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Abstract

This paper is concerned with multi-period asset-liability mean-variance portfolio selec-
tion with an uncertain exit time. By employing the mean-field formulation to this problem
involving two-dimensional state variables, we derive the analytical optimal strategy and its
efficient frontier successfully. The corresponding sensitivity analysis and a real life exam-
ple shed light on influences of liability and uncertain exit time to the optimal investment
strategy.
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1 Introduction

Mean-variance portfolio selection refers to the design of optimal portfolios balancing between
the gain and the risk, which are in expression of expectation and variance of the ternimal return,
respectively. Since Markowitz published his seminal work [12] for a single-period setting, re-
searches on dynamic mean-variance portfolio selection problems have been well developed. For
instance, by an embedding technique, Li and Ng [9] extended Markowitz’s model to multi-period
setting and derived analytical optimal portfolio policy with its efficient frontier. Zhou and Li
[19] studied continuous-time mean-variance portfolio problem using stochastic linear-quadratic
control theory and the embedding technique. Fu et al. [4] investigated dynamic mean-variance
portfolio selection with a borrowing constraint. Li et al. [10] and Cui et al. [2] investigated dy-
namic mean-variance portfolio selection with no-shorting constraint for continuous-time setting
and multi-period setting, respectively.

In reality, liability plays an important role over an investment horizon. A financial institution
taking liabilities into account can operate more soundly and lucratively. Thus, a judicious
investor should consider assets and liabilities simultaneously. In this line of research, Sharpe and
Tint [13] studied asset and liability management in a single period setting. Keel and Muller [5]
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investigated the portfolio selection with liabilities and concluded that the corresponding efficient
frontier is affected by liabilities. Leippold et al. [7] used a geometric approach to analyze
multi-period mean-variance optimization of asset and liability. Applying the stochastic optimal
control theory, Chiu and Li [1] analytically solved the asset and liability management problem in
a continuous-time setting. Li et al. [8] investigated time-consistent optimal investment strategy
for asset and liability management.

Another important concern about an investment is the exit time. The investor realizes to
never know exactly when he/she has to exit the market as the investment can be interrupted by
some unexpected events. For example, the price movement of risky assets, securities markets
behavior and exogenous huge consumption goes up or down when one purchases a house or faces
an accident. Research of portfolio selection models on an uncertain exit time can be traced
back to Yaari [14], who formulated an optimal consumption problem for an individual with
uncertain date of death. Using the embedding technique, Yi et al. [17] studied a multi-period
mean-variance portfolio selection problem on risky assets and liability with the uncertain exit
time. Li and Xie [11] incorporated a market-related exogenous uncertain time horizon into a
continuous-time optimal portfolio selection problem. Zhang and Li [18] proposed a multi-period
mean-variance portfolio optimization model with the uncertain time horizon where its returns
are serially correlated. Yao et al. [15] considered uncertain exit time multi-period mean-variance
portfolio selection problems with endogenous liabilities in a Markov jump market.

In this paper, we aim to study multi-period asset-liability mean-variance portfolio selection
with an uncertain exit time. The difficulties of this portfolio selection model are the non-
separability induced by the variance term and the presence of liabilities. Due to the non-
separability, dynamic programming cannot be applied directly to tackle this problem. The
presence of endogenous liabilities enlarges dimension number of state variables which makes this
non-separable model much more challenging. To overcome this fundamental difficulty induced
by non-separability, many researchers developed some fascinating yet important methods such
as the embedding technique proposed by Li and Ng [9], the parameterized method introduced
by Li et al. [10], and the mean-field formulation presented by Cui et al. [3] and Yi et al. [16],
etc. Compared to the embedding technique in Yi et al. [17], we are more interested in the
mean-field formulation to tackle our problem involving two-dimensional state variables, and
derive its analytical optimal strategy and efficient frontier. Furthermore, the corresponding
sensitivity analysis and a real-life example are presented to help the investor better understand
influences of liabilities and uncertain exit time.

The rest of the paper is organized as follows. In section 2, we present the mean-field formu-
lation for the multi-period asset-liability mean-variance portfolio selection with an uncertain
exit time. We derive strictly the optimal strategies and efficient frontiers for different cases in
section 3. Section 4 provides sensitivity analysis and a real-life example. The final section is
concluding remarks.

