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Link weights are the main parameters of shortest path routing protocols, the most commonly used protocols for IP
networks. The problem of optimally setting link weights for unique shortest path routing is addressed. Due to the
complexity of the constraints involved, there exist challenges to formulate the problem in such a way based on
which a more efficient solution algorithm than the existing ones may be developed. In this paper, an exact
formulation is first introduced and then mathematically proved correct. It is further illustrated that the formulation
has advantages over a prior one in terms of both constraint structure and model size for a proposed decomposition
method to solve the problem.
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1. Introduction

Shortest path routing protocols such as OSPF are the most

widely deployed and commonly used protocols for IP

networks (Black, 2000; Moy, 1998; Tanenbaum and Wether-

all, 2011). They also find applications in, for example, road

networks (Abraham et al, 2010; Zhan and Noon, 1998). In

shortest path routing, each link is assigned a weight and traffic

demands are routed through the shortest paths with respect to

link weights (Bertsekas and Gallager, 1992), given by a

shortest path first algorithm (Bellman, 1958; Dijkstra, 1959;

Ford and Fulkerson, 2010). Link weights are hence the key

parameters, and an essential problem is then to find an

appropriate weight set for shortest path routing.

A simple way to set link weights is the hop-count method,

assigning the weight of each link to one. The length of a

path is thus the number of hops. Another default approach

recommended by Cisco is the inv-cap method (Cisco Systems

Inc., 2000; Thomas, 2003), setting the weight of a link

inversely proportional to its capacity, without taking traffic

conditions into consideration. More generally, the weight of a

link may depend on and be related to its transmission capacity

and traffic load. Accordingly, a problem of interest is to find an

optimal weight set for shortest path routing (Burton and Toint,

1992), given a network topology, a projected traffic matrix

(Altın et al, 2010; Applegate and Cohen, 2006; Feldmann

et al, 2001; Wang et al, 2006), and an objective func-

tion (Balon et al, 2006; Pióro et al, 2002; Pióro and Medhi,

2004; Zhang, 2006).

The problem has two instances, depending on whether

multiple shortest paths or only a unique routing path from an

origin node to a destination node is allowed (Altin et al, 2013;

Bley et al, 2010; Giroire et al, 2015). For the first instance, a

number of heuristic methods have been introduced, each based

on, for example, a local search method mostly using an

increasing piecewise linear convex cost function or a heap-

reduction technique (Buriol et al, 2008; Fortz and Thorup,

2000, 2004; Fortz and Ümit, 2011; Ramalingam and Reps, 1996),

a genetic algorithm (Buriol et al, 2005; Ericsson et al, 2002;

Mulyana and Killat, 2002), simulated annealing (Pióro et al,

2002; Pióro and Medhi, 2004), Lagrangian relaxation (Holm-

berg and Yuan, 2000; Srivastava et al, 2005), an integrated

approach (Wang et al, 2001), or a MILP-based algo-

rithm (Amaldi et al, 2013; Cianfrani et al, 2012). For the second

instance, the Lagrangian relaxation method and local search

method have been proposed (Lin and Wang, 1993; Ramakrish-

nan and Manoel, 2001). These methods have been tested using

given data sets and have been verified to result in accept-

able routing performance. Meanwhile, with these heuristic

methods, the problem is not formulated exactly and is in general
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not solved optimally. In particular, the resulting performance is

not consistently close to the optimal general routing (Bley et al,

2010; Fortz and Thorup, 2000). It is hence worth looking into the

possibility of formulating the problem explicitly, from which

optimal solutions may be obtained for data instances with

reasonable sizes arising from real-world applications.

From a management perspective, unique-path routing uses

simpler routing mechanisms and allows for easier monitoring

of traffic flows (Ben-Ameur and Gourdin, 2003; Hock et al,

2010). Hence, this paper considers the unique shortest path

routing problem, as specified in Section 2.1. It is a reduction in

the integer multi-commodity flow problem (Ahuja et al,

1993), which has been well addressed (Barnhart et al, 2000;

Dinitz et al, 1999; Park et al, 1996).

Partially due to the challenges involved in modeling the

problem appropriately, most existing solution algorithms are

heuristic (Bley, 2009; Kolliopoulos and Stein, 2001; Skutella,

2002). Efforts have been made to formulate the problem

mathematically. For example, a two-phase heuristic has been

proposed, to allocate a unique shortest path for each pair of

nodes and to compute link weights compatible with the set of

routing paths (Ben-Ameur and Gourdin, 2003). To guarantee

the existence of a compatible set of weights in the second

subproblem, necessary conditions are provided and discussed

in detail. The second problem is also referred to as the inverse

shortest paths problem, variants of which have been exten-

sively studied (Ahuja and Orlin, 2001, 2002; Bley, 2007;

Burton and Toint, 1992, 1994; Xu and Zhang, 1995; Zhang

and Liu, 1996), with or without the uniqueness of the

perceived optimal solution and the integrality of the perturbed

cost vector being taken into consideration.

Models without the necessity of resorting to the two-phase

heuristic have also been proposed (Zhang and Rodošek,

2005a, b). This avoids considering the compatibility between

the two subproblems. In the meantime, as a critical step when a

model is introduced, the correctness of the models still remains

to be verified rigorously. Mathematical models have also been

developed for related problems (Bley and Koch, 2008; Faragó

et al, 2003; Holmberg and Yuan, 2004), whereas they are

mostly path-based and potentially result in an exponential

number of constraints. This leaves space for further exploring

the structure properties of the problems, which may provide

more flexibility to derive alternative solution methods.

This paper focuses on mathematical modeling of the

problem, which may potentially yield a new exact solution

approach for real-world applications with average data sizes.

In particular, the correctness of the models is mathematically

proved rigorously. In Section 2, the problem is specified and

two different exact formulations are introduced. The second

one is then mathematically proved correct in Section 3.

Differences between the two formulations in both constraint

structure and model size are discussed in Section 4, followed

by the conclusion in Section 5.

The ideas behind the two formulations may be adopted to

model related problems in network routing and other fields. It

is also hoped that the steps of model formulation, model

validation, and model comparison may provide a reference

procedure for mathematical modeling.

2. Model formulation

2.1. Problem specification

The unique shortest path routing problem is defined as follows.

Given

• a network topology, which is a directed graph structure

G ¼ ðN ;LÞ, where

– N is a finite set of nodes, each of which represents a

router; and

– L is a set of directed links, each of which corresponds

to a transmission link; (For each ði; jÞ 2 L, i is the

starting node, j is the ending node, and cij� 0 is the link

capacity.)

• a traffic matrix, which is a set of demands D; (It is assumed

that there is at most one demand between each origin–

destination pair. For each demand k 2 D, sk 2 N is the

origin node, tk 2 N is the destination node, and dk [ 0 is

the required bandwidth. Accordingly, S is the set of all

origin nodes, T s is the set of all destination nodes of

demands originating from node s 2 S, and Ds is the set of

all demands originating from node s 2 S.)

• lower and upper bounds of link weights, which are positive

real numbers wmin and wmax, respectively; and

• an objective function, e.g., to maximize the sum of the

residual capacities,

find an optimal weight set wij; ði; jÞ 2 L, subject to

• flow conservation constraints: For each demand, at each

node, the sum of all incoming flows (including the demand

bandwidth at the origin node) is equal to the sum of all

outgoing flows (including the demand bandwidth at the

destination node);

• link capacity constraints: For each link, the load of traffic

flows traversing the link does not exceed the capacity of

that link;

• path uniqueness constraints: Each demand has a unique

routing path; and

• path length constraints: For each demand, the length of

each path assigned to route the demand is strictly less than

that of any other possible and unassigned path to route the

demand.

By the above definition, the routing path of a demand is the

shortest one among all possible paths. For each link, the

routing path of a demand either traverses the link or not. The

path length and path uniqueness constraints require that the

length of the unique shortest path to route a demand is less
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than that of any other possible path from the origin to the

destination.

As shown in Figure 1, concerning the constraints, there are

three scenarios to be considered regarding the relationship

between the lengths of shortest paths and link weights.

• If the routing path of demand k traverses link (i, j), the

length of the shortest path from node sk to j is that from sk
to i plus the weight of link (i, j);

• If the routing path of demand k does not traverse link

(i, j) but transits node j, the length of the shortest path from

node sk to j is strictly less than the sum of that from sk to

i and the weight of link (i, j); (otherwise, there would be at

least two shortest paths to route demand k.)

