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This paper introduces a new problem that is an extension of the travelling salesman problem (TSP) in which the
travelling times are resource dependent and the objective is to maximize the profit per unit of time. We present an
optimal solution approach comprised of three main steps: (1) calculating the optimal amount of total resource
required (regardless of the selected tour); (2) constructing the tour; and (3) assigning the optimal resource to each
connection between vertices using the equivalent load method. This solution approach finds the optimal solution
with the same computational complexity for solving the classic TSP.
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1. Introduction

The classic travelling salesman problem (TSP) is defined as

follows: a salesman who is located in his home city is required

to visit exactly once each city on a given list and to return

home. The salesman must determine the order in which he

visits the cities so that the total cost (time or distance) covered

is minimized. The problem is modelled using a graph

containing n vertices representing the cities and m weighted

edges representing the travelling cost (time or distance)

between the vertices they connect. The objective is to find a

tour passing through all n vertices that minimizes the total

cost.

The TSP is a well-known NP-hard problem. It can be solved

through optimal procedures, such as full enumeration, or by

using more sophisticated procedures, such as cutting planes,

branch and bound algorithms, or dynamic programming

algorithms. To the best of our knowledge, the largest instance

of the problem that has been solved optimally contains 85,900

vertices (Applegate et al, 2009). Alternatively, the TSP can be

solved through approximation methods, which are more

frequently used in practice. Solution procedures for the

problem can be found in Hartley (1985), Lawler et al

(1985), Papadimitriou and Steiglitz (1998), Williams (1999),

Applegate et al (2007), Cook et al (2008), and Cook (2011).

There are many extensions to the classic TSP such as: (1)

the TSP with profits (Feillet et al, 2005) where each vertex is

associated with a profit and the salesman is not required to

visit all the vertices. His objective is to find the tour that

yields the greatest profit. (2) The TSP with time windows

(López-Ibáñez et al, 2013) in which the salesman must visit

each of the vertices within a given time window, and the

objective is to minimize the travelling time or the makespan.

(3) The time-dependent TSP (Abeledo et al, 2013), in which

the travelling cost of an edge depends on its position in the

tour. (4) The maximum profit per unit time TSP (Kaspi et al,

2013) in which completing the tour provides a given

predefined income V and the objective is to find the tour

that will maximize the ratio between the profit and the total

travelling time.

One of the basic assumptions of the TSP is that the distance

(or travel time or travel cost) between any pair of cities is

known. However, in various real-life systems, processing (in

manufacturing applications) or travelling times are control-

lable by using limited disposable resources such as financial

budgets, overtime, energy, fuel, subcontracting or manpower.

In most cases, increasing the amount of resource will reduce

the travelling time at a decreasing rate.

This paper introduces a new extension of the TSP in which

the travelling times are resource dependent and the total

amount of resource is limited. Our goal is not only to select the

order of visiting the cities but also to allocate the resources

optimally such that the profit per unit of time (the profit rate) is

maximized. Although in most TSP variants the weight of an

edge connecting two vertices is predefined, this work will

assume that the weight of an edge fi; jg (representing the

travelling time between vertices i and j) is resource dependent,

and the total amount of resource is limited. Our problem is

relevant to many engineering and scientific applications where

a trade-off between time and cost is required such that the
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primary objective function of the firm (in many cases,

maximum profit) is achieved.

The effect of the resource allocation on the travelling (or

processing) time is usually given by a resource consumption

function. When dealing with sequencing problems, researchers

usually assume a linear resource consumption function (e.g.