2 Formulation

Assume that an investor, joining the market at the beginning of period 0 with an initial wealth
x0 and initial liability l0, plans to invest his/her wealth over an entire time horizon. He/she
can reallocate his/her portfolio at the beginning of each following T consecutive periods. The
capital market consists of one risk-free asset, n risky assets and one liability. At time period t,
the given deterministic return of the risk-free asset, the random returns of the n risky assets,
and the random return of the liability are denoted by st (> 1), vector et = (e1

t , · · · , ent )′
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and qt, respectively. The random vector et and the random variable qt are defined over the
probability space (Ω,F , P ) and are supposed to be statistically independent among different
time periods. We further assume that the only information known about et and qt are their
first two unconditional moments, E[et] =

(
E[e1

t ], · · · ,E[ent ]
)′

, E[qt] and (n+ 1)× (n+ 1) positive
definite covariance

Cov

((
et
qt

))
= E

[(
ete
′
t etqt

qte
′
t q2

t

)]
− E

[(
et
qt

)]
E
[(
e′t qt

)]
� 0,

where A � 0 to denote a positive definite matrix A and v′ to denote the transpose of vector v.
From the above assumptions, we have s2

t stE[e′t] stE[qt]
stE[et] E[ete

′
t] E[etqt]

stE[qt] E[qte
′
t] E[q2

t ]

 � 0.

Define the excess return vector of risky assets as Pt = (P 1
t , · · · , Pnt )′ = (e1

t − st, · · · , ent − st)′.
The following is then true for t = 0, 1, · · · , T − 1: s2

t stE[P′t] stE[qt]
stE[Pt] E[PtP

′
t] E[Ptqt]

stE[qt] E[qtP
′
t] E[q2

t ]

 =

 1 0′ 0
−1 I 0
0 0′ 1

 s2
t stE[e′t] stE[qt]

stE[et] E[ete
′
t] E[etqt]

stE[qt] E[qte
′
t] E[q2

t ]

 1 −1′ 0
0 I 0
0 0′ 1

 � 0,

where 1 and 0 are the n-dimensional all-one and all-zero vectors, respectively, and I is the n×n
identity matrix, which further implies,

E[PtP
′
t] � 0, t = 0, 1, · · · , T − 1,

s2
t (1− E[P′t]E−1[PtP

′
t]E[Pt]) > 0, t = 0, 1, · · · , T − 1,

E[q2
t ]− E[qtP

′
t]E−1[PtP

′
t]E[Ptqt] > 0, t = 0, 1, · · · , T − 1.

Denote

Bt
∆
= E[P′t]E−1[PtP

′
t]E[Pt],

B̂t
∆
= E[qtP

′
t]E−1[PtP

′
t]E[Pt],

B̃t
∆
= E[qtP

′
t]E−1[PtP

′
t]E[Ptqt].

Thus, 0 ≤ Bt < 1, 0 ≤ B̃t < E[q2
t ], t = 0, 1, · · · , T − 1.

During the investment, the investor may be forced to leave the financial market at time
τ on or before T by some uncontrollable reasons. The uncertain exit time τ is supposed to
be an exogenous random variable with probability mass function p̃t = Pr{τ = t}, t = 1, 2, · · · .
Therefore, the actual exit time of the investor is T ∧ τ = min{T, τ}, and its probability mass
function is

αt
∆
= Pr{T ∧ τ = t} =


0, t = 0,
p̃t, t = 1, 2, · · · , T − 1,

1−
∑T−1

j=1 p̃j , t = T.

