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Revenue management and dynamic pricing are concepts that have immense possibilities for application in the
energy sector. Both can be considered as demand-side management tools that can facilitate the offering of
different prices at different demand levels. This paper studies literature on various topics related to the dynamic
pricing of electricity and lists future research avenues in pricing policies, consumers’ willingness to pay and
market segmentation in this field. Demand and price forecasting play an important role in determining prices and
scheduling load in dynamic pricing environments. This allows different forms of dynamic pricing policies to
different markets and customers depending on customers’ willingness to pay. Consumers’ willingness to pay for
electricity services is also necessary in setting price limits depending on the demand and demand response curve.
Market segmentation can enhance the effects of such pricing schemes. Appropriate scheduling of electrical load
enhances the consumer response to dynamic tariffs.
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1. Introduction

Dynamic pricing is one of the emerging areas of research in

the retail electricity industry. It is a demand-side management

technique that can reduce peak load by charging different

prices at different times according to demand. According to

the (CIA World Factbook) Cia.gov (2016), in 2012, the

installed capacity for power generation in the USA was 1.063

million MW, whereas that of a rapidly growing economy like

India was 254,700 MW. If we assume 5% of the installed

capacity catering to only peak demand, then 53,150 MW in the

USA and 12,735 MW in India are the peak load capacities. If

we consider (U.S. Energy Information Administration) Eia.-

gov (2016) data for capital costs of a natural gas-driven power

plant, we find that huge investments of about USD 54.37

billion in the USA and USD 13.03 billion in India are trapped

in installing such peak load capacities. Peaks in load profiles

are the result of unregulated demand, and huge capacity

addition is required to meet peak load. This peak load capacity

stays idle during off-peak periods resulting in a loss of

opportunity cost and system efficiency. Dynamic pricing can

shift the demand from peak to off-peak and help avoid large

capital investments.

Retail electricity markets generally offer flat pricing or

block pricing. Prices remain unchanged irrespective of demand

in the first case, while in the second, the per unit rate of

electricity either increases or decreases with increasing slabs

of electricity consumption. However, the costs of generation to

meet peak demands are high as compared to those for off-peak

demand, since most peak time generating units have higher

operating costs than base load units. Thus, the above-

mentioned electricity prices do not reflect the true costs of

generation and distribution. Although flat rates offer uncer-

tainty-free electricity bills to customers, these lead to costly

capacity additions. In addition to the reduction in peak

demand, dynamic prices also provide each consumer with an

opportunity to reduce his/her electricity bill at a constant

consumption level, just by changing the consumption pattern

by shifting the load.

Revenue management and dynamic pricing are economi-

cally and technically effective operational research tools

successfully implemented in various industries like travel

and leisure, telecommunications and online retail. However,

real-time dynamic prices are not widely used in the retail

electricity sector. A literature review on the multiple aspects of

dynamic pricing of electricity has not been done earlier. In this

paper, we try to address that gap with a survey of 109

published works that deal with multiple aspects of dynamic

pricing. While the review is extensive, it is not exhaustive.

Decisions like how to optimize prices, consumption sched-

ules, number of market segments, use of energy storage and
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generation schedules open up several research opportunities in

the field of operational research.

We have addressed the following question in the survey:

What are the different aspects related to the dynamic pricing of

electricity?

From this survey, we can draw the following inferences:

1. Although academicians and researchers see the study of

dynamic pricing of electricity as useful and interesting,

regulators, suppliers and customers have stayed away from

large-scale deployment of this concept. There are doubts

regarding the potential benefits over the costs of imple-

mentation and possible excessive high bill values to

customers.

2. Dynamic pricing can be useful to customers in terms of

monetary savings. Suppliers can find it useful because of

reduction in peak capacity investments, better planned

operations and cost-reflecting prices. Dynamic pricing can

help producers postpone investment decisions by shifting

peak loads from peak to non-peak hours.

3. The feasibility of the application of dynamic prices

depends on:

(a) cheap but efficient technology,

(b) well-educated and supportive customers and regula-

tors, and

(c) well-designed pricing schemes with proper identifi-

cation of market segments.

The technological issues can be addressed with the present

state of technological developments. However, educating

the markets on the benefits of the concept is also

necessary. Further, the identification of market segments

along with suitable pricing schemes and supporting

programs is necessary for successful implementation.

4. Market acceptance of dynamic pricing can only be

achieved if its benefits to each stakeholder can be proved.

This requires more and more well-planned pilot projects

and a study of different aspects involved in this field.

5. Pilot implementations show that dynamic pricing can elicit

customer response and help in the reduction of bill value.

Renewable energy usage shows a further reduction in the

bill value by around 35%. However, the elasticity of

demand for electricity is low. Several demographic and

environmental factors can improve demand response when

coupled with appropriately designed dynamic prices.

Enabling technology is useful in implementing dynamic

prices and is found to be helpful in enhancing demand

response.

6. Consumption scheduling models are required with

enabling technologies to further enhance demand

response, and several such models are proposed in many

studies. Electricity markets can be segmented based on

demographic and behavioral factors as suggested by some

researchers, but these concepts have not been tested

practically. Customers’ willingness to pay for electricity

can be useful information while designing pricing policies.

Research shows that customers can pay 1.5 times the

market price for better electricity services.

This paper is organized as follows. A review of studies on

the applications and analysis of dynamic pricing in electricity

is followed by discussion on various issues relating to dynamic

prices in electricity. These include electricity pricing policies,

retail and wholesale market pricing, forecasting of price and

demand, elasticity of demand, customers’ willingness to pay,

the effect of enabling technologies, electricity market seg-

mentation and consumption scheduling. Finally, the conclu-

sion is followed by a listing of future avenues of research in

this field. A list of references used in this paper is provided at

the end. Table 1 and Figure 1 provide a snapshot of the

references used in this paper. In our survey, a majority of the

literature is from the USA. Our review also includes literature

from the UK, China and India, as well as other countries in

Asia and Europe.