• If the routing path of demand k neither traverses link

(i, j) nor transits node j, the length of the shortest path from

node sk to j is less than or equal to the sum of that from sk
to i and the weight of link (i, j).

With the problem being specified, below it is mathemati-

cally formulated from two different perspectives, based on the

study of the problem properties. For comparison, a demand-

based model is first introduced, followed by the origin-based

counterpart.

2.2. A demand-based model

Based on the observation on the relationship between the

length of a shortest path and the weights of links that it

traverses, the problem can be mathematically formulated as a

demand-based model (DBM) as follows, by defining one

routing decision variable for each link–demand pair (Zhang

and Rodošek, 2005a).

• Routing decision variables:

xkij 2 f0; 1g; 8k 2 D; 8ði; jÞ 2 L ð1Þ

is equal to 1 if and only if the routing path of demand

k traverses link (i, j). The number of this set of variables is

jDjjLj.

• Link weight variables:

wij 2 ½wmin;wmax�; 8ði; jÞ 2 L ð2Þ

denotes the routing cost of link (i, j). The number of this

set of variables is jLj.
• Path length variables:

lsi 2 ½0;þ1Þ; 8s 2 S; 8i 2 N ð3Þ

represents the length of the shortest path from origin node

s to node i. Apparently, lsktk is the length of the shortest path

to route demand k 2 D and lss ¼ 0, 8s 2 S. The number of

this set of variables is jSjjN j.
• Flow conservation constraints:

X

h:ðh;iÞ2L
xkhi �

X

j:ði;jÞ2L
xkij ¼

�1; if i ¼ sk

1; if i ¼ tk

0; otherwise

8
><

>:
;

8k 2 D; 8i 2 N :

ð4Þ

The number of this set of constraints is jDjjN j.
• Link capacity constraints:

X

k2D
dkx

k
ij� cij; 8ði; jÞ 2 L: ð5Þ

The number of this set of constraints is jLj.
• Path uniqueness constraints: under the combined restric-

tion of the flow conservation and path length constraints,

the constraints are satisfied automatically.

• Path length constraints:

xkij ¼ 0 ^
X

h:ðh;jÞ2L
xkhj ¼ 0) lskj � lski þ wij

xkij ¼ 0 ^
X

h:ðh;jÞ2L
xkhj ¼ 1) lskj \lski þ wij

xkij ¼ 1) lskj ¼ lski þ wij

9
>>>>>=

>>>>>;

;

8k 2 D; 8ði; jÞ 2 L;

ð6Þ

which are in logic form, as interpreted in Section 2.1 and

illustrated in Figure 1 with thick lines being routing paths.

They can be linearized by introducing two constants e and

M with 0\e� M. The new constraints are

lskj � lski þ wij � e
X

h:ðh;jÞ2L
xkhj � xkij

0
@

1
A

lskj � lski þ wij �Mð1� xkijÞ

9
>>>=

>>>;
;

8k 2 D; 8ði; jÞ 2 L:

ð7Þ

The number of this set of constraints is 2jDjjLj. By

enumerating all possible values of the routing decision

variables xkij; k 2 D; ði; jÞ 2 L, it can be verified that the

linearized constraints are identical to the original ones. For

the efficiency in solving the problem, it is worth looking

i j

h

sk tkwij

i j

h

sk tkwij

ij
s
i

s
j

h

k
hj

k
ij wllxx kk +≤=∧= 00

i j

h

sk tkwij

ij
s
i

s
j

h

k
hj

k
ij wllxx kk +<=∧= 10

ij
s
i

s
j

k
ij wllx kk +== 1

Figure 1 Illustration of the path length constraints.
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into how to choose the values of e and M accordingly with

respect to the size of the network G ¼ ðN ;LÞ as well as the

values of wmin and wmax.

• Objective function:

max
X

ði;jÞ2L
cij �

X

k2D
dkx

k
ij

 !
;

which is equivalent to

min
X

ði;jÞ2L

X

k2D
dkx

k
ij: ð8Þ

As a result, the complete model is

DBM :
Optimize ð8Þ
Subject to ð4Þ; ð5Þ; ð7Þ; ð1Þ; ð2Þ; ð3Þ

ð9Þ

A necessary condition of the unique shortest path routing

problem is the sub-path optimality requirement, which will be

invoked in the verification of the models in Section 3. The

requirement says that a sub-path of a routing path is also a

unique shortest path (Ben-Ameur and Gourdin, 2003; Bley

and Koch, 2008). Specifically, given an origin node s 2 S and

a node i 2 N ; i 6¼ s, all demands which originate from s and

transit i must go through the same incoming link to i.

Proposition 1 The path length constraints in the demand-

based model (9) imply the sub-path optimality constraints.

Proof Let k1; k2 2 D be two demands with sk1
¼ sk2

¼ s.

Assume that they use two disjoint paths to traverse from

node u to v. Demand k1 uses path

Pi ¼ ði1; i2Þ ! ði2; i3Þ ! � � � ! ðim�1; imÞ; ðip; ipþ1Þ
2 L; p ¼ 1; . . .;m� 1;

where i1 ¼ u and im ¼ v, and demand k2 uses path

Pj ¼ ðj1; j2Þ ! ðj2; j3Þ ! � � � ! ðjn�1; jnÞ; ðjq; jqþ1Þ
2 L; q ¼ 1; . . .; n� 1;

where j1 ¼ u and jn ¼ v.

By the definition of the routing decision variables,

xk1

ipipþ1
¼ 1 and xk2

ipipþ1
¼ 0; 8p 2 f1; . . .;m� 1g:

Then by constraints (6), on the one hand, since

xkij ¼ 1) lskj ¼ lski þ wij, 8k 2 D; 8ði; jÞ 2 L, considering

demand k1, it holds that

lsv ¼ lsu þ luim

¼ lsu þ luim�1
þ wim�1im

¼ lsu þ luim�2
þ wim�2im�1

þ wim�1im

¼ lsu þ lui1 þ wi1i2 þ � � � þ wim�1im

¼ lsu þ lPi
:

ð10Þ

On the other hand, since xkij ¼ 0 ^
P

h:ðh;jÞ2L x
k
hj ¼ 1)

lskj \lski þ wij and xkij ¼ 0) lskj � lski þ wij, 8k 2 D; 8ði; jÞ
2 L, it follows from considering k2 that

lsv ¼ lsu þ luim

\lsu þ luim�1
þ wim�1im

� lsu þ luim�2
þ wim�2im�1

þ wim�1im

� lsu þ lui1 þ wi1i2 þ � � � þ wim�1im

¼ lsu þ lPi
:

ð11Þ

Clearly, (10) and (11) contradict each other, which

means that the two demands cannot be routed over two

different paths between two shared nodes. It is hence

proved that the sub-path optimality constraints are satis-

fied. h

The sub-path optimality constraints are thus not explicitly

embedded into DBM. Mathematically, the constraints are

represented as

X

h:ðh;iÞ2L
max
k2Ds

xkhi� 1; i 6¼ s; 8s 2 S; 8i 2 N ; ð12Þ

which can be linearized, with a new set of variables

ysij; s 2 S; ði; jÞ 2 L, as

ysij� xkij; 8k 2 Ds; 8ði; jÞ 2 L and
X

h:ðh;iÞ2L
yshi� 1; i 6¼ s; 8s 2 S; 8i 2 N :

By Proposition 1, the demand-based model defined in (9) is

equivalent to

Optimize ð8Þ
Subject to ð4Þ; ð5Þ; ð7Þ; ð12Þ; ð1Þ; ð2Þ; ð3Þ

ð13Þ

Model (13) will be invoked to verify the correctness of

DBM in Section 3.

2.3. An origin-based model

In Section 2.2, the unique shortest path routing problem is

formulated as a demand-based model, which defines one

routing decision variable for each link–demand pair. Based on

the study of properties associated with the solution, it can be

found that all routing paths of demands originating from the

same node constitute a tree, rooted at the origin node (Zhang

and Rodošek, 2005b). Accordingly, a more natural formulation

is to define one routing decision variable for each link–origin

pair. For example, in Figure 2, instead of defining three

routing decision variables for link (i, j), one for each of the

three demands sharing the same origin node s, the new
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formulation defines only one routing decision variable for link

(i, j), paired with origin node s.

