the price for being protected against risk. More

relevant is the reduction in the variability of incomes: by

performing 100 experiments, the standard deviation of returns

is 53.8% smaller on average. For a decision maker wishing a

stable flow of returns, the CVaR solution is clearly a desirable

alternative, especially on markets that face high variability and

stationarity.
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