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This paper develops a new radial super-efficiency data envelopment analysis (DEA) model, which allows input–
output variables to take both negative and positive values. Compared with existing DEA models capable of
dealing with negative data, the proposed model can rank the efficient DMUs and is feasible no matter whether the
input–output data are non-negative or not. It successfully addresses the infeasibility issue of both the conventional
radial super-efficiency DEA model and the Nerlove–Luenberger super-efficiency DEA model under the
assumption of variable returns to scale. Moreover, it can project each DMU onto the super-efficiency frontier
along a suitable direction and never leads to worse target inputs or outputs than the original ones for inefficient
DMUs. Additional advantages of the proposed model include monotonicity, units invariance and output
translation invariance. Two numerical examples demonstrate the practicality and superiority of the new model.
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1. Introduction

Data envelopment analysis (DEA) is a non-parameter tech-

nique for measuring the relative efficiency of a set of peer

decision-making units (DMUs) with multiple inputs and

outputs (Charnes et al, 1978). A weakness of traditional

DEA models is that it assumes that all the inputs and outputs

are non-negative. However, negative values, especially those

of outputs, could exist in many situations. For example, the

expected return is generally treated as an output measure for

estimating the efficiency of mutual fund, which might be

negative for some mutual funds. Likewise, the profit, which is

generally chosen as an output for measuring the efficiency of

projects, might be negative for some projects. Hence, it is

necessary to improve the DEA model to expand its

application.

There are several approaches to deal with negative data in

DEA models. The simplest method is to treat negative inputs

(outputs) as outputs (inputs). If inputs (outputs) are all non-

positive, their absolute values can be treated as non-negative

outputs (inputs), so that non-positive inputs (outputs) will

decrease (increase) when those corresponding non-negative

outputs (inputs) expand (Scheel, 2001). However, this method

is not applicable if there is some input or output with both

positive and negative values. Another approach to handle

negative data is to utilize the ‘‘translation invariance’’

property. A DEA model is translation invariant if the

translated input–output data yield the same results as the

original data. The variable returns to scale (VRS) additive

DEA models (Charnes et al, 1984) are translation invariant

(Ali and Seiford, 1990; Lovell and Pastor, 1995; Pastor, 1996),

but they yield the ‘‘furthest’’ target on the production frontier

for inefficient DMUs (Portela et al, 2004) and cannot provide

any measure of efficiency. The output-oriented BCC model

(Banker et al, 1984) is input translation invariant, and the

input-oriented BCC model is output translation invariant.

These two kinds of BCC models cannot be applied to the

situation where negative values exist in both inputs and

outputs. Based on a modified directional distance function

(DDF) (Chambers et al, 1996), Portela et al (2004) develop a

range directional measure (RDM) model, which can deal with

inputs and/or outputs taking positive values for some DMUs

and negative values for the others. However, the RDM model

may be unbounded when the evaluated DMU has the

maximum values for all the outputs and the minimum values

for all the inputs (Cheng et al, 2013). Inspired by the RDM

model, Sharp et al (2007) introduce a modified slack-based

measure, which can deal with negative inputs and/or negative

inputs. Emrouznejad et al (2010) propose a semi-oriented

radial measure (SORM) to handle negative input–output data.
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Kerstens and Woestyne (2011) recommend a generalized

Farrell proportional distance function that handles negative

data and maintains a proportional interpretation under mild

conditions. Cheng et al (2013) find that the SORM model

might lead to worse target inputs or outputs than the original

ones for inefficient DMUs. They develop a variant of the

traditional radial model where original values are replaced

with their absolute values. Some imprecisions in Cheng et al

(2013) are corrected by Kerstens and Woestyne (2014).

A limitation of the above DEA models is that they cannot

further discriminate efficient DMUs, all of which have an

efficiency score of unity. Andersen and Petersen (1993)

develop a super-efficiency DEA model, see also Banker et al

(1989), which can rank efficient DMUs. The input-oriented

(output-oriented) super-efficiency DEA model excludes the

DMU under evaluation from the reference set so that efficient

DMUs may have efficiency scores larger (smaller) than or

equal to one. The original super-efficiency DEA model is

introduced under the condition of constant returns to scale

(CRS) and is feasible if all inputs and outputs of DMUs are

positive. However, the infeasibility issue might occur in VRS

super-efficiency DEA models (Seiford and Zhu, 1999).

Many modified VRS radial super-efficiency DEA models

(Chen, 2005; Ray, 2008; Cook et al, 2009; Lee et al, 2011)

have been proposed to address the infeasibility issue.

Among them, the VRS Nerlove–Luenberger super-efficiency

DEA model (Ray, 2008) is based on the DDF and is very

often feasible under the non-negative data set. However, this

model fails in two exceptions (see Ray, 2008 for details). By

choosing proper directions, Chen et al (2013) and Lin and

Chen (2015) propose two DDF-based VRS super-efficiency

DEA models to eliminate the infeasibility in two exceptions.

The model in Chen et al (2013) may be infeasible if zero

data exist in outputs (Lin and Chen, 2015). All these

modified super-efficiency DEA models are proposed for the

non-negative data. In the situations where there exist

negative inputs or outputs, the infeasibility issue still exists.