Based on the above observation, an origin-based model

(OBM) for the problem is formulated as follows.

• Routing decision variables:

ysij 2 f0; 1g; 8s 2 S; 8ði; jÞ 2 L ð14Þ

is equal to 1 if and only if the routing path of at least one

demand originating from node s traverses link (i, j). The

number of this set of variables is jSjjLj.
• Auxiliary flow variables:

f sij 2 ½0;þ1Þ; 8s 2 S; 8ði; jÞ 2 L ð15Þ

corresponds to the load of traffic flows originating from

node s and traversing link (i, j). The number of this set of

variables is jSjjLj.
• Link weight variables:

wij 2 ½wmin;wmax�; 8ði; jÞ 2 L ð16Þ

denotes the routing cost of link (i, j). The number of this

set of variables is jLj.
• Path length variables:

lsi 2 ½0;þ1Þ; 8s 2 S; 8i 2 N ð17Þ

represents the length of the shortest path from origin node

s to node i. In particular, lss ¼ 0; 8s 2 S. The number of this

set of variables is jSjjN j.
• Flow conservation constraints: For each tree, at the root

node, the difference between the sum of outgoing flows

and that of incoming flows is the sum of bandwidths of all

demands originating from the node; at the destination node

of each demand originating from the root node, the

difference between the sum of incoming flows and that of

outgoing flows is the bandwidth of the demand; and the

sum of incoming flows is equal to that of outgoing flows at

other nodes.

X

h:ðh;iÞ2L
f shi�

X

j:ði;jÞ2L
f sij

¼
�ds; if i¼ s

dk; if i¼ tk; 8k 2 Ds

0; otherwise

8
><

>:
; 8s 2 S; 8i 2N ;

ð18Þ

where ds ¼
P

k2Ds
dk. The number of this set of constraints

is jSjjN j.
• Flow bound constraints: For each tree, the total flow load

over each link does not exceed the sum of all demand

bandwidths originating from the root node and it is equal to

zero if no demand originating from the root node is routed

through the link.

f sij � ysij

X

k2Ds

dk; 8s 2 S; 8ði; jÞ 2 L: ð19Þ

The number of this set of constraints is jSjjLj.
• Link capacity constraints:

X

s2S
f sij � cij; 8ði; jÞ 2 L: ð20Þ

The number of this set of constraints is jLj.
• Path uniqueness constraints: For each tree, the number of

incoming links with nonzero flows is equal to zero at the

origin node, is equal to one at the destination node of a

demand originating from the root node, and does not

exceed one at any other node.

X

h:ðh;iÞ2L
yshi

¼ 0; if i ¼ s

¼ 1; if i 2 T s

� 1; otherwise

8
><

>:
; 8s 2 S; 8i 2 N : ð21Þ

The number of this set of constraints is jSjjN j.
• Path length constraints: For each tree, the length of the

unique shortest path to route a demand originating from the

root node is less than that of any other possible path from

the origin node to the destination node.

ysij ¼ 0 ^
X

h:ðh;jÞ2L
yshj ¼ 0) lsj � lsi þ wij

ysij ¼ 0 ^
X

h:ðh;jÞ2L
yshj ¼ 1) lsj\lsi þ wij

ysij ¼ 1) lsj ¼ lsi þ wij

9
>>>>>=

>>>>>;

;

8s 2 S; 8ði; jÞ 2 L:

The logic constraints can be linearized as

s

t k3t k2t k1

j

i

Figure 2 Illustration of the origin-based model.
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lsj � lsi þwij� e
X

h:ðh;jÞ2L
yshj� ysij

0
@

1
A

lsj � lsi þwij�Mð1� ysijÞ

9
>>=

>>;
; 8s2 S; 8ði; jÞ 2 L;

ð22Þ

where e and M are appropriate constants with 0\e� M.

The number of this set of constraints is 2jSjjLj.
• Objective function:

max
X

ði;jÞ2L
cij �

X

s2S
f sij

 !
;

which is equivalent to

min
X

ði;jÞ2L

X

s2S
f sij: ð23Þ

With all the above specification, the origin-based model is

defined as

OBM :
Optimize ð23Þ
Subject to ð18Þ; ð19Þ; ð20Þ; ð21Þ; ð22Þ; ð14Þ; ð15Þ; ð16Þ; ð17Þ

ð24Þ

3. Model validation

To verify the correctness of OBM defined in (24), a two-step

procedure is adopted. DBM defined in (9) is first proved to be

a correct model for the unique shortest path routing problem,

by Propositions 2 and 5. Then, the former is shown equivalent

to the latter concerning both the feasibility and the optimality

of the problem, which implies that OBM is a correct model for

the problem as well.

The first step is based on the correctness of the formulation

for a relaxed problem, the integer multi-commodity flow

problem (Ahuja et al, 1993) with sub-path optimality condi-

tion, which has been well studied and a corresponding

demand-based formulation has been recognized correct.

Accordingly, the equivalence between OBM and DBM is

built on the proof of the equivalence between two correspond-

ing models for the relaxation, defined, respectively, in (25) and

(26), by Propositions 8 and 9. The equivalence between OBM

and DBM is then completed by showing the equivalence of the

additional path length constraints of the two models in

Propositions 11 and 12.

RDBM :
Optimize ð8Þ
Subject to ð4Þ; ð5Þ; ð12Þ; ð1Þ

ð25Þ

ROBM :
Optimize ð23Þ
Subject to ð18Þ; ð19Þ; ð20Þ; ð21Þ; ð14Þ; ð15Þ

ð26Þ

RDBM defined in (25) is actually a relaxation of (13), which

is equivalent to (9) by Proposition 1.

3.1. Correctness of DBM

The correctness of DBM is verified by showing that of the

equivalent model (13). Apparently, the difference between (13)

and the relaxation (25) lies in the path length constraints (7) as

well as the additional link weight variables (2) and the path

length variables (3). To validate that (13) formulates the unique

shortest path routing problem correctly, constraints (7) in (13)

are proved to represent correctly the additional path length

constraints. Specifically, the following two statements are

shown correct. In (13), the path length constraints (7), combined

with the flow conservation constraints (4), ensure that

1. the routing path of each demand is a shortest path and

2. the routing path of each demand is a unique path.

The two statements are verified in Propositions 2 and 5,

respectively. Proposition 2 is validated by showing that the

length of the routing path of each demand is less than or equal

to that of any other possible path. The proof of Proposition 5 is

built on, with two lemmas, the satisfaction of the single-path

requirement by the relaxed problem RDBM given in (25),

followed by the verification that the uniqueness requirement is

satisfied by (13). Since the original logic constraints (6) are

identical to the linearized ones (7), the proof is based on (6).

Proposition 2 A routing path given by the solution to (13) is

a shortest one.

Proof Assume that for demand k,

Pi ¼ ði1; i2Þ ! ði2; i3Þ ! � � � ! ðim�1; imÞ; ðip; ipþ1Þ
2 L; p ¼ 1; . . .;m� 1;

with i1 ¼ sk and im ¼ tk, is the assigned routing path and

Pj ¼ ðj1; j2Þ ! ðj2; j3Þ ! � � � ! ðjn�1; jnÞ; ðjq; jqþ1Þ
2 L; q ¼ 1; . . .; n� 1;

with j1 ¼ sk and jn ¼ tk, is another possible and non-

assigned path from sk to tk.

By the definition of the routing decision variables,

xkipipþ1
¼ 1, p ¼ 1; . . .;m� 1 and there exists ~q 2

f1; 2; . . .; n� 1g such that xkj ~qj ~qþ1
¼ 0. As a result, by con-

straints (6), on the one hand, since xkij ¼ 1) lskj ¼ lski þ wij,

8ði; jÞ 2 L,

lsktk ¼ lskim ¼ lskim�1
þ wim�1im ¼ lski1 þ wi1i2 þ � � � þ wim�1im ¼ lPi

:

On the other hand, since xkij ¼ 0) lskj � lski þ wij,

8ði; jÞ 2 L,
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lsktk ¼ lskjn � lskjn�1
þ wjn�1jn � lskj1 þ wj1j2 þ � � � þ wjn�1jn ¼ lPj

:

It then follows that lPi
� lPj

, which means that the length

of the routing path Pi is less than or equal to the length of

any other possible path Pj to route demand k. It is hence

proved that the routing path Pi is a shortest one. h

To prove that the path uniqueness constraints are included

implicitly in the model (13), they are shown to be satisfied by

the relaxed problem (25) first.