Let xt and lt be the wealth and liability of the investor at the beginning of period t, respectively.
Let πit, i = 1, 2, · · · , n, be the amount invested in the i-th risky asset at period t. Then,
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xt−
∑n

i=1 π
i
t represents the amount invested in the risk-free asset at period t. The information

set at the beginning of period t is denoted as

Ft = σ(P0,P1, · · · ,Pt−1, q0, q1, qt−1),

and F0 is the trivial σ-algebra over Ω. Therefore, E[·|F0] is just the unconditional expectation
E[·]. We confine an admissible investment strategy to be Ft-measurable Markov strategy. Then,
(P′t, qt)

′ and πt = (π1
t , · · · , πnt )′ are independent, {xt, lt} is an adapted Markovian process and

Ft = σ(xt, lt).
The multi-period asset-liability mean-variance portfolio selection problem with uncertain

exit time is to seek the best strategy, π∗t = (π1∗
t , π

2∗
t , · · · , πn∗t )′, t = 0, 1, · · · , T − 1, which is the

optimizer of the following stochastic optimal control problem with an uncertain exit time,

min Var(τ)(xT∧τ − lT∧τ )− wE(τ)[xT∧τ − lT∧τ ],

s.t. xt+1 =
∑n

i=1 e
i
tπ
i
t +

(
xt −

∑n
i=1 π

i
t

)
st

= stxt + P′tπt, t = 0, 1, · · · , T − 1,

lt+1 = qtlt, t = 0, 1, · · · , T − 1,

(1)

where w ≥ 0 is the trade-off parameter between the mean and the variance, and

E(τ)[xT∧τ − lT∧τ ]
∆
=

T∑
t=0

E
[
xT∧τ − lT∧τ

∣∣T ∧ τ = t
]
Pr{T ∧ τ = t} =

T∑
t=0

E[xt − lt]αt,

Var(τ)(xT∧τ − lT∧τ )
∆
=

T∑
t=0

Var
(
xT∧τ − lT∧τ

∣∣T ∧ τ = t
)
Pr{T ∧ τ = t} =

T∑
t=0

Var(xt − lt)αt,

respectively. Then the multi-period mean-variance problem (1) can be equivalently re-written
into the following problem,

min
∑T

t=1 αt

{
Var(xt − lt)− wE[xt − lt]

}
,

s.t. xt+1 = stxt + P′tπt, t = 0, 1, · · · , T − 1,

lt+1 = qtlt, t = 0, 1, · · · , T − 1.

(2)

Since the variance operation does not satisfy the smoothing property, the problem (2) is
nonseparable in the sense of dynamic programming, i.e., it cannot be decomposed by a stage-
wise backward recursion and then is no longer solved by dynamic programming. We try to
tackle it by mean-field formulation. For t = 0, 1, · · · , T − 1, taking the expectation operator of
the dynamic system specified in (2) and noticing that Pt and πt, qt and lt are independent, we
deduce 

E[xt+1] = stE[xt] + E[P′t]E[πt],

E[lt+1] = E[qt]E[lt],

E[x0] = x0,

E[l0] = l0.

(3)
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Combining (2) and (3) into the following, for t = 0, 1, · · · , T − 1,

xt+1 − E[xt+1] = st
(
xt − E[xt]

)
+ P′tπt − E[P′t]E[πt]

= st
(
xt − E[xt]

)
+ P′t

(
πt − E[πt]

)
+
(
P′t − E[P′t]

)
E[πt],

lt+1 − E[lt+1] = qtlt − E[qt]E[lt]

= qt
(
lt − E[lt]

)
+
(
qt − E[qt]

)
E[lt],

x0 − E[x0] = 0,

l0 − E[l0] = 0.

(4)

Then the state space (xt, lt) and the control space (πt) are enlarged into (E[xt], xt−E[xt],E[lt], lt−
E[lt]) and (E[πt],πt−E[πt]), respectively. Although we can select the control vector E[πt] and
πt − E[πt] independently at time t, they should be chosen such that

E[πt − E[πt]] = 0, t = 0, 1, · · · , T − 1,

and thus

E[xt − E[xt]] = 0, t = 0, 1, · · · , T − 1,

is satisfied. We also confine admissible investment strategies (E[πt],πt − E[πt]) to be Ft-
measurable Markov controls.

Therefore, the problem (2) can be reformulated as the following mean-filed type of linear-
quadratic optimal stochastic control problem

min
T∑
t=1

αt

{
E
[(
xt − lt − E[xt − lt]

)2]− wE[xt − lt]},
s.t. {E[xt],E[lt],E[πt]} satisfy dynamic equation (3),

{xt − E[xt], lt − E[lt],πt − E[πt]} satisfy dynamic equation (4),

E[πt − E[πt]] = 0, t = 0, 1, · · · , T − 1.