2. Applications and analysis of dynamic pricing
in electricity

Analyses of practical electricity data and pilot projects on

dynamic pricing show that price and income elasticity of

demand for electricity are low, but several lifestyle and

behavioral factors can significantly enhance the demand

response. Some researchers find dynamic pricing to be quite

effective in stimulating a high level of demand response where

they observe about 30% peak load reduction. Customers are

more likely to reduce rather than reschedule consumption. The

best responses are received during hot climates and from high

consumption customers. Enabling technology is found to be

very helpful in implementing dynamic pricing. Pricing schemes

vary from market to market in order to stimulate the best

response, and often supporting programs need to be imple-

mented to eliminate customers’ fear of excessive expense.

Mak and Chapman (1993) survey 14 utilities in the USA

during 1980–1990 s. They note that the price designs are one-

part and two-part with day-ahead hourly prices. Customers

respond well to high prices and achieve over 30% reduction in

peak hour consumption. They find that customer satisfaction

depends on bill savings, control over costs, reliability in price

notifications, notice time, greater price certainty and service

by the company. Customers get dissatisfied with inadequate

notice and equipment failure. Customers who wish to continue

with real-time pricing prefer better status reports and price

updates, access to usage data and the availability of longer

contract periods.

Bose and Shukla (1999) examine the econometric relation-

ship between electricity consumption and other variables at a

national level in India with data covering more than 9 years.

They find that electricity consumption in commercial and

large industrial sectors is income elastic, while in the
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residential, agricultural, and small and medium industries, it is

income inelastic. Tiwari (2000) studies household survey data

from India and confirms that short-run income and price

elasticity of demand are low and the upper-middle class

provides maximum response price signals. Filippini and

Pachauri (2004) develop three electricity demand functions,

one for each season, from real data of 30,000 households in

India. Results show that electricity demand is price and

income inelastic but varies with household, demographic and

geographical variables.

Charles River Associates (2005) reflect on case studies from

China, Thailand, Tunisia, Turkey, Uruguay and Vietnam that

relate to the implementation of dynamic price schemes (mostly

TOU) in these countries. The paper concludes that: (1) Rates

should benefit both—the utility and the consumers. (2)

Shorter-duration peak periods enable higher customer accep-

tance of the rate. (3) A significant peak-to-off-peak ratio (3:1

or higher) is necessary for sufficient load reduction and bill

savings. (4) Monitoring the impact of rates and modifying

accordingly enhances customer satisfaction and cost-effective-

ness. Faruqui et al (2009) study various experimental findings

in the USA and note that sampling should consider an estimate

of net benefit of implementation, cost of experimentation,

good probability of making the right decision, and internal and

external validity of collected data. They propose the gold

standard of experimental design which includes control groups

and treatment group/groups and pre- and post-data. They

propose simple, revenue neutral and cost-reflecting rate

design, short peak period, strong price signal and opportunity

for significant bill saving.

Allcott (2009) studies a real-time pricing pilot in the USA

that indicates that households emphasize on energy conserva-

tion rather than substitution. Welfare gains over the costs of

installing metering infrastructure seem likely but not certain.

Borenstein (2007) shows significant transfers in switching

from a flat rate to real-time pricing from customer-level billing

data for 1142 commercial and industrial consumers in

Northern California. Most of the consumers observe from

4% reduction to 8% increase in the bill amount. Implemen-

tation of real-time pricing seems difficult if a supporting

program to compensate the worse-off cases is not employed.

Letzler (2007) performs an econometric analysis of data from

California Statewide Pricing Pilot that reveals that customer

response to prices varies widely among different customers.

Hot days and customers who heavily use air conditioners

provide the greatest response.

Faruqui et al (2009) analyze five dynamic pricing programs

(3 of these are pilot and 2 are full-scale deployments) in the

Figure 1 Distribution of surveyed references in the different sections of this paper.

Table 1 Distribution of the referenced literature based on
country

Country No. of papers Country No. of papers

Australia 4 Japan 1
Belgium 1 Netherlands 2
Brazil 2 Nigeria 1
Canada 2 Norway 2
China 9 Portugal 2
Denmark 3 Spain 2
France 1 Switzerland 1
Germany 3 Thailand 1
Greece 2 Tunisia 1
Hong Kong 1 Turkey 3
Hungary 2 UK 10
India 7 Uruguay 1
Ireland 1 USA 49
Italy 1 Vietnam 1
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USA and show that customers respond positively to price

signals regardless of utility or region. Use of enabling

technologies provides greater chances of favorable demand

price response. There is no universally best pricing scheme ap-

plicable to all conditions. Abreu et al (2010) observe 15

households in Portugal for 270 days in an interdisciplinary

study using electronic meters. They recognize the need for

knowledge about customer characteristics and behavior.

Although the sample size is small, the authors find potential

for improvement of energy efficiency from large consumer

appliances. Borenstein (2013) uses stratified random samples

of residential consumers of two largest utilities in California to

study the likely impact of his proposed approach of opt-in

dynamic pricing. He shows that most customers will benefit

from critical peak pricing and real-time pricing and low-

income households will not be hurt by such tariffs. Zhou and

Teng (2013) find low price and income elasticity of demand

for urban residential demand in China. Lifestyle and demo-

graphic variables play a significant role in explaining

electricity demand.

Faruqui and Sergici (2013) observe a large variation of

demand response in data from 163 pricing treatments in 34

projects across 7 countries in an international database

‘Arcturus.’ The demand response depends on the ratio of the

peak and off-peak prices. The response curves are nonlinear.