Lemma 3 An optimal solution to (25) contains no flow loops.

Proof Let x�kij; k 2 D; ði; jÞ 2 L be an optimal solution to

(25). Then all constraints (4), (5), and (12) are satisfied by

x�kij; k 2 D; ði; jÞ 2 L. Specifically,

X

h:ðh;iÞ2L
x�khi �

X

j:ði;jÞ2L
x�ij

¼
�1; if i ¼ sk

1; if i ¼ tk

0; otherwise

8
><

>:
; 8k 2 D; 8i 2 N ;

ð27Þ

X

k2D
dkx
�k
ij� cij; 8ði; jÞ 2 L; ð28Þ

and

X

h:ðh;iÞ2L
max
k2Ds

x�khi� 1; i 6¼ s; 8s 2 S; 8i 2 N : ð29Þ

Suppose that there exist kl 2 D and a loop C : ðj1; j2Þ !
� � � ! ðjn�1; jnÞ ! ðjn; jnþ1Þ; ðji; jiþ1Þ 2 L; i ¼ 1; . . .; n

with jnþ1 ¼ j1 such that x�klji jiþ1
¼ 1; i ¼ 1; . . .; n. Clearly,

X

h:ðh;iÞ2C
x�klhi �

X

j:ði;jÞ2C
x�klij ¼ 0; 8i 2 fj1; . . .; jng: ð30Þ

Denote

y�kij ¼
x�kij; if k 6¼ kl or ði; jÞ 62 C
0; otherwise

(
; 8k 2 D; 8ði; jÞ 2 L:

ð31Þ

Then y�kij 2 f0; 1g; 8k 2 D; 8ði; jÞ 2 L and y�klji jiþ1
¼

0; 8ðji; jiþ1Þ 2 C; i ¼ 1; . . .; n. In addition, it holds that by

(27), (30), and (31),

X

h:ðh;iÞ2L
y�khi �

X

j:ði;jÞ2L
y�kij ¼

X

h:ðh;iÞ2L
x�khi �

X

j:ði;jÞ2L
x�kij

¼
�1; if i ¼ sk

1; if i ¼ tk

0; otherwise

8
><

>:
; 8k 2 D; 8i 2 N ;

by (28) and (31),

X

k2D
dky
�k
ij�

X

k2D
dkx
�k
ij� cij; 8ði; jÞ 2 L;

and by (29) and (31),

X

h:ðh;iÞ2L
max
k2Ds

y�khi�
X

h:ðh;iÞ2L
max
k2Ds

x�khi�1; i 6¼ s; 8s 2 S; 8i 2 N :

Hence, y�kij; k 2 D; ði; jÞ 2 L satisfies all constraints (4),

(5), and (12) and is thus a feasible solution to (25).

Furthermore, by (31), since dk [ 0, 8k 2 D,

X

ði;jÞ2L

X

k2D
dky
�k
ij ¼

X

ði;jÞ2LnC_k2D:k 6¼kl
dky
�k
ij þ

X

ði;jÞ2C
dkly

�kl
ij

¼
X

ði;jÞ2LnC_k2D:k 6¼kl
dky
�k
ij

¼
X

ði;jÞ2LnC_k2D:k 6¼kl
dkx
�k
ij

\
X

ði;jÞ2LnC_k2D:k 6¼kl
dkx
�k
ij þ

X

ði;jÞ2C
dklx

�kl
ij

¼
X

ði;jÞ2L

X

k2D
dkx
�k
ij;

which implies that x�kij; k 2 D; ði; jÞ 2 L is not an optimal

solution to (25). This results in contradiction and

completes the proof. h

With Lemma 3, the path uniqueness constraints are proved

to be satisfied by (25) in Lemma 4.

Lemma 4 The path uniqueness constraints are satisfied in

the model (25).

Proof By Lemma 3, in (25), the flow conservation con-

straints (4) at origin nodes are equivalent to
X

h:ðh;iÞ2L
xkhi ¼ 0 and

X

j:ði;jÞ2L
xkij ¼ 1; i ¼ sk; 8k 2 D

ð32Þ

and at destination nodes are equivalent to

X

h:ðh;iÞ2L
xkhi ¼ 1 and

X

j:ði;jÞ2L
xkij ¼ 0; i ¼ tk; 8k 2 D:

ð33Þ

Since xkij 2 f0; 1g; 8k 2 D; 8ði; jÞ 2 L, constraints (32)

restrict that there is one and only one outgoing link with

a nonzero flow from the origin node of demand k. Anal-

ogously, constraints (33) say that there is one and only

one incoming link with a nonzero flow into the destina-

tion node of demand k. In addition, constraints (4) ensure

that, at each intermediate node, the number of incoming
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links with nonzero flows equals that of outgoing links

with nonzero flows. Hence, for each demand k, the

number of routing paths is no more than one. The path

uniqueness constraints are hence satisfied. h

Proposition 5 The uniqueness of the resulting shortest path

for any demand is satisfied by the path length constraints

in (13).

Proof Since (13) is a reduction of (25), the solution to the

routing decision variables xkij; k 2 D; ði; jÞ 2 L of (13) is a

solution to those of (25) as well.

By Lemma 4, there is only one routing path for each

demand. Suppose that for demand k,

Pi ¼ ði1; i2Þ ! ði2; i3Þ ! � � � ! ðim�1; imÞ;
ðip; ipþ1Þ 2 L; p ¼ 1; . . .;m� 1;

with i1 ¼ sk and im ¼ tk, is the assigned routing path and

Pj ¼ ðj1; j2Þ ! ðj2; j3Þ ! � � � ! ðjn�1; jnÞ;
ðjq; jqþ1Þ 2 L; q ¼ 1; . . .; n� 1;

with j1 ¼ sk and jn ¼ tk, is another possible and non-

assigned path from sk to tk.

By the definition of the routing decision variables,

xkipipþ1
¼ 1; p ¼ 1; . . .;m� 1. Hence, by (6), since xkij ¼ 1

) lskj ¼ lski þ wij, 8ði; jÞ 2 L,

lsktk ¼ lskim ¼ lskim�1
þ wim�1im ¼ lski1 þ wi1i2 þ � � � þ wim�1im ¼ lPi

:

ð34Þ

As both Pi and Pj are paths from sk to tk, they finally

merge at a node r with r ¼ i~p ¼ j~q; ~p 2 f2; 3; . . .;
m� 1;mg; ~q 2 f2; 3; . . .; n� 1; ng. Then by the definition

of the routing decision variables, xki ~p�1r
¼ 1 and xkj ~q�1r

¼ 0.

In addition, on the one hand,
P

h:ðh;rÞ2L x
k
hr � 1 and on the

other hand,
P

h:ðh;rÞ2L x
k
hr � xki ~p�1r

þ xkj ~q�1r
¼ 1. Hence,

P
h:ðh;rÞ2L x

k
hr ¼ 1. As a result, by (6),

lsktk ¼ lskjn

¼ lskjn�1
þ wjn�1jn

¼ lskr þ wrj ~qþ1
þ � � � þ wjn�1jn

\lskj ~q�1
þ wj ~q�1r þ wrj ~qþ1

þ � � � þ wjn�1jn

� lskj1 þ wj1j2 þ � � � þ wjn�1jn

¼ lPj
:

ð35Þ

It then follows from (34) and (35) that lPi
\lPj

. This

proves that path Pi is the unique shortest path to route

demand k. h

Corollary 6 The demand-based model (9) is a correct one

for the unique shortest path routing problem.