Vickson, 1980; Van Wassenhove and Baker, 1982; Daniels

and Sarin, 1989; Janiak and Kovalyov, 1996; Cheng et al,

1998). However, this assumption fails to explain the marginal

value product rule in which productivity increases according to

the amount of resource at a decreasing rate. Thus, we adopt

Monma et al’s (1990) resource consumption function to

describe the travelling time [Equation (1)], since it is more

realistic than the linear one. The travelling time tij between

vertex i and vertex j is expressed as

tij ¼
wi;j

ri;j

� �k

ð1Þ

where wij is the i–j travelling parameter (a positive value that

represents the workload of edge {i, j}); ri;j is the resource

allocated to the edge between vertex i and vertex j; and k is a

constant positive parameter. Equation (1) has the following

properties: each travelling time (ti;j) is a variable dependent

only on the resource allocated (ri;j) and is a decreasing

function of the amount of resource allocated. The marginal

travelling time decreases with the increase in the resource

consumption, and if no resources are allocated, the travelling

time is infinite.

Completing the tour will provide the salesman with a

predefined known income V . The salesman’s profit per unit

of time is defined as the profit (calculated by subtracting

resource consumption costs from V) divided by the total

time required to complete the tour. The objective of the

problem presented in this paper is to maximize the profit per

unit of time.

The paper is arranged as follows. Section 2 presents the

classic TSP and a formulation of the new problem. Sections 3

and 4 present the solution approach followed by a numerical

example. Section 5 presents additional related problems. A

summary and conclusions are given in Section 6.

2. Problem description and notation

Let ti;j and ci;j denote the time and the cost (or distance) for

travelling from vertex i to vertex j, respectively. Let ri;j denote

the resource allocated for travelling from vertex i to vertex j.

Let R denote the total resource consumption per tour. Let V

denote the contribution to profit per tour (given in resource

units). Let xi;j be a binary decision variable which will receive

the value of 1 if the tour passes through the edge connecting

vertices i and j, and 0 otherwise.

The classic TSP is formulated as follows (P1):

ðP1Þ min Z ¼
Xn
i¼1

Xn
j¼1

ci;jxi;j

s:t:

Xn
j¼1

xi;j ¼ 1 8i; i ¼ 1; 2; . . .; n

Xn
i¼1

xi;j ¼ 1 8j; j ¼ 1; 2; . . .; n

xi;j ¼ 0; 1f g 8i; j
No subtours are allowed

The constraint sets ensure that any selected tour includes all

the vertices and that each vertex is visited only once. There are

several ways to enforce the last constraint (for eliminating sub-

tours), such as the method proposed by Miller et al (1960).

The objective of the problem descried in this paper is to

maximize the profit per unit of time. The profit is calculated

by subtracting the resource consumption from V; it is then

divided by the total time required for completing the tour. Note

that the travelling time ti;j varies according to the resource

allocation.

This problem is formulated as follows.

ðP2Þ minP ¼
V �

Pn
i¼1

Pn
j¼1 ri;jxi;jPn

i¼1

Pn
j¼1 ti;jxi;j

s:t:

Xn
j¼1

xi;j ¼ 1 8i; i ¼ 1; 2; . . .; n

Xn
i¼1

xi;j ¼ 1 8j; j ¼ 1; 2; . . .; n

xi;j ¼ 0; 1f g 8i; j
No subtours are allowed

Adopting Monma et al (1990) resource consumption function

[Equation (1)], the objective function (the profit rate) can be

expressed as

Profit ¼ V � R

T
ð2Þ

where

R ¼
Xn
i¼1

Xn
j¼1

ri;jxi;j ð3Þ

T ¼
Xn
i¼1

Xn
j¼1

wij

rij

� �k

xi;j ð4Þ

In order to maximize the profit rate, we must determine the

resource consumption per tour (R), the tour (xi;j), and the

resource allocation (ri;j).
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3. Solution approach

Let us consider any arbitrary feasible tour. The tour can be

represented as a chain of connected edges in a series

connection (a one-path graph). The optimal resource allocation

to minimize the duration of a path in a series–parallel graph

was presented by Monma et al (1990).

In our case, any arbitrary feasible tour can be represented as

a series of connected graphs were G1 represents the edge

connecting the first and second vertices along tour, G2

represents the edge connecting the second and third vertices

along the tour and so on. And therefore G ¼ G1 ! G2 !
� � � ! Gn represents the entire tour, i.e. the ordered list of

edges which constructs the entire tour.