Consistent results show that dynamic pricing can modify load

profiles. Faruqui et al (2014) show that customers’ response to

dynamic prices increases with enabling technology. Price

responsiveness is higher in hotter climates. Residential

customers respond better to dynamic prices than commercial

and small industrial customers. ‘Hardship Low-Income Cus-

tomers’ respond less than others mainly because their

consumption is low and indispensible, leaving them with no

opportunity to reduce their consumption any further. Pagani

and Aiello (2015) develop an experimental system to realis-

tically stimulate dynamic prices and the services of a smart

grid using data from wholesale markets and renewable energy

setups in Netherlands. Results show average monetary savings

of 35 and 20% while using dynamic prices with renewables

and without renewables, respectively. The energy savings in

both the cases are 10%.

3. Electricity pricing policies

Joskow and Wolfran (2012) state the contributions of Fred

Kahn, an academician and a regulator, in the 1970s, toward the

promotion of time-varying cost-based pricing policies for

regulated services like electricity. They describe that oppor-

tunities for implementation of dynamic pricing opened up with

the evolution of competitive wholesale markets, development

of cheaper two-way communication technologies and promo-

tion of the concept by the policymakers themselves. They refer

to the inferences of several dynamic pricing experiments and

note that consumers respond well to TOU (time of use) and

critical peak pricing. They suggest that the fear of large

redistribution of expenditure is the largest impediment to the

implementation of dynamic pricing policies.

Electricity pricing policies can be static or dynamic. Static

prices do not change with a change in demand, whereas

dynamic prices change with changing demand situations.

Faruqui and Palmer (2012), Simshauser and Downer (2014)

and Quillinan (2011) describe various pricing policies as

mentioned below.

a. Flat tariffs: The price remains static even though power

demand changes. Consumers under such a scheme do not

face the changing costs of power supply with a change in

aggregate demand. Thus, consumers have no financial

incentive to reschedule their energy usage. They do not

face any risk of high-value electricity bills for any

unavoidable or unplanned electricity consumption. Hence,

this scheme is often used as a welfare pricing scheme.

b. Block Rate tariffs: This scheme differentiates between

customers based on the quantity of electricity consump-

tion. The scheme consists of multiple tiers characterized

by the amount of consumption. Inclining rate schemes

increase the per-unit rate with increasing consumption and

declining schemes do the opposite.

c. Seasonal tariffs: These schemes observe different rates in

different seasons to match the varying demand levels

between seasons. Energy is charged at a higher rate during

high-demand seasons and the price lowers during low-

demand seasons.

d. Time-of-use (TOU) tariff: These are pre-declared tariffs

varying during the different times of the day, that is, high

during peak hours and low during off-peak hours. Such

schemes can stay effective for short or long terms. This is

also known as time-of-day (TOD) tariff.

e. Superpeak TOU: It is similar to TOU, but the peak window

is shorter in duration (about four hours) so as to give a

stronger price signal.

f. Critical peak pricing (CPP): This is a dynamic pricing

scheme in which prices are high during a few peak hours

of the day and discounted during the rest of the day. The

peak price remains same for all days. It gives a very strong

price signal and enhances the reduction of excessive peak

load.

g. Variable peak pricing (VPP): This is quite similar to CPP

with the only difference that the peak prices vary from day

to day. The consumers are informed about such peak

prices beforehand.

h. Real-time pricing (RTP): This is the purest form of

dynamic pricing and the scheme with the maximum

uncertainty or risk for the consumers. Here the prices

change at regular intervals of 1 h or a few minutes. The

change in the price in such small intervals increases the

efficiency of the pricing scheme in reflecting the actual

costs of supply, but such schemes require advanced

technology to communicate and manage these frequent
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changes. Retail electricity markets may find it difficult to

practice this scheme due to the high rate of data collection

and transfer.

i. Peak time rebates (PTR): These rebates are just the

opposite of CPP schemes. Rebates are provided for

consuming below a certain predetermined level during

peak hours and can be redeemed at a later time.

Figure 2 shows the relative risk–reward situations between

the schemes described above from the consumers’ point of

view. There are two connected bar charts in Figure 2: The top

one shows reward and the bottom one (inverted) shows risk.

Figure 2 is inspired from Faruqui (2012).

Faruqui and Lessem (2012) analyze some policies based on

factors like economic efficiency, equity, bill stability and

revenue stability and prepare a scoring matrix to compare

these policies. This is represented in Table 2.

Their assessment identifies RTP as the best policy with

respect to all factors except for ‘bill stability.’ In order to

minimize bill risk for customers in RTP, they propose policies

like consumer baseline, price ceilings and floors, participation

threshold, bill protection, educating consumers and the use of

enabling devices. Borenstein (2009) also emphasizes RTP with

price protection plans as the best policy for medium and large

consumers. Dynamic pricing policies are preferred over flat

pricing as these are more effective in providing economically

efficient incentives for customers.

Kok et al (2014) note that electric utilities will prefer

investment in renewable energy if there is flat pricing and not

peak pricing. They verify the same with real data from Texas.

However, peak pricing leads to a higher investment in solar

energy in the case of diesel generator users. Costello (2004)

notes that dynamic pricing policies are mostly voluntary and

inefficiently designed because regulators are concerned over

their fairness and the benefit over cost of implementation.

They also doubt some customers’ price responsiveness, which

can lead to high average prices. Utilities are concerned over

possibilities of customer complaints leading to revenue loss,

non-recovery of the cost of implementation and possibilities

that all gains from such implementation may be passed on to

the consumer.

4. Pricing in retail electricity

Dynamic pricing can offer better results than flat pricing.

Desai and Dutta (2013) prove that dynamic pricing is

economically more efficient than traditional flat rate prices

since it absorbs consumer surplus, thereby enhancing total

revenue at existing costs, and reduces peak loads. Celebi and

Fuller (2012) demonstrate that total surplus is more for TOU

pricing than flat pricing under different market structures.