Proof By Propositions 2 and 5, (13) is a correct model for

the unique shortest path routing problem. Hence, as an

equivalent model to (13), (9) is a correct model for the

problem as well. h

3.2. Correctness of OBM

By the proof of Lemma 4, the flow conservation constraints

(4) are identical to

X

h:ðh;iÞ2L
xkhi ¼ 0;

X

j:ði;jÞ2L
xkij ¼ 1; if i ¼ sk

X

h:ðh;iÞ2L
xkhi ¼ 1;

X

j:ði;jÞ2L
xkij ¼ 0; if i ¼ tk

X

h:ðh;iÞ2L
xkhi ¼

X

j:ði;jÞ2L
xkij; otherwise

9
>>>>>>>=

>>>>>>>;

; 8k 2 D; 8i 2 N :

ð36Þ

Hence, RDBM defined in (25) is equivalent to

Optimize ð8Þ
Subject to ð36Þ; ð5Þ; ð12Þ; ð1Þ

ð37Þ

Lemma 7 In (26), the flow conservation constraints at origin

nodes are equivalent to
X

h:ðh;iÞ2L
f shi ¼ 0 and

X

j:ði;jÞ2L
f sij ¼

X

k2Ds

dk; i ¼ s; 8s 2 S:

Proof On the one hand, by (15), if i ¼ s,
X

h:ðh;iÞ2L
f shi� 0; 8s 2 S:

On the other hand, by (19) and (21), if i ¼ s,

X

h:ðh;iÞ2L
f shi�

X

h:ðh;iÞ2L
yshi

X

k2Ds

dk

 !

¼
X

k2Ds

dk
X

h:ðh;iÞ2L
yshi ¼ 0; 8s 2 S:

Hence,

X

h:ðh;iÞ2L
f shi ¼ 0; i ¼ s; 8s 2 S:

It can then be derived directly from (18) that

X

j:ði;jÞ2L
f sij ¼

X

k2Ds

dk; i ¼ s; 8s 2 S:

h
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By Lemma 7, the flow conservation constraints (18) are

identical to

X

h:ðh;iÞ2L
f shi ¼ 0;

X

j:ði;jÞ2L
f sij ¼ ds; if i ¼ s

X

h:ðh;iÞ2L
f shi �

X

j:ði;jÞ2L
f sij ¼ dk; if i ¼ tk; 8k 2 Ds

X

h:ðh;iÞ2L
f shi �

X

j:ði;jÞ2L
f sij ¼ 0; otherwise

9
>>>>>>>=

>>>>>>>;

;

8s 2 S; 8i 2 N ; ð38Þ

where ds ¼
P

k2Ds
dk. As a result, ROBM defined in (26) is

equivalent to

Optimize ð23Þ
Subject to ð38Þ; ð19Þ; ð20Þ; ð21Þ; ð14Þ; ð15Þ

ð39Þ

In the following, largely based on validating the

equivalence between the two identical models (39) and

(37), it is shown that ROBM (26) and RDBM (25) are

equivalent to each other concerning the feasibility of the

relaxed problem.

Proposition 8 There is a solution to (26) if (25) is feasible.

Proof Let x�kij; k 2 D; ði; jÞ 2 L be a feasible solution to (25),

and so to (37). All constraints (36), (5), and (12) are hence

satisfied by x�kij; k 2 D; ði; jÞ 2 L. Denote

y�sij ¼ max
k2Ds

x�kij; 8s 2 S; 8ði; jÞ 2 L ð40Þ

and

f �sij ¼
X

k2Ds

dkx
�k
ij; 8s 2 S; 8ði; jÞ 2 L: ð41Þ

Apparently, y�sij 2 f0; 1g and f �sij 2 ½0;þ1Þ, 8s 2 S;
8ði; jÞ 2 L.

By (36), for any k 2 D, if i ¼ sk,
P

h:ðh;iÞ2L x
�k
hi ¼ 0 and

P
j:ði;jÞ2L x

�k
ij ¼ 1. Then by (41), for any s 2 S, if i ¼ s,

X

h:ðh;iÞ2L
f �shi ¼

X

h:ðh;iÞ2L

X

k2Ds

dkx
�k
hi ¼

X

k2Ds

dk
X

h:ðh;iÞ2L
x�khi ¼ 0

and
X

j:ði;jÞ2L
f �sij ¼

X

j:ði;jÞ2L

X

k2Ds

dkx
�k
ij ¼

X

k2Ds

dk
X

j:ði;jÞ2L
x�kij ¼

X

k2Ds

dk:

Hence, at origin nodes, constraints (38) in (39) are

satisfied by f �sij; s 2 S; ði; jÞ 2 L.

Also by (36), for any kl 2 D, if i ¼ tkl ,
P

h:ðh;iÞ2L x
�kl
hi �P

j:ði;jÞ2L x
�kl
ij ¼ 1 and

P
h:ðh;iÞ2L x

�k
hi �

P
j:ði;jÞ2L x

�k
ij ¼ 0,

8k 2 Dskl
; k 6¼ kl. Then by (41), for any kl 2 D, if s ¼ skl

and i ¼ tkl ,

X

h:ðh;iÞ2L
f �shi�

X

j:ði;jÞ2L
f �sij¼

X

h:ðh;iÞ2L

X

k2Ds

dkx
�k
hi�

X

j:ði;jÞ2L

X

k2Ds

dkx
�k
ij

¼
X

k2Ds

dk
X

h:ðh;iÞ2L
x�khi

0
@

1
A�

X

k2Ds

dk
X

j:ði;jÞ2L
x�kij

0
@

1
A

¼
X

k2Ds

dk
X

h:ðh;iÞ2L
x�khi�

X

j:ði;jÞ2L
x�kij

0
@

1
A

¼dkl

X

h:ðh;iÞ2L
x�klhi�

X

j:ði;jÞ2L
x�klij

0
@

1
A

þ
X

k2Ds;k 6¼kl
dk

X

h:ðh;iÞ2L
x�khi�

X

j:ði;jÞ2L
x�kij

0
@

1
A¼dkl :

Hence, at destination nodes, constraints (38) in (39) are

satisfied.

Similarly, by (36), for any k 2 D, if i 6¼ sk and i 6¼ tk,P
h:ðh;iÞ2L x

�k
hi �

P
j:ði;jÞ2L x

�k
ij ¼ 0. Then by (41), for any

s 2 D and i 2 N , if i 6¼ s and i 62 Ds,

X

h:ðh;iÞ2L
f �shi�

X

j:ði;jÞ2L
f �sij¼

X

h:ðh;iÞ2L

X

k2Ds

dkx
�k
hi�

X

j:ði;jÞ2L

X

k2Ds

dkx
�k
ij

¼
X

k2Ds

dk
X

h:ðh;iÞ2L
x�khi

0
@

1
A

�
X

k2Ds

dk
X

j:ði;jÞ2L
x�kij

0
@

1
A

¼
X

k2Ds

dk
X

h:ðh;iÞ2L
x�khi�

X

j:ði;jÞ2L
x�kij

0
@

1
A

¼0:

Hence, at other nodes, constraints (38) in (39) are satisfied

as well.

By (40) and (41), it holds that for any s 2 S and

ði; jÞ 2 L,

f �sij ¼
X

k2Ds

dkx
�k
ij�

X

k2Ds

dk max
k2Ds

x�kij ¼ max
k2Ds

x�kij
X

k2Ds

dk

¼ y�sij
X

k2Ds

dk:

Constraints (19) in (39) are then satisfied by

y�sij; f
�s
ij; s 2 S; ði; jÞ 2 L.

By (41) and (5),

X

s2S
f �sij ¼

X

s2S

X

k2Ds

dkx
�k
ij ¼

X

k2D
dkx
�k
ij� cij; 8ði; jÞ 2 L:

Constraints (20) in (39) are thus satisfied by f �sij;

s 2 S; ði; jÞ 2 L.
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By (36), for any k 2 D, if i ¼ sk,
P

h:ðh;iÞ2L x
�k
hi ¼ 0 and

so for any k 2 D and ðh; iÞ 2 L, if i ¼ sk, x
�k
hi ¼ 0. Then

by (40), for any s 2 S, if i ¼ s,

X

h:ðh;iÞ2L
y�shi ¼

X

h:ðh;iÞ2L
max
k2Ds

x�khi ¼
X

h:ðh;iÞ2L
max
k2Ds

0 ¼ 0:

Hence, at origin nodes, constraints (21) in (39) are

satisfied by y�sij; s 2 S; ði; jÞ 2 L.