(5)

Now, it is indeed a separable linear-quadratic optimal stochastic control problem, which can be
solved by classic dynamic programming approach.

3 The Optimal Strategies and Mean-Variance Efficient Fron-
tiers

Before deriving the main results, we present a useful lemma.

Lemma 1 (Sherman-Morrison formula) Suppose that A is an invertible square matrix and
µ and ν are two given vectors. If

1 + ν ′A−1µ 6= 0,

then the following holds,

(A+ µν ′)−1 = A−1 − A−1µν ′A−1

1 + ν ′A−1µ
.
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Firstly, we derive the optimal strategy and efficient frontier for the general case, where
the rates of return of assets and liability are correlated, and the exit time is uncertain. For
simplicity, we define the following backward recursions for seven deterministic sequences of
parameters, {ξt}, {ηt}, {ζt}, {θt}, {ψt}, {εt} and {δt}, as

ξt = ξt+1(1−Bt)s2
t + αt, ηt = ηt+1

(
E[qt]− B̂t

)
st + αt,

ζt = ζt+1st + αt, θt = θt+1E[qt]−
ζt+1ηt+1

ξt+1

B̂t − E[qt]Bt
1−Bt

+ αt,

ψt = ψt+1 −
ζ2
t+1

4ξt+1

Bt
1−Bt

, εt = εt+1E[q2
t ]− η2

t+1ξ
−1
t+1B̃t + αt,

δt = δt+1(E[qt])
2 + εt+1(E[q2

t ]− (E[qt])
2)−

η2
t+1

ξt+1

(
B̃t − (E[qt])

2 +
(B̂t − E[qt])

2

1−Bt

)
,

for t = T − 1, T − 2, · · · , 0, with terminal conditions

ξT = αT , ηT = αT , εT = αT , ζT = αT , θT = αT , δT = 0, ψT = 0.

These parameters can also be expressed as follows,

ξt =
T∑
k=t

αk

k−1∏
j=t

(1−Bj)s2
j , ηt =

T∑
k=t

αk

k−1∏
j=t

(
E[qj ]− B̂j

)
sj ,

ζt =
T∑
k=t

αk

k−1∏
j=t

sj , θt =
T−1∑
k=t

(
αk −

ζk+1ηk+1

ξk+1

B̂k − E[qk]Bk
1−Bk

) k−1∏
j=t

E[qj ] + αT

T−1∏
j=t

E[qj ],

ψt = −
T−1∑
k=t

ζ2
k+1

4ξk+1

Bk
1−Bk

, εt =
T−1∑
k=t

(αk − η2
k+1ξ

−1
k+1B̃k)

k−1∏
j=t

E[q2
j ] + αT

T−1∏
j=t

E[q2
j ],

δt =
T−1∑
k=t

[
εk+1(E[q2

k]− (E[qk])
2)−

η2
k+1

ξk+1

(
B̃k − (E[qk])

2 +
(B̂k − E[qk])

2

1−Bk

)] k−1∏
j=t

(E[qj ])
2.

Using the above seven deterministic parameters, we can express the optimal strategy and effi-
cient frontier of problem (2) in explicit forms as follows.

Theorem 1 The optimal strategy of problem (2) is given by

π∗t = −E−1[PtP
′
t]E[Pt]st

[
xt − E[xt]−

wζt+1 + 2ηt+1

(
B̂t − E[qt]

)
E[lt]

2stξt+1(1−Bt)

]
+
ηt+1

ξt+1
E−1[PtP

′
t]E[Ptqt]lt,

(6)

where

E[xt] = x0

t−1∏
j=0

sj +

t−1∑
k=0

( t−1∏
j=k+1

sj

)(
wζk+1Bk

2ξt+1(1−Bk)
+
ηk+1

ξk+1

B̂k − E[qk]Bk
1−Bk

k−1∏
j=0

E[qj ]l0

)
. (7)