Borenstein and Holland (2003) show that flat rate prices are

economically inefficient and suggest that in order to improve

economic efficiency, the share of RTP customers needs to be

increased. However, they note that having more consumers

within RTP schemes does not necessarily reduce investments

for increasing capacity. Faruqui (2010) relates to a study

which states that real-time pricing can induce peak demand

reduction of 10–14%, resource cost reduction of 3–6%,

market-based customer cost reduction of 2–5% and a social

welfare increase by $141–$403 million in a year. Hledik

(2009) reports a smart grid simulation of US power systems

that estimates 5% reduction in annual CO2 emission and

11.5% peak reduction by 2030. Holland and Mansur (2008),

however, argue that RTP reduces load variance but may

actually increase emission. The effect on emission depends on

the type of power generating units in use.

Harris (2006) describes a way of deriving the price of

electricity by indexing it against a weighted average of present

and past wholesale rates. David and Li (1993) state that both

concurrent prices and prices at other times affect the demand

response to dynamic tariffs, thus demonstrating the cross-

elasticity of demand. They develop theoretical frameworks

that address the price formation problem with the cross-

elasticity of demand under certain conditions. Skantze et al

(2000) show that delay of information flow between different

markets causes price variations. Prices are correlated only if

the markets are connected by transmission lines which are not

congested.

Stephenson et al (2001) mention that variations in

electricity pricing schemes may depend on several factors

like thermal storage, combined heat and power generation,

auto-producers, photovoltaics, net metering, small hydro-

power plants, dynamic tariffs, renewable energy, green tariffs

and consumer characteristics like consumption pattern.

Garamvölgyi and Varga (2009) show that prices can be

designed by using artificial intelligence techniques to classify

consumers based on procurement costs. Holtschneider and

Erlich (2013) develop mathematical models based on neural

networks for modeling consumers’ demand response to

varying prices. Their model is used to identify an optimal

dynamic pricing through the Mean–Variance Mapping Opti-

mization method. Seetharam et al (2012) develop a real-timeFigure 2 Risk–reward mapping of dynamic tariff types.
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self-organizing pricing scheme, called Sepia, to compute the

unit price of electricity based on consumption history, grid

load and type of consumer. This pricing scheme is decen-

tralized, and a grid frequency is used for grid load measure-

ment in smart meters for determining the subsequent unit

price of electricity. McDonald and Lo (1990) mention that an

appropriate social basis of price designs for retail electricity

includes welfare considerations for both consumers and

suppliers. Li et al (2003) express the price-deriving objective

as a nonlinear optimization problem leading to welfare, yet

reflecting the competitive relationship among generation

companies, utilities and customers.

5. Wholesale market pricing

Electricity is traded in a wholesale market for industrial

customers and electricity retailers. A gap, however, remains

between the wholesale prices and the retail prices. Generally,

it is noticed that the price increases in the wholesale market

are transmitted quicker to the retail market than price

decreases. Johnsen and Jess-Olsen (2008) compare the

different lags in retail prices from wholesale prices and the

respective margins in four Nordic countries. Mirza and

Bergland (2012) calculate that a 2.5-Ore/kWh one-time

increase in the wholesale market in Norway leads to

asymmetric costs of 2.28 NOK (more than 91 times the per

kWh value) per average customer and a complete pass-

through of wholesale price to retail price can take almost five

weeks. Giulietti et al (2010) find that one-third to half of an

increase in wholesale price is passed to the retail price in

England and Wales.

Kirschen et al (2000) illustrate a method of determining

wholesale market price through bidding. The lowest bid price

is set by the supplier based on its costs of supplying a quantity

of electricity for a future time period. Then, a pool of bid

prices is accepted from bulk buyers. The selection of the bids

is done from the highest priced one, in the order of decreasing

prices, till the cumulative demand matches the supply. The last

accepted bid price from the pool of selected bids sets the

market price. However, the key price design decisions can

depend on factors like contract pricing or compulsory pool

pricing, one-sided or two-sided bids, firmness of bids or offers,

simple or complex bids, price determination timing with

respect to actual delivery, capacity payments, geographically

differentiated pricing and price capping.

David and Wen (2000) conduct a review of literature to

discuss bidding by individual participants to maximize their

individual profits. They also discuss the role of regulators in

limiting possible market abuse by some participants. The

survey reveals that oligopoly, and not perfect competition,

exists in the market, due to certain characteristics of the

electricity market that restrict the number of suppliers.

Different methods and ideas are used to model bid prices,

which we discuss now. Li et al (1999) represent electricity

trade as a two-level optimization process. A priority list

method through a ‘centralized economic dispatch’ (CED) is

used in the top level. The lower level has subproblems of

decentralized bidding. Here, hourly bid curves are developed

for the CED by using self-unit scheduling based on parametric

dynamic programming. Both the levels focus on revenue

maximization rather than on cost minimization. Zhang et al

(2000) develop bidding and self-scheduling models using

probability distributions and Lagrangian relaxation, respec-

tively. Weber and Overbye (1999) use a two-level optimiza-

tion problem to determine the optimal power flow considering

social welfare. They determine a Nash equilibrium along with

a market price with all participants trying for individual profit

maximization.

Krause and Andersson (2006) use agent-based simulators to

demonstrate different congestion management schemes such

as market splitting, locational marginal pricing and flow-based

market coupling. The welfare aspects of different pricing

schemes are analyzed in these methods to arrive at suit-

able market power allocations. Zhao et al (2010) explain that

the ‘bid cost minimization’ technique, generally used in the

wholesale market, actually provides a much higher cost than

the minimum bid cost. The authors use game-theoretic

approach and propose that ‘payment cost minimization’ is a

better technique from the consumer welfare point of view as it

directly minimizes the payment made by consumers. Zhao

et al (2008) further introduce transmission constraints in the

problem, making it complicated but more realistic. Han et al

(2010) use CPLEX’s MIP for this problem to find low

efficiencies. They overcome this problem through the ‘objec-

tive switching method’ in which the feasible region is reduced

Table 2 Comparison of the various pricing policies

Policy Economic efficiency Equity Bill stability (risk to
vulnerable consumers)

Revenue stability

Flat rate Very poor Very poor Very good Poor
PTR Good Poor Very good Very poor
CPP Good Average Average Good
TOU Good Good Average Average
One-part RTP
(only variable)

Very good Very good Very poor Good

Two-part RTP (fixed ? variable) Very good Very good Poor Very good
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by performance cuts to minimize infeasibilities and improve

efficiency.