Also by (36), for any kl 2 D, if i ¼ tkl ,
P

h:ðh;iÞ2L

x�klhi ¼ 1. Then by (40), for any kl 2 D, if s ¼ skl and

i ¼ tkl ,
X

h:ðh;iÞ2L
y�shi ¼

X

h:ðh;iÞ2L
max
k2Ds

x�khi�
X

h:ðh;iÞ2L
x�klhi ¼ 1:

In addition, by (12), for any kl 2 D, if i ¼ tkl ,P
h:ðh;iÞ2Lmaxk2Dskl

x�khi� 1. Then by (40), for any

kl 2 D, if s ¼ skl and i ¼ tkl ,
X

h:ðh;iÞ2L
y�shi ¼

X

h:ðh;iÞ2L
max
k2Ds

x�khi� 1:

Thus, for any k 2 D, if s ¼ sk and i ¼ tk,
X

h:ðh;iÞ2L
y�shi ¼ 1:

Hence, at destination nodes, constraints (21) in (39) are

satisfied.

Similarly, by (12), for any s 2 S and i 2 N , if i 6¼ s,P
h:ðh;iÞ2Lmaxk2Ds

x�khi� 1. Then by (40), for any s 2 S
and i 2 N , if i 6¼ s and i 62 T s,

X

h:ðh;iÞ2L
y�shi ¼

X

h:ðh;iÞ2L
max
k2Ds

x�khi� 1:

Hence, at other nodes, constraints (21) in (39) are satisfied

as well.

Since all constraints (38), (19), (20), and (21) in (39)

are satisfied by y�sij and f �sij; s 2 S; ði; jÞ 2 L, it is a cor-

responding feasible solution to (39) and so to (26), of the

feasible solution to (25), i.e., x�kij; k 2 D; ði; jÞ 2 L. h

Proposition 9 There is a solution to (25) if (26) is feasible.

Proof Let y�sij; f
�s
ij; s 2 S; ði; jÞ 2 L be a feasible solution to

(26), and so to (39). Then all constraints (38), (19), (20),

and (21) are satisfied by y�sij; f
�s
ij; s 2 S; ði; jÞ 2 L. Denote

x�khtk ¼ y�skhtk ; 8k 2 D; 8ðh; tkÞ 2 L:

By constraints (21) at destination nodes,
P

h:ðh;tkÞ2L y
�sk
htk

¼ 1; 8k 2 D. Hence, for any k 2 D, there exists h :

ðh; tkÞ 2 L such that y�skhtk ¼ 1.

For any k 2 D and ði; jÞ 2 L, if ði; jÞ 6¼ ði; tkÞ, x�kij is

assigned as follows:

Initialize x�kij 0; 8k2D; 8ði;jÞ2L;ði; jÞ 6¼ ði;tkÞ
For k2D

0 i tk

Do find h : ðh;iÞ2L; such that y�skhi¼1

x�khi 1

i h

Until i¼ sk

ð42Þ

In (42), at each iteration of the inner loop, on the one

hand, by (38),

X

h:ðh;iÞ2L
f �skhi�

X

j:ðtk ;jÞ2L
f �sktk j þ dk � dk [ 0; 8k 2 D

and by (19),

X

h:ðh;iÞ2L
f �skhi�

X

h:ðh;iÞ2L
y�skhi

X

~k2Dsk

d~k

0
@

1
A

¼
X

~k2Dsk

d~k

X

h:ðh;iÞ2L
y�skhi; 8k 2 D:

Hence,
X

h:ðh;iÞ2L
y�skhi [ 0; 8k 2 D:

On the other hand, by (21),

X

h:ðh;iÞ2L
y�skhi� 1; 8k 2 D:

Then at node i in each iteration of the inner loop,

X

h:ðh;iÞ2L
y�skhi ¼ 1; 8k 2 D:

Therefore, at node i, there exists h with ðh; iÞ 2 L such

that x�khi ¼ y�skhi ¼ 1. Moreover, by (38), for any k 2 D, the

assigning process terminates at node sk.

Clearly, by (42),

x�kij 2 f0; 1g and x�kij� y�skij ; 8k 2 D; 8ði; jÞ 2 L:

Then by (21) at origin nodes, if i ¼ sk,

X

h:ðh;iÞ2L
x�khi�

X

h:ðh;iÞ2L
y�skhi ¼ 0; 8k 2 D:

944 Journal of the Operational Research Society Vol. 68, No. 8



In addition, the assigning process terminates at node sk,

8k 2 D and so if i ¼ sk,

X

j:ði;jÞ2L
x�kij ¼ 1; 8k 2 D:

Hence, at origin nodes, constraints (36) in (37) are

satisfied by x�kij; k 2 D; ði; jÞ 2 L. Similarly, by (21) at

destination nodes, if i ¼ tk,

X

h:ðh;iÞ2L
x�khi ¼

X

h:ðh;iÞ2L
y�skhi ¼ 1; 8k 2 D:

Moreover, by (42), for any k 2 D and ði; jÞ 2 L, if i ¼ tk,

x�kij ¼ 0. Then, if i ¼ tk,

X

j:ði;jÞ2L
x�kij ¼ 0; 8k 2 D:

Hence, at destination nodes, constraints (36) in (37) are

satisfied by x�kij; k 2 D; ði; jÞ 2 L. Also by (42), at node

i in each iteration of the inner loop,

X

h:ðh;iÞ2L
x�khi ¼

X

j:ði;jÞ2L
x�kij ¼ 1; 8k 2 D;

and at any other node ~i 2 N ;~i 6¼ sk;~i 6¼ tk,

X

h:ðh;~iÞ2L
x�kh~i ¼

X

j:ð~i;jÞ2L
x�k~ij ¼ 0; 8k 2 D:

Then if i 6¼ sk and i 6¼ tk,

X

h:ðh;iÞ2L
x�khi �

X

j:ði;jÞ2L
x�kij ¼ 0; 8k 2 D:

Hence, at other nodes, constraints (36) in (37) are satisfied

by x�kij; k 2 D; ði; jÞ 2 L.

By (38) and (20),

X

k2D
dkx
�k
ij ¼

X

s2S

X

k2Ds

dkx
�k
ij�

X

s2S
f �sij� cij; 8ði; jÞ 2 L:

Hence, constraints (5) in (37) are satisfied by

x�kij; k 2 D; ði; jÞ 2 L.

By (42), x�kij� y�skij , 8k 2 D; 8ði; jÞ 2 L. Then it fol-

lows from (21) that if i 6¼ s,
X

h:ðh;iÞ2L
max
k2Ds

x�khi�
X

h:ðh;iÞ2L
max
k2Ds

y�skhi ¼
X

h:ðh;iÞ2L
y�shi� 1;

8s 2 S; 8i 2 N :

Hence, constraints (12) in (37) are satisfied by

x�kij; k 2 D; ði; jÞ 2 L.

Since all constraints (36), (5), and (12) in (37) are

satisfied by x�kij; k 2 D; ði; jÞ 2 L, it is a corresponding

feasible solution to (37) and so to (25), of the feasible

solution to (26), i.e., y�sij; f
�s
ij; s 2 S; ði; jÞ 2 L. h

Theorem 10 The two models (26) and (25) are equivalent to

each other concerning the feasibility of the relaxed

problem.

Proof The statement follows directly from Propositions 8

and 9. h

Based on the proof of the equivalence between the two

models (26) and (25) for the relaxed problem, the equivalence

between (24) and (9), concerning the feasibility of the unique

shortest path routing problem, is to be verified.

Proposition 11 For each solution satisfying the path length

constraints in (9), there is a corresponding solution sat-

isfying the path length constraints in (24).

Proof Let x�kij; k 2 D; ði; jÞ 2 L, w�ij; ði; jÞ 2 L, and l�si ; s 2
S; i 2 N be a feasible solution to (9) and so to (13) by

Proposition 1. Since (25) is a relaxation of (13), x�kij; k 2
D; ði; jÞ 2 L is a feasible solution to (25) and satisfies all

the corresponding constraints. Denote

y�sij ¼ max
k2Ds

x�kij; 8s 2 S; 8ði; jÞ 2 L:

Clearly, y�sij 2 f0; 1g; 8s 2 S; 8ði; jÞ 2 L. Also for any s 2
S and ði; jÞ 2 L, there are three cases:

• Case 1: x�kij ¼ 0 and
P

h:ðh;jÞ2L x
�k
hj ¼ 0, 8k 2 Ds;

• Case 2: x�kij ¼ 0, 8k 2 Ds and 9kl 2 Ds;
P

h:ðh;jÞ2L

x�klhj ¼ 1;

• Case 3: 9kl 2 Ds; x
�kl
ij ¼ 1.