Moreover, the corresponding efficient frontier of problem (2) is given by

Var(τ)(xT∧τ − lT∧τ ) = −(4ψ0)−1
(
E(τ)[xT∧τ − lT∧τ ]− ζ0x0 + θ0l0

)2
+ δ0l

2
0,

for E(τ)[xT∧τ − lT∧τ ] ≥ ζ0x0 − θ0l0.
(8)
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Proof. Please refer to Appendix A. �

Compared with Yi et al. [17], our results involve much simpler yet more efficient formulas for
the optimal strategy and efficient frontier, and all the coefficients can be computed more accu-
rately. In the embedding scheme, a class of auxiliary linear-quadratic optimal stochastic control
problems should be solved explicitly first, and then the optimal auxiliary parameters are de-
termined. This procedure may possibly involve some unnecessary and complicated expressions
or computational errors, resulting in complicated or even inaccurate formulas. However, by
adopting mean-filed formulation, the model can be solved directly and much neater expressions
for the optimal strategy and efficient frontier can be derived.

Secondly, we provide the optimal strategy and efficient frontier for three particular cases,
where the expressions of the optimal strategy and efficient frontier are much simpler yet neater.
Although these results are direct corollaries of Theorem 1, they will help investors better un-
derstand influences of the liability and the uncertain exit time, and may be useful for real-life
applications.

Particular case 1: the rates of return of assets and liability are correlated, and exit time
is fixed to the terminal time T , i.e., αT = 1 and αt = 0 for t = 0, 1, · · · , T − 1. Then, the seven
deterministic parameters are reduced into the following expressions,

ξt =
T−1∏
j=t

(1−Bj)s2
j , ηt =

T−1∏
j=t

(
E[qj ]− B̂j

)
sj , ζt =

T−1∏
j=t

sj , θt =
T−1∏
j=t

E[qj ]− B̂j
1−Bj

,

ψt = −
1−

∏T−1
j=t (1−Bj)

4
∏T−1
j=t (1−Bj)

, εt = −
T−1∑
k=t

B̃k

T−1∏
j=k+1

(E[qj ]− B̂j)2

1−Bj

k−1∏
j=t

E[q2
j ] +

T−1∏
j=t

E[q2
j ],

δt = −
T−1∏
j=t

(E[qj ]− B̂j)2

1−Bj
−
T−1∑
k=t

B̃k

( T−1∏
j=k+1

(
E[qj ]− B̂j

)2
1−Bj

)( k−1∏
j=t

E[q2
j ]

)
+
T−1∏
j=t

E[q2
j ].

Furthermore, according to equation (7) in Theorem 1, it is easy to compute that

E[xt] = x0

t−1∏
j=0

sj +
w

2

( T−1∏
j=t

1

(1−Bj)sj

) t−1∑
k=0

Bk
1−Bk

( t−1∏
j=k+1

1

1−Bj

)

+

( T−1∏
j=t

E[qj ]− B̂j
(1−Bj)sj

) t−1∑
k=0

B̂k − E[qk]Bk
1−Bk

( t−1∏
j=k+1

E[qj ]− B̂j
1−Bj

) k−1∏
j=0

E[qj ]l0

= x0

t−1∏
j=0

sj +
w

2

( T−1∏
j=t

1

(1−Bj)sj

)
1−

∏t−1
j=0(1−Bj)∏t−1

j=0(1−Bj)

+

( T−1∏
j=t

E[qj ]− B̂j
(1−Bj)sj

)( t−1∏
j=0

E[qj ]−
t−1∏
j=0

E[qj ]− B̂j
1−Bj

)
l0,

and

E[xt] +
wζt+1 + 2ηt+1

(
B̂t − E[qt]

)
E[lt]

2stξt+1(1−Bt)
=

(
x0

T−1∏
j=0

sj +
w

2

T−1∏
j=0

1

1−Bj
− l0

T−1∏
j=0

E[qj ]− B̂j
1−Bj

) T−1∏
j=t

s−1
j .