6. Forecasting

Forecasting is an integral part of revenue management.

Designing of dynamic prices requires forecasts of future

demand, and scheduling consumption requires forecasts of

future prices. Forecasting thus provides a platform for

planning for the future in case of dynamic tariffs for all

concerned parties. This section describes research on price and

demand forecasting in the electricity sector. Table 3 shows the

different methods used for forecasting price and demand.

7. Price forecasting

Retail price forecasts help consumers to preplan their

consumption in a dynamic pricing environment, whereas

wholesale price forecasts assist buyers and sellers in planning

for bidding strategies. Nogales et al (2002) develop forecasting

models based on dynamic regression and transfer function

approaches. The authors use data from Spain and California

with high levels of accuracy. However, Contreras et al (2003)

find reasonable errors with the application of ARIMA models

on the data from the same markets. Zareipour et al (2006) use

ARIMA models to forecast Ontario’s hourly prices from

publicly available market information with significant accu-

racy, failing only to predict unusually high or low prices.

Mandal et al (2006) observe improved forecasting accuracy by

using the artificial neural network computing technique based

on the similar day approach. They identify time factors,

demand factors and historical price factors that impact price

forecasts. Catalao et al (2006) note that neural networks for

next-day price forecasting display sufficient accuracy for

supporting bidding strategy decisions. Kekatos et al (2013)

examine the Kernel-based day-ahead forecasting method and

prove its market worthiness.

8. Demand forecasting

Electricity suppliers can better plan their supply and generat-

ing capacities with appropriate demand forecasts. Demand can

be forecasted daily, weekly, monthly or annually. Short-term

load forecasts from minutes to several hours ahead are

required for controlling and scheduling power systems.

Long-term forecasts help in planning investments, overhauls

and maintenance schedules. Taylor et al (2006) compare the

accuracy of six univariate methods for forecasting short-term

electricity demand and find that simple and more robust

methods (i.e., exponential smoothing) outperform more com-

plex alternatives. The complex methods are seasonal ARIMA,

neural networks, double seasonal exponential smoothening

and principal component analysis (PCA). Taylor (2003)

implements double seasonal Holt-Winters exponential

smoothening for within-day and within-week seasonality. This

method proves to be more effective than ARIMA and the

standard Holt-Winters method for short-term demand fore-

casting. They correct the residual autocorrelation by using a

simple autoregressive model. Taylor (2010) incorporates the

within-year seasonal cycle as an extension of the double

seasonal model. This triple seasonal model performs better

than the double seasonal model and the univariate neural

network approach. Wang et al (2009) demonstrate reduced

errors in forecasts done by feeding a single-order moving

average smoothened data to a e-SVR (e-insensitive loss

function support vector regress) model.

Mirasgedis et al (2006) incorporate weather influences in

the medium-term electricity demand forecasts that can range

up to 12 months. Meteorological parameters, like relative

humidity and temperatures (that affect electricity demand),

are used along with an autoregressive model to reduce serial

correlation for four different climatic scenarios. Zhou, Ang

and Poh (2006) show that the trigonometric gray model

(GM) prediction approach (a combination of GM (1,1) and

trigonometric residual modification technique) can improve

the forecasting accuracy of GM (1,1). Akay and Atak (2007)

predict Turkish electricity demand using gray prediction with

Table 3 Forecasting methods

Forecasting method used Paper references

Dynamic regression model Nogales et al (2002), Zareipour et al (2006)
Transfer function model Nogales et al (2002), Zareipour et al (2006)
ARIMA model Contreras et al (2003), Taylor (2003), McSharry et al (2005), Zareipour et al

(2006), Mirasgedis et al (2006), Wang et al (2009), Taylor (2010)
Artificial neural network technique Mandal et al (2006), Catalao et al (2006), Saravanan et al (2012)
Kernel-based method Kekatos et al (2013)
Principle component analysis-based method Taylor et al (2006)
Exponential smoothing model Taylor (2003), Taylor et al (2006), Taylor (2010)
e-insensitive loss function support vector regress
model

Wang et al (2009)

Trigonometric gray prediction approach Zhou et al. (2006), Akay and Atak (2007)
Semi-parametric additive model Hyndman and Fan (2010)
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the rolling mechanism approach that displays high accuracy

with limited data and little computational effort. Hyndman

and Fan (2010) use semi-parametric additive models that

estimate relationships between demand and other indepen-

dent variables and then forecast the density of demand by

simulating a mixture of these variables. McSharry et al

(2005) provide probabilistic forecasts for magnitude and time

of future peak demand from simulated weather data, as real

data are unavailable. Saravanan et al (2012) apply multiple

linear regression and artificial neural networks with principle

components to forecasts made in India. They use eleven

input variables and show that the second method is more

effective.

9. Elasticity of electricity demand

A clear idea of the demand–price relationship or elasticity is

helpful for effective demand-side management (DSM). Boren-

stein et al (2002) explain that elasticity of demand can be short

run as well as long run. In short-run elasticity, we describe the

price response from the system with its current infrastructure

and equipment. In long-run elasticity, we consider the

investments that can be made in response to higher prices

during a longer time span. Wolak (2011) observes that

electricity markets mostly have low elasticity of demand, at

least in the short run. Dealing with low-demand elasticity leads

to the implementation of large price spikes in spot pricing

markets. He concludes that consumer response is roughly

similar for short hourly peaks and longer periods of high price.

Ifland et al (2012) reveal a steep slope of the demand curve

from a study of the German electricity market. However, this

field test proves that dynamic tariffs can increase demand

elasticity and demand curves are more elastic during winter

and less elastic during summer. Kirschen (2003) also observes

that implementation of dynamic pricing definitely increases

the elasticity of demand. He further notes that demand curves

are steep, and shift, depending on the time of day or day of

week. Shaikh and Dharme (2009) explain the seasonal

variation of the load curve with TOU tariffs in the Indian

context.