Based on the RDM model (Portela et al, 2004), Hadi-

Vencheh and Esmaeilzadeh (2013) propose two super-

efficiency models in the presence of negative data, called

the super RDM+ model and the super RDM—model,

respectively. Both models can rank efficient DMUs, but

they are still infeasible in some cases. We will illustrate this

point in Section 2.

In this paper, we propose a novel DDF-based VRS radial

super-efficiency DEA model which is feasible and is able to

handle negative data. There are at least five contributions in

this article.

1. By choosing a proper direction for the DDF, we propose

an alternative VRS radial super-efficiency DEA model.

The proposed model not only successfully addresses the

infeasibility problem in VRS radial super-efficiency DEA

models, but also extends the application of the super-

efficiency measure to negative data.

2. The proposed model projects each DMU onto the super-

efficiency frontier along a suitable direction and provides

improved targets for inefficient DMUs.

3. The proposed model yields a bounded measure of super-

efficiency.

4. In the situation where outputs are all non-negative, the

proposed model always generates reference points with

non-negative outputs.

5. The proposed model is monotonous, units invariant and

output translation invariant.

The rest of the paper is organized as follows. Section 2 presents

the DDF and some existing directions, whose limitations are

illustrated through a numerical example. Section 3 proposes a

modified DDF, and based on it, we develop a new VRS radial

super-efficiency DEA model capable of dealing with negative

data, whose useful properties are also investigated in this

section. In Section 4, the proposed model is applied to the

numerical example in Section 2 and a data set from the

literature, respectively, in order to demonstrate its properties

and merits. Conclusions are presented in the last section.

2. DDF-based super-efficiency and directions

Assume that there are n DMUs, each DMU has m inputs and s

outputs, and each of inputs and outputs has at least one

nonzero value. For each DMU j ðj ¼ 1; . . .; nÞ, let xij ði ¼
1; . . .;mÞ denote the ith input and yrj ðr ¼ 1; . . .; sÞ denote the

rth output. Under the standard assumptions of convexity and

free disposability of inputs and outputs (Chen et al, 2013), the

production possibility set (PPS) for a target DMU p ðp 2
f1; . . .; ngÞ with respect to super-efficiency is spanned by

ðxij; yrjÞ; j ¼ 1; . . .; n; j 6¼ p; as follows.

Tp ¼ ðxi; yrÞjxi �
Xn

j¼1;j 6¼p

kjxij; i ¼ 1; . . .;m;

(

yr �
Xn

j¼1;j 6¼p

kjyrj; r ¼ 1; . . .; s;

Xn

j¼1;j 6¼p

kj ¼ 1; kj � 0; j ¼ 1; . . .; n; j 6¼ p

)

Choosing a direction vector ðgx; gyÞ, the directional distance

function (DDF) for DMUp with respect to Tp is defined as:

Dðxip; yrp; gx; gyÞ ¼ maxbp:ðxip � bpg
x; yrp þ bpg

yÞ 2 Tp:

Then, the following general DDF-based super-efficiency DEA

model can be established.

max bp ð1Þ

s:t:
Xn

j¼1;j 6¼p

kjxij � xip � bpg
x; i ¼ 1; . . .;m; ð2Þ
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Xn

j¼1;j6¼p

kjyrj � yrp þ bpg
y; r ¼ 1; . . .; s; ð3Þ

Xn

j¼1;j6¼p

kj ¼ 1; kj � 0; j ¼ 1; . . .; n; j 6¼ p: ð4Þ

Denote the optimum value of model (1)–(4) as bop. The super-

efficiency score of the evaluated DMUp can be determined as

1� bop (Ray, 2008). The smaller the value of bop, the more

efficient the DMUp. For any efficient DMUp, 1� bop is no less

than 1.0.

The direction vector ðgx; gyÞ should be non-negative and

nonzero and can be chosen in an arbitrary way (Chen et al,

2013; Ray, 2008). Briec and Kerstens (2009a) point out that

model (1)–(4) cannot guarantee the feasibility if the direction

is a constant vector and the output direction vector is nonzero.

Hence, gx and gy are often considered as the function of xip and

yrp. If all input and output data are non-negative, the standard

DDF for the DMUp is adopted by choosing ðxip; yrpÞ as ðgx; gyÞ
(Chambers et al, 1996), and the VRS Nerlove–Luenberger

super-efficiency DEA model (Ray, 2008) (called the NL

model for short) is obtained. The NL model is very often

feasible for non-negative data, but it fails in the following two

exceptions (Ray, 2008):

1. When a super-efficiency score is greater than 2.0, the NL

model will yield a reference point with negative outputs.

In applications where the outputs should be non-negative,

such as the performance evaluation of airlines (Ray, 2008),

a reference point with negative outputs results in a

conceptual problem.

2. If a zero input exists in the evaluated DMU and all other

DMUs in the reference set have positive values in that

input, the NL model becomes infeasible.

In the context of the definition of a Luenberger productivity

indicator, Briec and Kerstens (2009b) avoid reference points

with negative outputs by adding a constraint that the projected

output should remain positive. However, this method still

cannot solve the infeasibility issue in the second exception. To

eliminate the infeasibility in both the exceptions, Lin and Chen

(2015) recently have put forward a modified DDF-based

super-efficiency DEA model (called the LC model for short)

by choosing ðxip þmaxj¼1;...;n
j 6¼p

fxijg; yrpÞ as ðgx; gyÞ. The LC

model successfully addresses the infeasibility issue in con-

ventional VRS radial super-efficiency DEA models and the

NL model under non-negative data.