We will first try to solve the following problem in order to

determine the optimal resource allocation for a known limited

amount of nonrenewable resource R

Min T ¼
Xn
j¼1

wj

rj

� �k

s:t:

Xn
j¼1

rj �R

The suitable Lagrange function is:

L r1; . . .; rn; kð Þ ¼
Xn
j¼1

wj

rj

� �k

þ k
Xn
j¼1

rj � R

 !

And the sufficient conditions for an optimal solution are:

I
oL r1; . . .; rn; kð Þ

orj
¼ 0 8j ¼ 1; . . .; n

II
oL r1; . . .; rn; kð Þ

ok
¼ 0

Thus, we get:

oL r1; . . .; rn; kð Þ
orj

¼ k
wj

rj

� �k�1

� �wj

r2j

 !
þ k ¼ 0 ! k ¼

k
wj

rj

� �k
rj

Since this condition is identical to all graphs G1; . . .;Gn we can

conclude that
k wi

r�
i

� �k
r�i

¼
k

wj

r�
j

� �k
r�j

¼ � � � ¼
k wn

r�n

� �k
r�n

Thus, we can

say that r�i ¼
r�j w

k
kþ1

i

w
k

kþ1

j

.

From condition II, we get:
Pn

i¼1 r
�
i ¼ R and therefore

R ¼
Xn

i¼1
r�i ¼

Xn

i¼1

r�j w
k

kþ1

i

w
k

kþ1

j

¼
r�j
Pn

i¼1 w
k

kþ1

i

w
k

kþ1

j

.

The optimal resource allocation for Gj in terms of R is:

r�j ¼
Rw

k
kþ1

jPn
i¼1 w

k
kþ1

i

: ð5Þ

And the optimal time to complete the entire tour is:

T� ¼
Xn
j¼1

wj

r�j

 !k

¼
Xn
j¼1

wk
j

Rw
k

kþ1
jPn

i¼1
w

k
kþ1
i

 !k
¼
Pn

i¼1 w
k

kþ1

i

� �k
Rk

Xn
j¼1

wk
j

w
k2

kþ1

j

¼
Pn

i¼1 w
k

kþ1

i

� �k
Rk

Xn
j¼1

w
k

kþ1

j

Since
Pn

i¼1 w
k

kþ1

i ¼
Pn

j¼1 w
k

kþ1

j , we can rewrite the equation and

get:

T� ¼
Pn

j¼1 w
k

kþ1

j

� �k
Rk

Xn
j¼1

w
k

kþ1

j ¼
Pn

j¼1 w
k

kþ1

j

� �kþ1

Rk

¼
Pn

j¼1 w
k

kþ1

j

� �kþ1
k

R

0
BB@

1
CCA

k

For a given total resource consumption R, the minimum

completion time of G is:

T� ¼ wG

R

� �k
ð6Þ

Where the equivalent workload wG is:

wG ¼
Xn
j¼1

w
k

kþ1

j

 !kþ1
k

ð7Þ

Rewriting Equation (2) we get:

profit ¼ V � R

T
¼ V � R

wG

R

� �k ¼ V � Rð ÞRk

wk
G

ð8Þ

Since wG is independent of R, we can derive the profit

according to R and get:

dprofit

dR
¼ 0 ! R� ¼ V

k

k þ 1ð Þ ð9Þ

Note that R�\V and therefore the optimal profit is always

positive.

Although the profit function is not convex, it is a

unimodal function and has a single maximum point (see

Figure 1). As can be seen from Equation (9), R� is

independent of the selected tour. Moreover, if R� is applied,

the profit rate is positive. In the case of an additional constant

cost per unit of time, the optimal amount of resource R� will

not change.