Kirschen et al (2000) study the short-term price response in

the electricity market of England and Wales. In this case, half-

hourly prices are announced 13 h in advance. The authors

study cross-elasticity of demand along with self-elasticity.

Cross-elasticity is measured as the rate of change of demand

for one time period with respect to a change in the price of

another time period. They form a 48 by 48 matrix of elasticity

coefficients. They further establish that the consumer reaction

to a price increase in the short run is rare unless the price

increase is significantly high. This low-demand response can

be because of consumption scheduling that involves some

relatively cumbersome technology. The authors observe that

consumers respond more to short-term price hikes than to

short-term price drops. They develop a nonlinear elasticity

function from this study. However, Braithwait (2010) explains

that there can be no particular formula for determining the

amount of demand response, which varies across customer

types, events and types of price structures.

10. Willingness to pay for electricity

Designing any dynamic pricing scheme requires knowledge

about the consumer’s willingness to pay (WTP) for electricity

and associated infrastructure. Devicienti et al (2005) study a

TERI report that uses the contingent valuation method to

determine the WTP for additional service features like

reliability of supply. However, a portion of the respondents

did not believe in the possibility of the improved scenario

projected by the hypothetical market used in this process.

Consumers find it difficult to comprehend electricity con-

sumption in terms of KWh. Thus, the study phrases consump-

tion in terms of ‘appliance capacity’ or ‘hours of use’ of each

appliance. Stated choice experiments can be helpful in this

case. Twerefou (2014) uses the contingent valuation method in

Ghana and discovers that consumers’ WTP is 1.5 times more

than the market price of electricity. The author identifies

significant factors that influence households’ WTP through an

econometric analysis of the data from this study. Ozbafli and

Jenkins (2013) study 350 households in North Cyprus using

the choice experiment method. They indicate that the

electricity industry can experience an annual economic benefit

of USD 16.3 million by adding 120 MW capacity, since

consumers are ready to pay more for uninterrupted power

supply.

Gerpott and Paukert (2013) estimate the WTP for smart

meters using responses from 453 German households obtained

through online questionnaires. The authors use variance-based

‘partial least squares structural equation modeling and find that

‘trust for data protection’ and ‘intention to change usage

behavior’ are the most influential factors for WTP. An et al

(2002) calculate Chinese consumers’ WTP for shifting from

firewood to electricity. They use stated preference data from

personal interviews to estimate the parameters of a binary logit

model from a random utility model. The authors calculate the

probabilities of adopting electricity at different prices. Oseni

(2013) explains that the ownership of a backup generator

significantly increases the WTP for reliable grid supply in

Nigeria. The author uses event study methods and discovers

that the higher cost of backup generation with respect to the

stated WTP amount causes this behavior.

11. Dynamic price enabling technology

Dynamic pricing enabling technologies help in dealing with

price and quantity signals. These technologies provide effec-

tive communication of signals to consumers and sometimes

also provide a suitable automated response from them.
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Technology helps in speeding up operations and enables

efficient implementation of dynamic prices. Ifland et al (2012)

conduct a field test in a German village that represents 50% of

German living conditions. Consumers respond to flexible

prices even without the aid of home automation, but automa-

tion technology is required to increase night-hour consump-

tions. Faruqui and Sergici (2009) examine the evidence from

15 dynamic pricing experiments and reveal that the magnitude

of response of retail electricity customers to pricing signals

depends on factors like ‘extent of price change,’ ‘presence of

central air conditioning’ and ‘availability of enabling tech-

nologies’. Thimmapuram and Kim (2013) note that consumers

overcome technical and market barriers by using advanced

metering infrastructure (AMI) and smart grid technologies that

improve price elasticity. Kaluvala and Forman (2013) state

that smart grid technologies can transfer load from peak to off-

peak and reduce overall consumption without reducing the

level of comfort. Quillinan (2011) elaborates that information

communication technology (ICT) in a smart grid system

increases the electric grid’s efficiency. Applications like

‘appliance control,’ ‘notification,’ ‘information feedback’

and ‘energy management’ make enabling technologies essen-

tial in demand response programs.

A typical electricity supply curve is nonlinear with increas-

ing positive slopes. The benefit of demand response measures

can be best observed at the steeper parts of the supply curve.

Faruqui and Palmer (2012) analyze the data of 74 dynamic

pricing experiments and find that the amount of reduction in

peak demand increases with the increase in the peak to off-

peak price ratio, but at a decreasing rate. They derive a

logarithmic model and check the variation of demand response

with several factors like the effects of time period, the length

of the peak period, the climate, the history of pricing

innovation in each market, the pattern of marketing dynamic

pricing designs and the use of enabling technologies. They

find that variation in the price ratio and the effect of enabling

technologies are responsible for almost half of the variation in

demand response. Wang et al (2011) study several smart grid-

enabled pricing programs and find that technology and greater

price differentials enable better demand response. Roozbehani

et al (2012) mention that demand response technologies and

distributed generation increase the price elasticity of electricity

along with the volatility of the system.

12. Segmentation of electricity markets

Segmentation of the electricity market helps in differentiating

customers based on various attributes. Attributes of market

segments are helpful in setting the range of prices or the time

span for maintaining a certain price in a dynamic pricing

environment. This section describes research on the basis of

electricity market segmentation and focuses on the use of

consumption level for segmentation. We also discuss low-

income groups as an important segment.