In the presence of negative data, both the NL and LC

models might be infeasible. This is because their related

direction vectors, ðxip; yrpÞ and ðxip þmaxj¼1;...;n
j 6¼p

fxijg; yrpÞ,

might be negative, which could guide the DMUp to be further

away from the super-efficiency frontier and thus lead to

infeasibility. To illustrate this problem, we consider a simple

example with six DMUs. Each DMU has three inputs and two

outputs. The concrete data set of this example is shown in

columns 2 to 6 of Table 1. Input X3 and output Y1 are negative

for DMU 2 and DMU 1, respectively. The super-efficiency

results yielded by the NL model and the LC model are shown in

columns 7 and 8 of Table 1, respectively. Obviously, both the

NLmodel and the LCmodel become infeasible for some DMUs.

In order to rank DMUs in the presence of negative data,

Hadi-Vencheh and Esmaeilzadeh (2013) propose the super

RDM+ model and the super RDM- model, respectively. Let

P�
ip ¼ xip �min

j
fxijg; Pþ

rp ¼ max
j
fyijg � yrp ð5Þ

(Portela et al, 2004). By employing ðP�
ip;P

þ
rpÞ and ð 1

P�
ip
; 1
Pþ
rp
Þ as

the direction vector ðgx; gyÞ in model (1)–(4), respectively, the

dual of the super RDM+ model and the dual of the super

RDM- model can be obtained. If there exists some i or r such

that P�
ip ¼ 0 or Pþ

rp ¼ 0, the direction ð 1
P�
ip
; 1
Pþ
rp
Þ would be

meaningless. To solve this problem, we can use 0 to replace 1
P�
ip

and 1
Pþ
rp
, as Portela et al (2004), Hadi-Vencheh and Esmaeilza-

deh (2013) proposed. However, these two models still fail in

some cases. Let us consider DMU 6 in the above example.

According to (5), we can find P�
16 ¼ 9; P�

26 ¼ 0; P�
36 ¼

2;Pþ
16 ¼ 0;Pþ

26 ¼ 3. Then for both the dual super RDM+

model and the dual super RDM- model, the constraint (3)

with respect to the output Y1 of DMU 6 is expressed as

�8k1 þ 4k3 þ k4 þ 3k5 � 6þ 0 � b ¼ 6: ð6Þ

According to (4), we have �8k1 þ 4k3 þ k4 þ 3k5 � 4. This

contradicts with (6). Therefore, both the dual super RDM+

Table 1 Input–output data and evaluation results

DMUp X1 X2 X3 Y1 Y2 Super-efficiency

NL LC Dual super RDM+ Dual super RDM-

1 0.8 0 0 -8 0 Infeasible 1.102 2.500 1.960
2 0 1 -2 0 3 Infeasible Infeasible Infeasible Infeasible
3 4 0 0 4 0 1.025 1.015 1.038 1.235
4 4 0 0 1 0 0.460 1.000 1.000 1.000
5 2 0 0 3 0 1.619 1.118 1.619 3.943
6 9 0 0 6 0 1.333 1.333 Infeasible Infeasible
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model and the dual super RDM- model are infeasible for

DMU 6. According to the duality theory of linear programs,

the super RDM+ and the super RDM- models are infeasible

or have an unbounded optimal value for DMU 6. Actually,

these two models fail for DMUs 2 and 6, as one can see from

the last two columns of Table 1.

3. Modified DDF-based super-efficiency model

Considering that negative values might exist in the input–

output data, we need to choose a new direction vector which is

always non-negative and nonzero, independent of inputs and

outputs being non-negative or not. To this end, we introduce

the following constants:

ai ¼ k � max
j¼1;...;n

fjxijjg; i ¼ 1; . . .;m; ð7Þ

br ¼ min
j¼1;...;n

fyrjg; r ¼ 1; . . .; s; ð8Þ

where k is a constant satisfying k� 3. Clearly, we have xip þ
ai [ 0 and yrp � br � 0 for all i ¼ 1; . . .;m; and r ¼ 1; . . .; s;

respectively. Therefore, we can choose ðxip þ ai; yrp � brÞ as

ðgx; gyÞ and then obtain the following VRS radial super-

efficiency DEA model:

max bp ð9Þ

s:t:
Xn

j¼1;j 6¼p

kjxij �ð1� bpÞxip � aibp; i ¼ 1; . . .;m; ð10Þ

Xn

j¼1;j6¼p

kjyrj �ð1þ bpÞyrp � brbp; r ¼ 1; . . .; s; ð11Þ

Xn

j¼1;j 6¼p

kj ¼ 1; kj � 0; j ¼ 1; . . .; n; j 6¼ p: ð12Þ

For the sake of distinction, we denote the optimum value of

model (9)–(12) as b�p. The following proposition shows the

feasibility of model (9)–(12).

Proposition 1 Model (9)–(12) is feasible, and we have

0� b�p\1 for ðxip; yrpÞ 2 Tp and �1�b�p\0 for

ðxip; yrpÞ 62 Tp.

Proof Since xip þ ai [ 0, constraints (10) can be rewritten as

bp �
xip �

Pn
j¼1
j 6¼p

kjxij

xip þ ai
; i ¼ 1; . . .;m: ð13Þ

For each p 2 f1; . . .; ng, let Jp ¼ frjyrp � br [ 0; r ¼
1; . . .; sg and Op ¼ frjyrp � br ¼ 0; r ¼ 1; . . .; sg. As

yrp � br � 0, we have Jp
S
Op ¼ f1; . . .; sg.