For Case 1, on the one hand, for any k 2 Ds, (7) can be

simplified as

lskj � lski þ wij and lskj � lski þ wij �M:

On the other hand, since y�sij ¼ maxk2Ds
x�kij ¼ 0 andP

h:ðh;jÞ2L y
�s
hj ¼ 0, (22) can be simplified as

lsj � lsi þ wij and lsj � lsi þ wij �M:

Hence, the simplified constraints of (22) are identical to

those of (7) in this case.
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For Case 2, on the one hand, (7) can be simplified as

l
skl
j � l

skl
i þ wij � e and l

skl
j � l

skl
i þ wij �M

and for any k 2 Ds such that
P

h:ðh;jÞ2L x
�k
hj ¼ 0,

lskj � lski þ wij and lskj � lski þ wij �M:

On the other hand, since y�sij ¼ maxk2Ds
x�kij ¼ 0 butP

h:ðh;jÞ2L y
�s
hj ¼ 1, (22) can be simplified as

lsj � lsi þ wij � e and lsj � lsi þ wij �M:

Hence, the simplified constraints of (22) are identical to

those of (7) in this case.

For Case 3, on the one hand, by the sub-path optimality

constraints, for any k 2 Ds, if x�kij ¼ 0,
P

h:ðh;jÞ2L x
�k
hj ¼ 0.

Then (7) can be simplified as

l
skl
j � l

skl
i þ wij and l

skl
j � l

skl
i þ wij

and for any k 2 Ds such that x�kij ¼ 0,

lskj � lski þ wij and lskj � lski þ wij �M:

On the other hand, since y�sij ¼ maxk2Ds
x�kij ¼ 1 andP

h:ðh;jÞ2L y
�s
hj ¼ 1, (22) can be simplified as

lsj � lsi þ wij and lsj � lsi þ wij:

Hence, the simplified constraints of (22) are identical to

those of (7) as well.

Since in all the three cases, y�sij; s 2 S; ði; jÞ 2 L results

in the same path length constraints for OBM defined in

(24) as those resulting from x�kij; k 2 D; ði; jÞ 2 L for DBM

given in (9), there is a corresponding feasible solution

satisfying the path length constraints (22) in (24), provided

that there is a feasible solution satisfying the path length

constraints (7) in (9). h

Proposition 12 For each solution satisfying the path length

constraints in (24), there is a corresponding solution

satisfying the path length constraints in (9).

Proof Let y�sij; f
�s
ij; s 2 S; ði; jÞ 2 L, w�ij; ði; jÞ 2 L, and

l�si ; s 2 S; i 2 N be a feasible solution to (24). Then since

(26) is a relaxation of (24), y�sij; f
�s
ij; s 2 S; ði; jÞ 2 L is a

feasible solution to (26) as well and so satisfies all the

corresponding constraints. By the assigning process (42),

let x�kij; k 2 D; ði; jÞ 2 L be the corresponding solution to

(25).

for any s 2 S and ði; jÞ 2 L, there are three cases:

• Case 1: y�sij ¼ 0 and
P

h:ðh;jÞ2L y
�s
hj ¼ 0;

• Case 2: y�sij ¼ 0 and
P

h:ðh;jÞ2L y
�s
hj ¼ 1;

• Case 3: y�sij ¼ 1.

For Case 1, (22) can be simplified as

lsj � lsi þ wij and lsj � lsi þ wij �M:

By (42), for any k 2 Ds; x
�k
ij ¼ 0 and

P
h:ðh;jÞ2L x

�k
hj ¼ 0.

Then for any k 2 Ds, (7) can be simplified as

lskj � lski þ wij and lskj � lski þ wij �M:

Hence, the simplified constraints of (7) are identical to

those of (22) in this case.

For Case 2, (22) can be simplified as

lsj � lsi þ wij � e and lsj � lsi þ wij �M:

By (42), for any k 2 Ds; x
�k
ij ¼ 0 and 9kl 2 Ds;

P
h:ðh;jÞ2L x

�kl
hj ¼ 1. Then (7) can be simplified as

l
skl
j � l

skl
i þ wij � e and l

skl
j � l

skl
i þ wij �M

and for any k 2 Ds such that
P

h:ðh;jÞ2L x
�k
hj ¼ 0,

lskj � lski þ wij and lskj � lski þ wij �M:

Hence, the simplified constraints of (7) are identical to

those of (22) in this case.

For Case 3, (22) can be simplified as

lsj � lsi þ wij and lsj � lsi þ wij:

By (42), there exists kl 2 Ds such that x�klij ¼ 1 and
P

h:ðh;jÞ2L x
�kl
hj ¼ 1. In addition, by the sub-path optimality

constraints, for any k 2 Ds, if x�kij ¼ 0,
P

h:ðh;jÞ2L x
�k
hj ¼ 0.

Then (7) can be simplified as

l
skl
j � l

skl
i þ wij and l

skl
j � l

skl
i þ wij

and for any k 2 Ds such that x�kij ¼ 0,

lskj � lski þ wij and lskj � lski þ wij �M:

Hence, the simplified constraints of (7) are identical to

those of (22) as well.

Since in all the three cases, x�kij; k 2 D; ði; jÞ 2 L results

in the same path length constraints for DBM defined in (9)

as those resulting from y�sij; s 2 S; ði; jÞ 2 L for OBM

given in (24), there is a corresponding feasible solution
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satisfying the path length constraints (7) in (9), provided

that there is a feasible solution satisfying the path length

constraints (22) in (24). h

Corollary 13 Concerning the feasibility of the unique

shortest path routing problem, the path length constraints

in (24) are equivalent to those in (9).

Theorem 14 The two models (24) and (9) are equivalent to

each other concerning the feasibility of the unique

shortest path routing problem.

Proof By Proposition 1, (9) is equivalent to (13).

In addition, as discussed at the beginning of Sec-

tion 3, (24) is a reduction of (26) and (13) is a

reduction of (25). Besides the additional link weight

and path length variables, the difference between (24)

and (26) exists in the path length constraints (22) and

that between (13) and (25) exists in the counterparts

(7).

By Theorem 10, (26) and (25) are equivalent con-

cerning the feasibility of the relaxed problem. By

Corollary 13, the path length constraints in (24) are

equivalent to the counterparts in (9) and so those in (13).

Therefore, (24) is equivalent to (13) and so to (9), con-

cerning the feasibility of the unique shortest path routing

problem. h

Theorem 15 The two models (24) and (9) are equivalent to

each other concerning the optimality of the unique

shortest path routing problem.

Proof The statement follows directly from Theorem 14 by

constructing the corresponding optimal solutions between

(24) and (9). h

Corollary 16 The origin-based model defined in (24) is a

correct one for the unique shortest path routing problem.

4. Model comparison

Concerning the unique shortest path routing problem, it is

shown that the routing performance resulting from the

proposed exact formulations is considerably better than that

from using the default methods, by testing on 30 randomly

generated data instances with combinations of different

parameter scenarios, given in Table 1. As shown in Table 2,

the resulting average maximum utilization is 30.94% of that

from the hop-count method and 45:54% of that from the inv-

cap method. This hence indicates the significant gain obtained

by formulating the problem exactly and solving it optimally.

Between the two formulations, compared with DBM (9),

OBM (24) has advantages on both constraint structure for

applying constraint generation algorithms and model size,

which may be taken into consideration in developing algo-

rithms to solve the problem.