13. Various bases of segmentation

Electricity utilities generally segment their markets based on

geographic boundaries. Moss and Cubed (2008) argue that

segmentation schemes for residential customers should typi-

cally focus on attitudes and motivations. Yang et al (2013)

refer to four consumer segments based on socio-demographic

variables and attitude toward the adoption of green electricity

in Denmark. A majority of consumers in all segments are

ready to pay a higher price for green electricity. The authors

observe that electricity market segmentation became ineffec-

tive because of three reasons—lack of comprehensive data,

emphasis on technological solutions alone for demand-side

management and a tendency to stay within the traditional

broad industry segments of industrial, commercial and

residential customers. Simkin et al (2011) mention that a

‘bottom-up’ analysis of customer attitudes, usage patterns,

buying behavior and characteristics can be useful to develop

segments. They develop a directional policy matrix from

variables that represent market attractiveness and business

capability and prioritize segments. Other factors like consumer

service, green credentials, innovative tariffs and guarantee of

no price inflation for a certain period also characterize energy

market segments. Ifland et al (2012) develop a lifestyle

typology and create three market segments based on con-

sumption behavior, attitude toward energy consumption and

enabling technologies, values and leisure time activities of

consumers.

14. Segmentation based on consumption data

Segments can be based on consumption data. Panapakidis et al

(2013) describe segmentation based on load patterns—high

level and low level. The high-level segment includes geo-

graphical characteristics, voltage level and type of activity.

The low-level segment is based on demographic characteris-

tics, regulatory status, price management, universal service,

fuel labeling supply and metering resolution. Clustering

algorithms are required for further detailed categorization of

segments. Varga and Czinege (2007) use discriminant analysis

to characterize and classify consumers based on their load

profiles. Hyland et al (2013) use smart meter data from Ireland

and register the difference in gross margin earned by

electricity suppliers from different types of consumers. This

data help identify different possible market segments and the

characteristics of the most profitable segmentation.

15. Low-income group as a market segment

A low-income group can be a market segment where the

welfare viewpoint gains priority. These groups can be the

worst affected in case of improper dynamic pricing imple-

mentation. Wood and Faruqui (2010) observe the effect of

different pricing schemes on low-income consumers and find
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that critical peak pricing (CPP) is most effective in reducing

bill amounts. They propose that the percentage of consumers

benefiting from the schemes depends on the rate design itself.

Faruqui et al (2012) study practical experiments of CPP and

note that low-income groups reduced their electricity bills

more than higher-income groups. Wolak (2010) also finds that

low-income consumers are more sensitive to price signals than

high-income ones. However, Wang et al (2011) state that low-

income customers have low price responsiveness. This is

because they have fewer opportunities to reduce consumption

due to unavailability of specific home appliances in which the

energy consumption can be controlled. Governments need to

take up the primary role in creating the conditions for

segmentation both in regulated and in deregulated markets.

Sharam (2005) notes that unethical welfare motives or

improper administrative and regulatory control can bring out

the troubles of segmentation in electricity markets. He

identifies these ill-effects as redlining (discrimination of

consumers in the market) and residual markets (suppliers

misusing too much market power) which lead to exclusion and

exploitation of some customers on financial or other bases.

16. Consumption scheduling with dynamic prices

Proper scheduling of electricity consumption in a dynamic

pricing environment can flatten the load curve to a large

extent. Chen et al (2013) develop an energy-efficient schedul-

ing algorithm based on a time-varying pricing model. They use

linear programming to obtain a deterministic scheduling

solution and use an energy consumption adaptation variable

to account for uncertainties. They use the day-ahead pricing

data of Ameren Illinois Power Corporation as the input to their

model and two sets of solar photovoltaic module of Kyocera

Solar Incorporation as the solar energy source for the model.

Their model achieves between 41 and 24% reduction of

expenditure over traditional deterministic schemes and pro-

vides a schedule within 10 seconds. Agnetis et al (2013)

identify various types of appliances with varying load types

like shiftable, thermal, interruptible and non-manageable and

then schedule their operations. The authors use a mixed-

integer linear programming (MILP) model and a heuristic

algorithm to solve the NP-hard problem. The objective

functions are cost minimization and comfort maximization

through scheduling preferences and climatic control. Wang

et al (2013) present a novel traversal-and-pruning algorithm to

schedule thermostatically controlled household loads to opti-

mize an objective considering both expenditure and comfort.

This algorithm has optimality, robustness, flexibility and

speed. The authors propose that this algorithm can be useful in

designing any automated energy management system.

Hubert and Grijalva (2012) incorporate electricity storage

provisions in the scheduling problem by classifying loads as

energy storage systems, non-interruptible loads and thermody-

namic loads. They use MILP for robust optimized consumption

scheduling to minimize the impact of stochastic inputs on the

objective function. The objective function integrates electric,

thermodynamic, economic, comfort and environmental param-

eters. Mishra et al (2013) observe that greedy charging

algorithms when used at large scales shift the peaks causing

grid instability. They present a storage adoption cycle incen-

tivizing the use of energy storage at large scales with variable

rates and peak demand surcharge. They show that consumers

can flatten their demand by 18% of the minimum optimal

capacity to flatten the grid demand of a centralized system.

Liu et al (2012) emphasize the maximum use of renewable

resources in a load scheduling problem. Their model depends

on weather forecasts. They classify appliances based on the

type of energy consumption and assign dynamic priority in the

scheduling process. Dupont et al (2012) state that the

renewable energy tariff scheme can be used to increase

renewable energy consumption during periods of high renew-

able energy generation. They use integer linear programming

to optimize this scheduling problem taking into account

customer preferences. This paper also emphasizes the use of

automation in households for consumption scheduling over the

year. Hu et al (2010) incorporate both active and reactive

power demand and generation in the scheduling problem. The

authors use a nonlinear load optimization method in a real-

time pricing environment. The scheduling of consumption is

studied for three customer groups—industrial, commercial and

residential, and for three load periods—peak load, flat load and

off-peak load periods.