According to (8), (11) and (12), we have

Xn

j¼1;j 6¼p

kjyrj � min
j¼1;...;n

j 6¼p

fyrjg� min
j¼1;...;n

fyrjg ¼ br ¼ yrp; r 2 Op:

ð14Þ

It is easy to see from (14) that the inequalities in (11)

naturally hold for all r 2 Op. Hence, constraints (11) are

equivalent to

bp �

Pn
j¼1
j 6¼p

kjyrj � yrp

yrb � br
; r 2 Jp: ð15Þ

With (13) and (15), we consider the following two

complementary cases for each DMU p 2 f1; . . .; ng.

Case I ðxip; yrpÞ 2 Tp: In this case, we have

xip �
Pn

j¼1
j 6¼p

kjxij and yrp �
Pn

j¼1
j 6¼p

kjyrj for i ¼ 1; . . .;m and

r ¼ 1; . . .; s, respectively. So,

xip �
Pn

j¼1
j 6¼p

kjxij

xip þ ai
� 0; i ¼ 1; . . .;m; ð16Þ

and

Pn
j¼1
j 6¼p

kjyrj � yrp

yrb � br
� 0; r 2 Jp:

ð17Þ

Inequalities (13), (15), (16) and (17) mean that bp ¼ 0

is a feasible solution of model (9)–(12). Then as the

optimum value of problem (9)–(12), b�p � 0 always holds

for p ¼ 1; . . .; n: In addition, we have from (7), (12) and

(13) that

bp �
xip �

Pn
j¼1;j 6¼p kjxij

xip þ ai
�

xip þmaxj¼1;...;n
j6¼p

fjxijjg

xip þ ai

� xip þmaxj¼1;...;nfjxijjg
xip þ ai

\1:

Thus in this case, we have 0� b�p\1.

Case II ðxip; yrpÞ 62 Tp: We know from (14) that the r

satisfying
Pn

j¼1
j 6¼p

kjyrj\yrp does not belong to Op. Hence

in this case, there must exist some i 2 f1; . . .;mg such thatPn
j¼1
j 6¼p

kjxij [ xip or some r 2 Jp such that
Pn

j¼1
j 6¼p

kjyrj\yrp.

We can then easily see from (13) and (15) that

model (9)–(12) is still feasible in this case and its optimal
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value, b�p, is negative. Indeed, since k� 3, we know from

(7) that

max
j¼1;...;n

fjxijjg� 2xip þ ai: ð18Þ

From (12) and (18), we have

xip �
Pn

j¼1
j 6¼p

kjxij

xip þ ai
� xip �maxj¼1;...;nfjxijjg

xip þ ai

� xip � 2xip � ai

xip þ ai
¼ �1; i ¼ 1; . . .;m:

ð19Þ

On the other hand, we obtain from (8) and (12) that

Pn
j¼1
j 6¼p

kjyrj � yrp

yrb � br
� minj¼1;...;nfyrpg � yrp

yrp � br

¼ br � yrp

yrp � br
¼ �1; r 2 Jp:

ð20Þ

Since we maximize bp in model (9)–(12), b�p � � 1; p ¼
1; . . .; n; always holds due to (13), (15), (19) and (20).

Therefore, �1�b�p\0 for ðxip; yrpÞ 62 Tp. h

According to Proposition 1, no matter whether inputs and

outputs are non-negative or not, for each DMU whose input–

output bundle belongs to Tp, model (9)–(12) expands its

outputs and reduces its inputs simultaneously to reach the

super-efficiency frontier formed by the rest of DMUs; for each

DMU whose input–output bundle does not belong to Tp, model

(9)–(12) reduces (expands) at least one of its outputs (inputs)

to reach the super-efficiency frontier formed by the remaining

DMUs.

Inspired by the criterion for identifying efficiency in

conventional DEA models such as the CCR model (Charnes

et al, 1978), we judge whether the evaluated DMU is efficient

or not under model (9)–(12) by the following criterion: The

DMU p is inefficient if b�p [ 0 or b�p ¼ 0 with positive slacks

yielded by model (9)–(12); otherwise, it is efficient. Let k�j
denote the optimal maximum slack solution (Cooper et al,

2007) of model (9)–(12). Then, the inputs and outputs of the

projection on the super-efficiency frontier with respect to the

DMUp can be expressed as

x̂ip ¼
Xn

j¼1;j 6¼p

k�j xij; i ¼ 1; . . .;m; ð21Þ

ŷrp ¼
Xn

j¼1;j 6¼p

k�j yrj; r ¼ 1; . . .; s: ð22Þ

Like traditional DEA models, model (9)–(12) might provide

multiple projections for the evaluated DMU because there

might exist multiple optimal solutions for k�j . From Proposition

1 and constraints (10) and (11), we know that model (9)–(12)

projects the DMUp onto the super-efficiency frontier formed

by the rest of DMUs along the direction ðxip þ ai; yrp � brÞ,
without the actual data transformation. Concretely, for inef-

ficient DMUs, it preserves the proportionate improvement

property of the traditional DEA model and any projection it

provides can be seen as an improved target for the evaluated

DMU since x̂ip ¼
Pn

j¼1
j 6¼p

k�j xij � xip � b�pðxip þ aiÞ� xip; ŷrp ¼
Pn

j¼1
j 6¼p

k�j yrj � yrp þ b�pðyrp � brÞ� yrp; 8i; r; hold; for efficient

DMUs, at least one of the outputs (or inputs) of projections is

not larger (or not smaller) than that of the corresponding DMU

due to the positive b�p or b�p ¼ 0 with all zero slacks. Thus,

model (9)–(12) generalizes current VRS radial super-effi-

ciency DEA models suitable for non-negative data to the

situation with partially or fully negative data.