In order to maximize the profit rate, wG must be minimized.

wG is a direct result of the selected tour as can be seen in

Equation (7). The tour with the minimal wG is the one that
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minimizes
Pn

j¼1 ðwjÞ
k

kþ1, and thus, we define new edge

weights: Si;j ¼ wi;j

� � k
kþ1. Now, we can minimize wG by solving

P1, either optimally by any optimal procedure or by any

approximation method. The optimization procedure for our

problem is formally stated as follows.

Solution Procedure

Step 1 Calculate R� using Equation (9).

Step 2 Set new edge weights Si;j ¼ ðwi;jÞ
k

kþ1.

Step 3 Solve the TSP (P1) by any known method.

Step 4 For the selected tour:

Calculate wG using Equation (7)

Calculate the optimal resource allocation using

Equation (5).

The travelling time and the profit are calculated by

Equations (6) and (8), respectively.

We note that if step 3 is solved by a ð1þ eÞ-approximation

algorithm, the resulting workload of the tour can be expressed as

wgapx � 1þ eð Þ
Xn
j¼1

wj

� � k
kþ1

 !kþ1
k

¼ 1þ eð Þ
kþ1
k w�

g

where w�
g denotes the workload of the optimal tour. Therefore,

the time of the tour is

Tapx ¼
wgapx

R

� �k
�

1þ eð Þ
kþ1
k w�

g

R

 !k

¼ 1þ eð Þkþ1
w�
g

R

� �k

and the approximated value of the profit per unit of time is

Papprox ¼
V � R

Tapx
� V � R

1þ eð Þkþ1 w�
g

R

� �k ¼ 1

1þ eð Þkþ1

 !
P�

Thus, the whole procedure yields an 1

1þeð Þkþ1 approximation for

P2.

4. Numerical example

The following numerical example demonstrates the stages of

the procedure for a graph of 5 vertices, where V ¼ 240

resource units (r:u:) and k ¼ 2. The objective is to find the tour

and the resource allocation that will maximize the profit per

unit of time.

Table 1 describes the workload (wij) between each pair of

vertices.

Solution

Step 1 The optimal amount of the resource is R� ¼ 2
2þ1

�
240 ¼ 160 r:u:

Step 2 New weights for every edge are calculated (Table 2).

Step 3 The optimal tour obtained by solving the TSP (P1)

with the new weights optimally is 1 ! 2 ! 3 !
4 ! 5 ! 1.

Step 4 For the optimal tour:

wG ¼ 4þ 4þ 4þ 4þ 36ð Þ
2þ1
2 ¼ 374:98

r�1;2 ¼
4

4þ 4þ 4þ 4þ 36
� 160 ¼ 12:3 r:u:

r�2;3 ¼ 12:3 r:u:; r�3;4 ¼ 12:3 r:u:;

r�4;5 ¼ 12:3 r:u:; r�5;1 ¼ 110:8 r:u:

The travelling time is T� ¼ 374:98=160ð Þ2¼ 5:49.

The optimal profit rate is Profit ¼ 240�160

374:98=160ð Þ2 = 14.56.

5. Related problems

The following two problems are related to P2 and can be

solved by a similar approach.

Problem 3 Minimizing the total travelling time ðTÞ when the
amount of resource ðRÞ is limited. The problem is for-

mulated as:

ðP3Þ min T ¼
Xn
i¼1

Xn
j¼1

xi;j
wi;j

ri;j

� �k

subject to the same constraints as the classic TSP (as

presented in Section 2), but with an additional resource

limit constraint

Xn
i¼1

Xn
j¼1

ri;jxi;j �R

This problem can arise in many real-life scenarios when

the amount of available resources is limited. One

example is finding the optimal car speed in rally racing

when passing through different types of terrain with a

limited amount of fuel. Note that when R is restricted,

problems P3 and P2 are essentially the same, since V �
R is a constant and the objective in P2 becomes

minimizing T .
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Figure 1 Profit as a function of R where V = 240 (this graph is
typical for k = 2).
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We saw earlier that for P2 we can calculate the optimal

amount of resource R�. Opposed to P2, in P3 we will

always prefer a higher amount of resource, as it will

necessarily yield a faster tour. In order to find the minimal

T , we use the same procedure described in Section 3, but

skip the first step.