Table 1 Details of data sets tested

ID jN j jLj jDj ID jN j jLj jDj ID jN j jLj jDj

1 10 22 3 11 10 48 20 21 30 236 29
2 10 26 5 12 10 44 50 22 50 128 3
3 10 24 9 13 30 80 3 23 50 132 25
4 10 24 10 14 30 78 15 24 50 130 49
5 10 26 20 15 30 82 29 25 50 238 3
6 10 24 50 16 30 136 3 26 50 238 25
7 10 46 3 17 30 144 15 27 50 238 49
8 10 46 5 18 30 142 29 28 50 644 3
9 10 46 9 19 30 236 3 29 50 648 25
10 10 46 10 20 30 234 15 30 50 642 49

Table 2 Maximum utilization of three link weight setting methods on 30 data instances

ID Hop-Count Inv-Cap DBM/OBM ID Hop-Count Inv-Cap DBM/OBM ID Hop-Count Inv-Cap DBM/OBM

1 0.9388 0.9388 0.7001 11 3.5157 1.4149 0.8910 21 6.1026 3.2431 0.9793
2 1.0699 1.0699 0.6999 12 5.0635 3.1937 0.9415 22 0.6998 0.6998 0.6998
3 2.9715 2.8623 0.6999 13 3.1295 1.9148 0.7000 23 2.3427 2.3427 0.7000
4 1.0082 1.2481 0.7001 14 3.1675 3.2731 0.9485 24 1.0511 0.7980 0.9847
5 3.1982 2.0476 0.9612 15 2.1683 1.3442 0.7171 25 1.5016 0.9174 0.9870
6 1.3049 1.0275 0.7613 16 10.0219 7.1661 0.7000 26 2.9699 2.9282 0.7363
7 1.6335 1.0111 0.7000 17 2.3227 1.3396 0.7150 27 2.4900 2.1997 0.9741
8 4.4814 1.2053 0.7000 18 2.0908 1.3664 0.9816 28 1.1029 0.4797 0.7261
9 2.3639 2.3668 0.9454 19 0.7944 0.5500 0.8684 29 2.3573 1.8183 0.9986
10 1.1693 1.1187 0.7000 20 3.9783 1.2725 0.9699 30 3.0459 1.2322 0.9843
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4.1. Constraint structure

The constraint structures of the two models are illustrated in

Figures 3 and 4, respectively.

In Figure 3, the first row corresponds to the link capacity

constraints (5), the next four rows to the flow conservation

constraints (4), and the last four rows to the path length

constraints (7). Accordingly, columns represent variables.

As can be noted, among the three sets of constraints, the

flow conservation constraints and the link capacity constraints

contain only the routing decision variables, whereas the path

length constraints couple the routing decision variables with

the link weight variables and the path length variables. Hence,

constraint generation algorithms such as Benders decomposi-

tion method (Benders, 1962) may be adopted to solve the

Figure 3 Constraint structure of DBM.

Figure 4 Constraint structure of OBM.
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problem. The problem is then decomposed into one integer-

programming master problem and one linear-programming

subproblem. The master problem deals with the flow conser-

vation constraints and the link capacity constraints, and so

contains the routing decision variables only. Accordingly, the

subproblem copes with the path length constraints.

Analogously, in Figure 4, the first four rows correspond to

the path uniqueness constraints (21), the next four rows to the

flow bound constraints (19), the third four rows to the flow

conservation constraints (18), the next row to the link capacity

constraints (20), and the last four rows to the path length

constraints (22). Columns represent variables.

As can be observed, although DBM has a simpler constraint

structure, OBM has more flexibility to apply decomposition

algorithms to solve the problem.

As shown in Figure 4, with OBM, the problem can be globally

decomposed into one master problem and two subproblems,

instead of one master problem and one subproblem as with

DBM. The master problem contains only the routing decision

variables and the path uniqueness constraints. The first

subproblem deals with the auxiliary flow variables and the

second with the link weight and the path length variables. In

addition, the master problem can be further decomposed, with

one independent subproblem corresponding to each origin node.

4.2. Model size

Compared with DBM, OBM defines explicitly the auxiliary

flow variables and the flow bound constraints accordingly.

However, in general, jSj � jDj and the size of the latter is

significantly smaller than that of the former. The model sizes

of the two formulations are shown in Table 3, where

#Variables represents the number of variables and #Con-

straints denotes the number of constraints.

More concretely, the model sizes of both the original and

the master problems of the two formulations on a randomly

generated data instance with jN j ¼ 50, jLj ¼ 642, jDj ¼
1000, and jSj ¼ 50 are provided in Table 4.

As can be noted from Table 4 that, with OBM, the number

of variables of the original problem decreases from over

600000 to 64200 and that of constraints drops from over

1000000 to less than 38000. In addition, with OBM, the

numbers of both variables and constraints of the master

problem reduce by 20 times.

As a conclusion, compared with DBM, OBM has a smaller

model size and a more flexible constraint structure for

decomposition algorithms such as the Benders decomposition

method to solve the problem.

5. Conclusion

With the aim of an exact solution approach to the unique

shortest path routing problem on average data instances arising

from real-world applications, two mathematical formulations

with a polynomial number of constraints are developed

explicitly. A demand-based formulation is first introduced,

based on the study of the relationship between the length of a

shortest path and the weights of links that the path traverses.

The problem is further formulated as an origin-based model by

analyzing solution properties of the problem. The two

formulations are then mathematically proved correct and

equivalent to each other concerning both the feasibility and the

optimality of the problem. Based on the study of the constraint

structures and model sizes of the two formulations, the origin-

based formulation is identified to be a more appropriate one

for decomposition algorithms such as the Benders decompo-

sition method to solve the problem.

The two formulations may be generalized to other network

flow and network routing problems such as transportation and

energy supply. Future work may exist in looking into further

improvements concerning both problem formulation, including

strength of formulation, and solution algorithm on the efficiency

of the solution approach proposed. In particular, the focus may

be on possible enhancements from three perspectives: the

closeness between the initial solution and the final solution to the

master problem, the strength of cuts generated at each iteration,

and the efficiency of an algorithm to solve the integer-

programming master problem. For instance, redundant con-

straints may be generated to tighten the feasible region of the

initial master problem, strategies such as the active set method

may be applied to strengthen the cuts generated from the

subproblems, and schemes such as the Lagrangian relaxation

method may be embedded into the solution algorithm to improve

the efficiency of solving the master problem at each iteration.

Table 3 Model sizes of the two formulations

Model #Variables #Constraints

DBM jDjjLj þ jSjjN j þ jLj jDjjN j þ 2jDjjLj þ jLj
OBM 2jSjjLj þ jSjjN j þ jLj 2jSjjN j þ 3jSjjLj þ jLj

Table 4 Model sizes of the two formulations on a reasonably large data instance

Original Problem Master Problem

#Variables #Constraints #Variables #Constraints

DBM 645142 1334642 642000 50642
OBM 64200 37742 32100 2500
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Pióro M and Medhi D (2004). Routing, Flow, and Capacity Design in

Communication and Computer Networks. Morgan Kaufmann

Publishers Inc.: San Francisco, CA.

Ramakrishnan KG and Rodrigues MA (2001). Optimal routing in

shortest-path data networks. Bell Labs Technical Journal 6(1):

117–138.

Ramalingam G and Reps T (1996). An incremental algorithm for a

generalization of the shortest-path problem. Journal of Algorithms

21(2): 267–305.

Skutella M (2002). Approximating the single source unsplittable min-

cost flow problem. Mathematical Programming 91(3): 493–514.

Srivastava S, Agrawal G, Pioro M and Medhi D (2005). Determining

link weight system under various objectives for OSPF networks

using a Lagrangian relaxation-based approach. IEEE Transactions

on Network and Service Management 2(1): 9–18.

Tanenbaum AS and Wetherall D (2011). Computer Networks. Pearson

Prentice: Boston, MA.

Thomas TM (2003). OSPF Network Design Solutions. Cisco Press:

Indianapolis, IN.

Wang H, Xie H, Qiu L, Yang YR, Zhang Y and Greenberg A (2006).

COPE: Traffic engineering in dynamic networks. SIGCOMM

Computer Communication Review 36(4): 99–110.

Wang Y, Wang Z and Zhang L (2001). Internet traffic engineering

without full mesh overlaying. In: INFOCOM 2001. Twentieth

Annual Joint Conference of the IEEE Computer and Communica-

tions Societies. Proceedings. IEEE, Vol. 1, pp. 565–571.

Xu S and Zhang J (1995). An inverse problem of the weighted shortest

path problem. Japan Journal of Industrial and Applied Mathemat-

ics 12(1): 47–59.

Zhan EB and Noon CE (1998). Shortest path algorithms: An evaluation

using real road networks. Transportation Science 32(1): 65–73.

Zhang C (2006). Comparison on objective functions of the unique

shortest path routing problem. In: Proceedings of the Eighth

INFORMS Telecommunications Conference, Dallas, Texas, March

30 April 2.
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