Similarly to the determination of the super-efficiency score in

Ray (2008), the DDF-based super-efficiency score for DMUp is

determined by 1� b�p under model (9)–(12). From Proposition

1, we have the following corollary about the boundedness of the

super-efficiency score determined by model (9)–(12).

Corollary 1 ð1� b�pÞ 2 ð0; 2�.

We know from Ray (2008) that under model (9)–(12), the

outputs of the reference point for DMUp are

~yrp ¼ ð1þ b�pÞyrp � brb
�
p; r ¼ 1; . . .; s: ð23Þ

According to Proposition 1, we have

~yrp ¼ yrp þ b�pðyrp � brÞ� yrp; ðxip; yrpÞ 2 Tp;

~yrp � yrp � ðyrp � brÞ ¼ br; ðxip; yrpÞ 62 Tp:

Therefore, we have the following conclusion for ~yrp:

Corollary 2 For the data set with non-negative outputs,

~yrp � 0 holds for any DMU p; p 2 f1; . . .; ng.

Corollary 2 shows that the conceptual problem described in

Ray (2008) does not occur under our model. From Proposition

1 and Corollary 2, we know that the proposed model eliminates

the infeasibility issue of the conventional VRS super-efficiency

DEA model and the NL model and meanwhile extends the

applicability of the VRS radial super-efficiency DEA model to

the situation with negative input–output data.

Furthermore, our model has the following three useful

properties.

(i) Monotonicity

Suppose that the inputs of DMUp are reduced to xip � Dxip
and the outputs of DMUp are increased to yrp þ Dyrp, here
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Dxip � 0 and Dyrp � 0 for all i ¼ 1; . . .;m; and r ¼ 1; . . .; s;

respectively. Notice that here the input (output) data of the

DMUp are decreased (increased). According to the principle,

we introduced the constants ai and br in (7) and (8), and these

two constants should be determined by considering all possible

values of inputs and outputs. Therefore, ai and br in this

situation should be determined by

ai ¼ k �maxfjxijj; 8j; jxip � Dxipjg; i ¼ 1; . . .;m; ð24Þ

br ¼ minfyrj; 8j; yrp þ Dyrpg ¼ min
j¼1;...;n

fyrjg; r ¼ 1; . . .; s:

ð25Þ

Equality (25) holds due to the non-negativity of Dyrp. With ai
and br in (24) and (25), we have the following conclusion:

Proposition 2 The optimal value of model (9)–(12) does not

increase if inputs (outputs) of the DMU p are reduced

(increased).

Proof After the specified input reduction and output expan-

sion, the direction vector becomes ðxip � Dxip þ ai; yrpþ
Dyr � brÞ. With ai and br in (24) and (25), we have xip �
Dxip þ ai [ 0; i ¼ 1; . . .;m; and yrp þ Dyr � br � 0; r ¼
1; . . .; s: Then, the corresponding model (9)–(12) for the

DMUp should be rewritten as

max bp ð26Þ

s:t:
Xn

j¼1;j 6¼p

kjxij �ð1� bpÞðxip � DxipÞ � aibp; i ¼ 1; . . .;m;

ð27Þ

Xn

j¼1;j 6¼p

kjyrj �ð1þ bpÞðyrp þ DyrpÞ � brbp; r ¼ 1; . . .; s;

ð28Þ

Xn

j¼1;j 6¼p

kj ¼ 1; kj � 0; j ¼ 1; . . .; n; j 6¼ p: ð29Þ

Denote the optimal solution of model (26)–(29) as

ðb0

p; k
0

jÞ. By using the same derivation as that for (13)

and (15), constraints (27) and (28) are equivalent to

bp �
xip � Dxip �

Pn
j¼1
j6¼p

kjxij

xip � Dxip þ ai
; i ¼ 1; . . .;m; ð30Þ

and

bp �

Pn
j¼1
j6¼p

kjyrj � yrp � Dyrp

yrb þ Dyrp � br
; 8r 2 J0p;

ð31Þ

respectively, where J0p ¼ frjyrp þ Dyrp � br [ 0; r ¼
1; . . .; sg. We have from (29) and (24) that

xip �Dxip �
Pn

j¼1;j 6¼p kjxij
xip �Dxip þ ai

�
xip �Dxip þmaxj¼1;...;n;

j 6¼p

fjxijjg

xip �Dxip þ ai
\1:

ð32Þ

Therefore, we have b
0

p\1. Since k� 3, we know from

(24) that

max
j¼1;...;n;

j 6¼p

fjxijjg� maxfjxijj; 8j; jxip � Dxipjg

� 2ðxip � DxipÞ þ ai:

As xip � Dxip þ ai [ 0; i ¼ 1; . . .;m, we have

xip � Dxip �
Pn

j¼1
j 6¼p

kjxij

xip � Dxip þ ai
�

xip � Dxip �maxj¼1;...;n;
j 6¼p

fjxijjg

xip � Dxip þ ai
�

xip � Dxip � 2ðxip � DxipÞ � ai

xip � Dxip þ ai
¼ �1; i ¼ 1; . . .;m:

ð33Þ

On the other hand, we have from (31) that

Pn
j¼1
j6¼p

kjyrj � yrp � Dyrp

yrp þ Dyrp � br
� minj¼1;...;nfyrpg � yrp � Dyrp

yrp þ Dyrp � br

¼ �1; 8r 2 J0p: ð34Þ

From (30), (31), (33) and (34), we have b0p � � 1

for p ¼ 1; . . .; n; since bp is maximized in model (26)–

(29). Then, 1� b0p and 1þ b0p are non-negative, and we

have

Xn

j¼1;j6¼p

k0jxij �ð1� b0pÞðxip � DxipÞ � aib
0
p

�ð1� b0pÞxip � aib
0
p; i ¼ 1; . . .;m:

ð35Þ

Xn

j¼1;j 6¼p

k0jyrj �ð1þ b0pÞðyrp þ DyrpÞ � brb
0
p

�ð1þ b0pÞyrp � brb
0
p; r ¼ 1; . . .; s:

ð36Þ
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As chosen constants, the values of ai and br in model

(26)–(29) should be the same as those in model (9)–(12).

Thus according to (35) and (36), ðk0

j; b
0

pÞ is a feasible

solution vector for the model (9)–(12). Therefore, b�p �b
0

p

holds since we maximize bp in model (9)–(12). h

(ii) Units invariance

Assume that the i0th ði0 2 f1; . . .;mgÞ input and the r0th

ðr0 2 f1; . . .; sgÞ output of all DMUs are scaled by the factors

c; c[ 0 and c 6¼ 1; and d; d[ 0 and d 6¼ 1, respectively.

After this scaling, ai0 and br0 should be determined

by k �maxj¼1;...;nfjc � xi0jjg ¼ c � k �maxj¼1;...;nfjxi0jjg and

minj¼1;...;nfd � yr0jg ¼ d �minj¼1;...;nfyr0jg, respectively, accord-
ing to (7) and (8). Thus, the corresponding constraints in (10)

and (11) become

Xn

j¼1;j 6¼p

kj � c � xi0j �ð1� bpÞ � c � xi0p � c � k

� max
j¼1;...;n

fjxi0jjg � bp; i ¼ 1; . . .;m;

Xn

j¼1;j 6¼p

kj � d � yr0j �ð1þ bpÞ � d � yr0p � d

� min
j¼1;...;n

fyr0jg � bp; r ¼ 1; . . .; s:

These constraints are equivalent to the original constraints in

(10) and (11), respectively. Therefore, the optimal solution of

our model does not change after the above scaling. This means

that our model is unit invariant.

(iii) Translation invariance

� Output translation Assume that all the outputs of DMUs

are translated to y0rj ¼ yr;j þ sr; r ¼ 1; . . .; s; j ¼ 1; . . .; n;

where sr; r ¼ 1; . . .; s; are arbitrary constants. After this

translation, br should be calculated by

br ¼ min
j¼1;...;n

fy0rjg ¼ min
j¼1;...;n

fyr;j þ srg ¼ min
j¼1;...;n

fyr;jg

þ sr; r ¼ 1; . . .; s;
ð37Þ

according to (8). Therefore, the constraints in (11) become

Xn

j¼1;j 6¼p

kjðyrj þ srÞ� yrp þ sr þ bp

�
yrp þ sr:

� min
j¼1;...;n

fyr;jg � sr

�
; r ¼ 1; . . .; s;

which is equivalent to (11) due to (12). Hence, model (9)–(12)

is output translation invariant.

� Input translation If all the inputs of DMUs are translated

to x0ij ¼ xi;j þ gi; i ¼ 1; . . .;m; j ¼ 1; . . .; n; where gi; i ¼
1; . . .;m; are arbitrary constants. After this translation, ai
should be calculated by

ai ¼ k � max
j¼1;...;n

fjx0ijjg ¼ k � max
j¼1;...;n

fjxi;j þ gijg; i ¼ 1; . . .;m:

ð38Þ

With (38), the constraints in (10) become

Xn

j¼1;j 6¼p

kjðxij þ giÞ� xip þ gi � bp

�
xip þ gi:

þk � max
j¼1;...;n

fjxi;j þ gijg
�
; i ¼ 1; . . .;m:

These constraints are not equivalent to the original constraints

in (10).

To ensure the input translation invariance, we should

translate ai by the opposite amount of the corresponding input

translation, ie,

ai ¼ k � max
j¼1;...;n

fjxijjg � gi; i ¼ 1; . . .;m: ð39Þ

With (39), the constraints in (10) become

Xn

j¼1;j 6¼p

kjðxij þ giÞ� xip þ gi � bp

�
xip þ gi:

þk � max
j¼1;...;n

fjxi;jjg � gi

�
; i ¼ 1; . . .;m;

which are the same as those original constraints in (10) due to

(12). Because of the adjustment in (39), we call the above input

translation invariance with parameter adjustment the general-

ized input translation invariance for distinction. Although our

model does not satisfy the traditional input translation invari-

ance, it is generalized input translation invariant.