Problem 4 Minimizing the total resource consumption ðRÞ
while not exceeding a predefined travelling time ðTÞ. The
problem is formulated as:

ðP4Þ minR ¼
Xn
i¼1

Xn
j¼1

ri;jxi;j

subject to the same constraints as in (P2), but with an

additional time limit constraint

Xn
i¼1

Xn
j¼1

ti;jxi;j � T

This problem may arise in transportation and distribution

systems where a task has to be performed within a given

amount of time and the objective is to minimize the

expenses under this time constraint. P4 is solved by the

same procedure described in Section 3 with a slight

difference in step 1. The total travelling time of the tour

Ttour ¼ wG

R

� �k
must satisfy the constraint Ttour � T . It is

easy to see that under the optimal solution, the time

constraint is satisfied with equality. Thus, R�wG

ffiffiffiffi
Tk

p
and

R� ¼ wG

ffiffiffiffi
Tk

p
and therefore the objective becomes to

minimize wG.

6. Summary

This paper introduced a new extension of the classic TSP

where the travelling times are resource dependent and the

objective is to maximize the profit per unit of time. We used

the equivalent load method to find the optimal resource

allocation for any tour and found that the optimal amount of

resource required, R*, is independent of the selected tour and

that it is a function of V – the contribution to profit per tour.

Then, in order to maximize the profit we had to find the tour

with the minimal equivalent workload. This was done by

solving the classic TSP by using transformed edge workloads.

In addition, the optimal resource allocation for the selected

tour and R* were obtained analytically. Notably, the routing

complexity remains the same as that of the classic TSP.
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López-Ibáñez M, Blum C, Ohlmann JW and Thomas BW (2013). The

travelling salesman problem with time windows: Adapting algo-

rithms from travel-time to makespan optimization. Applied Soft

Computing 13(9):3806–3815.
Monma CL, Schrijver A, Todd MJ and Wei VK (1990). Convex

resource allocation problems on directed acyclic graphs: Duality,

complexity, special cases and extensions. Mathematics of Opera-

tions Research 15(4):736–748.

Table 1 Workload from-to table

From To

1 2 3 4 5

1 x 8 121 x 512
2 216 x 8 64 729
3 125 1000 x 8 1000
4 512 729 512 x 8
5 216 343 27 216 x

Table 2 Sij from-to table

From To

1 2 3 4 5

1 x 4 121 x 64
2 36 x 4 16 81
3 25 100 x 4 100
4 64 81 16 x 4
5 36 49 9 36 x

Moshe Zofi et al—Maximizing the profit per unit of time for the TSP 1181



Miller CE, Tucker AW and Zemlin RA (1960) Integer programming

formulation of the travelling salesman problem. Journal of

Association for Computing Machinery 7(4):326–329.
Papadimitriou CH and Steiglitz K (1998). Combinatorial Optimiza-

tion: Algorithms and Complexity. Dover Publications: Mineola,

New York.

Van Wassenhove L and Baker KR (1982) A bicriterion approach to

time/cost trade-offs in sequencing. European Journal of Opera-

tional Research 11(1):48–54.

Vickson RG (1980). Two single machine sequencing problems

involving controllable job processing times. AIIE Transactions

12(3):258–262.
Williams HP (1999). Model Building in Mathematical Programming.

Wiley: Chichester.

Received 15 August 2016;

accepted 16 November 2016

1182 Journal of the Operational Research Society Vol. 68, No. 10


	Maximizing the profit per unit of time for the TSP with convex resource-dependent travelling times
	Abstract
	Introduction
	Problem description and notation
	Solution approach
	Numerical example
	Related problems
	Summary
	References