Scheduling in individual homes must be linked to the

aggregate demand situation. Thus, it is necessary to model the

individual household scheduling incorporating the aggregate

demand. Kishore and Snyder (2010) point out that shifting the

load from peak hours to off-peak hours in each household by

means of a same price signal can shift the aggregate peak to

the previously off-peak zone. Thus, the authors optimize

electricity consumption within a home and across multiple

homes. The in-home scheduling model attaches the probabil-

ities of start and stop of operation of any appliance in the next

time period. It also considers a cost for delay of start of

operation. The model minimizes the total cost of electricity in

a deterministic dynamic pricing environment. In the neigh-

borhood-level scheduling model, the authors assume a well-

communicated neighborhood where each household has a

minimum guaranteed load at each time slot. The neighbor-

hood, however, has a maximum limit of energy at each time

slot. The idea is to distribute this available power to all

households, thereby minimizing total costs. A second delay

cost is introduced into the model to address the delay of

starting an appliance after the specified maximum delay time.

Luh et al (1982) present a ‘load adaptive pricing’ philosophy

formulated as a closed-loop Stackelberg game. The authors

demonstrate that a team optimum can be achieved through the

proposed approach since the utility company can induce

cooperative behavior from the customer.
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Li et al (2011) align individual optimality with social

optimality by means of a distributed algorithm. Each customer

has a utility function and provision for energy storage. This

allows them to forecast their total individual demand for a

future time after maximizing their individual benefit. The

utility company collects these forecasts from all households

and generates a price based on its cost function. This price is

then published and the individual households reschedule their

consumption. After several iterations, the consumption sched-

ule of each household and the price offered by the utility gets

fixed. Cui et al (2012) describe how scheduling of household

loads helps electricity suppliers to maximize their profits and

the global controller to maximize social welfare. The authors

use greedy algorithm for the first model with pre-announced

dynamic tariffs. They also devise a model for the utilities

based on consumers’ schedules. Table 4 shows the different

scheduling methods used in the referenced literature.

17. Conclusion

Dynamic pricing of electricity is a demand-side management

technique that is capable of stimulating demand response

resulting in flatter load curves. There are several insights that

can be developed with respect to peak load reduction, demand

elasticity, market segmentation, pricing policy, enabling

technology and customers’ willingness to pay.

1. Peak load reduction of about 30% is registered in dynamic

pricing pilots. Pricing experiments recorded 4% reduction

to 8% increase in bill values. These figures can change

depending on the pricing scheme and the attitude of the

customers. Renewable energy consumption can further

reduce bill values. A study estimated annual CO2 emission

reduction of 5% in a dynamically priced smart grid in the

USA. However, emission reduction depends on the

composition of the power generating units in use.

2. Electricity market data reveal that the demand elasticity

for electricity is low in many markets, but other demo-

graphic and environmental factors can significantly

enhance the response. For example, hot days and cus-

tomers with high consumptions display better demand

response.

3. Electricity market segmentation is necessary for effective

pricing. Segmentation can be based on various demo-

graphic, behavioral and geographic factors as discussed in

some studies. However, such segmentation is not imple-

mented in practice and broad segments of industrial,

commercial and residential are common.

4. There are several dynamic pricing schemes each of which

can be a suitable policy depending on the market. RTP

closely reflects wholesale prices, but it poses bill risk to

the customers and requires technological support.

Researchers propose that supporting programs to hedge

the customers’ risks need to be implemented along with

dynamic pricing policies to enhance their acceptability

among consumers.

5. Enabling technology significantly enhances demand

response. Automation helps customers to respond quickly

to changes in prices. Several consumption scheduling

models using dynamic prices have been researched to

understand the trade-off for customers between their

expenditure and their comfort. Such models can help in

actual implementation of dynamic prices by reducing

manual scheduling tasks and risks of excessive expenditure.

6. Information on customers’ willingness to pay is important

while designing prices. Research shows that customers

may be ready to pay 1.5 times more than the present prices

for electricity. This value can vary from market to market.

Consumers and regulators need to be educated well on the

benefits that dynamic pricing can bring to society without

harming the interests of any stakeholder. The interest in this

topic is developing, and there are ample opportunities opening

up for the acceptance of this concept along with the wide

implementation of smart grid technologies.

18. Potential areas for future research

There are open problems that can be interesting future research

challenges. These are listed below.

(a) Understanding the customers’ willingness to adopt

dynamic tariffs can be very helpful for further progress

in this field. This topic is an open research area that can

Table 4 Scheduling methods

Scheduling methods used Paper reference

Linear programming Li et al (2011), Hubert and Grijalva (2012), Dupont et al
(2012), Cui et al (2012), Chen et al (2013), Agnetis et al
(2013), Mishra et al (2013)

Traversal-and-pruning algorithm Wang et al (2013)
Priority scheduling algorithm Liu et al (2012)
Nonlinear programming Hu et al (2010)
Dynamic programming algorithm Kishore and Snyder (2010)
Closed-loop Stackelberg game Luh et al (1982)
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be addressed to promote dynamic pricing to more number

of customers and suppliers.

(b) There has been no research on estimating the demand–

price relationship at microlevels. The most elastic portion

of the demand curve indicates the phase when dynamic

pricing can have the most impact. Factors influencing

electricity demand change from consumer to consumer.

Identification of such factors in different markets and the

demand–price relationship is a potential research topic.

(c) Research on electricity market segmentation can enable

better implementation of dynamic prices. Designing

suitable pricing schemes for any market segment is an

open research area.

(d) Optimization of prices, consumption schedules, number

of market segments, use of energy storage and generation

schedules are open research areas. There are earlier

studies on these, but the developing smart grid scenarios

offer possibilities of newer and better mathematical

models.

(e) The environmental and social impacts of shifting from a

flat rate tariff to a dynamic tariff scheme are worth

studying in order to popularize the idea of dynamic

pricing. Such studies are rare and have future research

potential.

(f) Regulated markets can benefit from dynamic pricing

from the welfare point of view. Research in this area is

rare, and there are future research opportunities in the

area of application of dynamic pricing in regulated

markets. Appropriate ways to educate consumers and

regulators about the benefits of dynamic pricing need to

be identified and implemented.
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