4. Numerical examples

In this section, two numerical examples are used to show the

applicability and merits of the proposed model.

Example 1 To show the properties of the proposed model

and meanwhile to compare it with the NL model (Ray,

2008), the LC model (Lin and Chen, 2015), the super

RDM+ model and the super RDM- model (Hadi-

Vencheh and Esmaeilzadeh, 2013), we apply the proposed

model to the data set in Table 1, situated in Section 2

above. In this paper, we set k ¼ 3. Then according to (7)

and (8), we have a1 ¼ 27, a2 ¼ 3, a2 ¼ 6, b1 ¼ �8 and

b2 ¼ 0 for the data set in Table 1. The proposed model is

feasible for each of six DMUs. The resulting optimal

value is shown in the second column of Table 2. Note that

for DMU 4, some resulting slacks are not equal to zero.

Thus, except DMU 4, all other DMUs are efficient.

According to the super-efficiency scores, these six DMUs

are ranked as column 4 of Table 2 shows. The last five

columns of Table 2 show the inputs and outputs of the

projection of each DMU on the super-efficiency frontier.

For this data set (as well as the data set in Example 2), our

model yields a unique projection for each DMU. It is easy

to see from the projection results that: Inefficient DMU 4
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should generate lower target inputs and higher target

outputs than the original values in order to reach the

super-efficiency frontier; other DMUs should reduce

(expand) at least one of its outputs (inputs) to reach the

super-efficiency frontier.

To examine the monotonicity of the proposed model, we

assume that the first input of DMU 1 is decreased from 1 to

-99 and its first output is increased from -8 to 192 in the

following way: x1;1 ¼ 1� l, and y1;1 ¼ �8þ 2 � l, here l

increases from 0 to 100 with the step size being 1. As the

values of x1;1 and y1;1 are changed in this situation, then

according to (24) and (25), we have

a1 ¼ 3 �maxfj1� lj; 0; 4; 4; 2; 9; l ¼ 0; . . .; 100g ¼ 297;

a2 ¼ 3 �maxf0; 1; 0; 0; 0; 0g ¼ 3;

a3 ¼ 3 �maxf0; j � 2j; 0; 0; 0; 0g ¼ 6;

b1 ¼ minf�8; 0; 4; 1; 3; 6g ¼ �8;

b2 ¼ minf0; 3; 0; 0; 0; 0g ¼ 0;

for the changing data set. When l increases from 0 to 100, the

proposed model is always feasible and the optimal value b�1
decreases gradually from -0.00329 to -0.93000. Figure 1

plots the change of b�1 with respect to l. It is easy to see from

Figure 1 that b�1 monotonically decreases with the increase of

l. This confirms the theoretical analysis about the monotonic-

ity of model (9)–(12).

For the data set in Table 1, we assume that all the inputs are

scaled down by 0.001 and two outputs are scaled down

by 0.01. Then according to (7) and (8), we have a1 ¼
0:027; a2 ¼ 0:003; a3 ¼ 0:006, b1 ¼ �0:08 and b2 ¼ 0 for the

scaled data. By solving problem (9)–(12) with the scaled data,

we find that all the resulting super-efficiency scores are still

equal to those in column 3 of Table 2. This confirms the

theoretical result about the unit invariance of the proposed

model.

Assume the input and output values of all DMUs are

translated to

x01j ¼ x1j; x02j ¼ x2j; x
0
3j ¼ x3j þ 4;

y01j ¼ y1j þ 9; y02j ¼ y2j; j ¼ 1; . . .; 6:
ð40Þ

Then according to (39) and (37), we have

a1¼27; a2¼3; a3¼6�4¼2; b1¼�8þ9¼1; b2¼0: ð41Þ

With ai and br in (41), we solve problem (9)–(12) under the

translated data and find that all the resulting super-efficiency

scores are still equal to those in column 3 of Table 2. This

confirms the usual output translation invariance and the

generalized input translation invariance of the proposed

model.

It is worth noting that by the translation in (40), the input–

output values of every DMU become non-negative. The first

input is zero for DMU 2, and it is positive for other DMUs. By

solving the NL model under these translated data, we find that

it is infeasible for DMU 2 and the resulting super-efficiency

score for DMU 1 is 2.5, which results in a negative referenced

output for DMU 1. Therefore, the infeasibility issue in two

exceptions of the NL model, mentioned in Section 2, occurs

under the translated data. In contrast, the proposed model is

feasible under the translated data for all DMUs, and we have

from (23) that the outputs of referenced points for individual

DMUs are ~y011 ¼ 11:680; ~y012 ¼ 10:183; ~y013 ¼ 12:932; ~y014 ¼
10:903; ~y015 ¼ 11:532; ~y016 ¼ 13:000; ~y021 ¼ 0:320; ~y022 ¼ 0:000;
~y023 ¼ 0:000; ~y024 ¼ 0:000; ~y025 ¼ 0:383; ~y026 ¼ 0:000; which are

non-negative. This confirms the conclusion of Corollary 2.

From Proposition 1, Corollary 2 and the above analysis, we

can safely say that for non-negative data, the proposed model

is feasible and ensures the non-negativity of the referenced

outputs for all DMUs. So, for the non-negative data set, the

infeasibility issue of the NL model (Ray, 2008) does not occur

for model (9)–(12).

Example 2 In order to further show the practicability of our

model, we consider the data set in Sharp et al (2007). This

data set has 13 DMUs with two inputs and three outputs.

The detailed data are shown in columns 2–6 of Table 3. It

is easy to see from Table 3 that just one input (cost) and

one output (saleable) are non-negative and other data

are non-positive. For this example, we have a1 ¼
32:4; a2 ¼ 6:96, b1 ¼ 0:49; b2 ¼ �1:42 and b3 ¼ �3:79

according to (7) and (8). By solving the proposed model

for all DMUs, we obtain the resulting super-efficiency

scores, which are shown in column 7 of Table 3.

Table 2 Results for six DMUs

DMUp b�p Super-efficiency score Rank Projection on super-efficiency frontier

X1 X2 X3 Y1 Y2

1 -0.036 1.036 4 1.787 0.107 -0.213 2.680 0.320
2 -1.000 2.000 1 2.000 0.000 0.000 3.000 0.000
3 -0.006 1.006 5 4.175 0.000 0.000 3.932 0.000
4 0.000 1.000 6 2.000 0.000 0.000 3.000 0.000
5 -0.043 1.043 3 3.234 0.128 -0.255 2.532 0.383
6 -0.143 1.143 2 4.000 0.000 0.000 4.000 0.000
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It is easy to see that the proposed model is feasible for all

DMUs. Compared with DEA models handling negative data

(Portela et al, 2004; Sharp et al, 2007; Emrouznejad et al,

2010; Cheng et al, 2013), an advantage of the proposed model

is that it can differentiate the performance of efficient DMUs.

This superiority comes from an inherent characteristic of

super-efficiency DEA models. According to the resulting

super-efficiency scores, all DMUs are ranked as column 8 of

Table 3 shows.

Table 4 shows the target input–output values of inefficient

DMUs, determined by the proposed model. It is obvious that

under the proposed model, each inefficient DMU should

reduce its inputs and expand its outputs in order to tend to the

super-efficiency frontier. Therefore, the proposed model can

provide improved target inputs and outputs for all inefficient

DMUs.

From the theoretical analyses and the above two examples,

we can conclude that the proposed model can deal with the data

set with negative values and can provide improved targets for

inefficient DMUs. In addition, our model is unit invariant,

output translation invariant, generalized input translation invari-

ant and monotonous. For the non-negative data set, the proposed

model fully eliminates the infeasibility issue of the NL model.

Therefore, the proposed model successfully addresses the

infeasibility problem occurring in conventional VRS radial

super-efficiency DEA models and the NL model. More

importantly, different from current DEA models handling

negative data, the proposed model can rank efficient DMUs.
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−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

l

β 1*

Figure 1 The change of the optimal value of model (9)–(12) for DMU 1.

Table 3 Input–output data and super-efficiency results

DMUp Input Output Super-efficiency score Rank

Cost Effluent Saleable CO2 Methane

1 1.03 -0.05 0.56 -0.09 -0.44 0.998 7
2 1.75 -0.17 0.74 -0.24 -0.31 0.986 10
3 1.44 -0.56 1.37 -0.35 -0.21 1.041 3
4 10.80 -0.22 5.61 -0.98 -3.79 0.919 13
5 1.30 -0.07 0.49 -1.08 -0.34 0.995 8
6 1.98 -0.10 1.61 -0.44 -0.34 0.992 9
7 0.97 -0.17 0.82 -0.08 -0.43 1.011 5
8 9.82 -2.32 5.61 -1.42 -1.94 1.402 2
9 1.59 0.00 0.52 0.00 -0.37 1.000 6
10 5.96 -0.15 2.14 -0.52 -0.18 0.983 11
11 1.29 -0.11 0.57 0.00 -0.24 1.029 4
12 2.38 -0.25 0.57 -0.67 -0.43 0.969 12
13 10.30 -0.16 9.56 -0.58 0.00 1.540 1

1320 Journal of the Operational Research Society Vol. 68, No. 11



5. Conclusions

Super-efficiency model in the presence of negative data is a

rather neglected issue in the DEA field. The existing super-

efficiency models capable of handling negative data might be

infeasible in some cases. By choosing appropriate direction

variables in the DDF, this paper develops a DDF-based VRS

radial super-efficiency DEA model for dealing with negative

data. Compared with existing related models, the proposed

model is feasible no matter whether the input–output data are

non-negative or not, and meanwhile, it can rank all DMUs. It

can project each DMU onto the super-efficiency frontier along

a suitable direction and can provide improved targets for

inefficient DMUs. It possesses good properties such as

monotonicity, units invariance, output translation invariance

and generalized input translation invariance. Moreover, it

successfully eliminates the infeasibility issue occurring in two

exceptions of the NL model. In summary, the proposed model

not only overcomes the infeasibility issue of VRS super-

efficiency DEA models, but also extends current VRS radial

super-efficiency DEA models suitable for non-negative data to

the situation with partially or fully negative data.

The new super-efficiency DEA model is developed by

utilizing the directional distance function, and the resulting

super-efficiency scores are not equal to those yielded by

traditional radial super-efficiency DEA models if the latter

models are feasible and the input–output data are non-

negative. As for the future research, we will propose an

alternative radial super-efficiency DEA model which not only

overcomes the above drawback, but also keeps all advantages

of the proposed super-efficiency DEA model.
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