Hence, we get the following corollary for Particular case 1.
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Corollary 1 When the rates of return of assets and liability are correlated and exit time is
fixed to the terminal time T , the optimal strategy of problem (2) is given by

π∗t = −E−1[PtP
′
t]E[Pt]st

(
xt − γ

T−1∏
j=t

s−1
j

)
+

( T−1∏
j=t+1

E[qj ]− B̂j
sj(1−Bj)

)
E−1[PtP

′
t]E[Ptqt]lt,

where

γ = x0

T−1∏
j=0

sj +
w

2

T−1∏
j=0

1

1−Bj
− l0

T−1∏
j=0

E[qj ]− B̂j
1−Bj

.

Moreover, the efficient frontier of problem (2) is given by

Var(xT − lT ) =

∏T−1
j=t (1−Bj)

1−
∏T−1
j=t (1−Bj)

(
E[xT − lT ]−

T−1∏
j=0

sjx0 +

T−1∏
j=0

E[qj ]− B̂j
1−Bj

l0

)2

+ δ0l
2
0, (9)

for E[xT − lT ] ≥
T−1∏
j=0

sjx0 −
T−1∏
j=0

E[qj ]− B̂j
1−Bj

l0.

Particular case 2: the rates of return of assets and liability are independent, and the exit
time is uncertain. Then, we have

B̂t = E[qt]E[P′t]E−1[PtP
′
t]E[Pt] = E[qt]Bt, t = 0, 1, · · · , T − 1,

B̃t =
(
E[qt]

)2E[P′t]E−1[PtP
′
t]E[Pt] =

(
E[qt]

)2
Bt, t = 0, 1, · · · , T − 1,

which reduce the expressions of the seven deterministic parameters as follows,

ξt =

T∑
k=t

αk

k−1∏
j=t

(1−Bj)s2
j , ηt =

T∑
k=t

αk

k−1∏
j=t

(1−Bj)E[qj ]sj ,

ζt =

T∑
k=t

αk

k−1∏
j=t

sj , θt =

T∑
k=t

αk

k−1∏
j=t

E[qj ], ψt = −
T−1∑
k=t

ζ2
k+1

4ξk+1

Bk
1−Bk

,

εt =

T−1∑
k=t

(αk − η2
k+1ξ

−1
k+1Bk(E[qk])

2)

k−1∏
j=t

E[q2
j ] + αT

T−1∏
j=t

E[q2
j ],

δt =

T−1∑
k=t

(αk − η2
k+1ξ

−1
k+1Bk(E[qk])

2)

( k−1∏
j=t

E[q2
j ]−

k−1∏
j=t

(E[qj ])
2

)
+ αT

( T−1∏
j=t

E[q2
j ]−

T−1∏
j=t

(E[qj ])
2

)
.

Using the above notation, we get the following corollary for Particular case 2.

Corollary 2 When the rates of return of assets and liability are independent, and the exit
time is uncertain, the optimal strategy of problem (2) is given by

π∗t = −E−1[PtP
′
t]E[Pt]st

[
xt − E[xt]−

wζt+1

2stξt+1(1−Bt)
− ηt+1E[qt](lt − E[lt])

stξt+1

]
,

where

E[xt] = x0

t−1∏
j=0

sj +
w

2

t−1∑
k=0

( t−1∏
j=k+1

sj

)
ζk+1

ξk+1

Bk
1−Bk

.
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Moreover, the efficient frontier of problem (2) is given by

Var(xT − lT )

=

( T−1∑
k=0

ζ2
k+1

ξk+1

Bk
1−Bk

)−1(
E[xT − lT ]−

T∑
k=0

αk

k−1∏
j=0

sjx0 +
T∑
k=0

αk

k−1∏
j=0

E[qj ]l0

)2

+ δ0l
2
0, (10)

for E[xT − lT ] ≥
T∑
k=0

αk

k−1∏
j=0

sjx0 −
T∑
k=0

αk

k−1∏
j=0

E[qj ]l0.

Particular case 3: the rates of return of assets and liability are independent, and exit
time is fixed to the terminal time T . Then, the seven deterministic parameters are reduced to

ξt =
T−1∏
j=t

(1−Bj)s2
j , ηt =

T−1∏
j=t

(1−Bj)E[qj ]sj , ζt =
T−1∏
j=t

sj , θt =
T−1∏
j=t

E[qj ],

ψt = −
1−

∏T−1
j=t (1−Bj)

4
∏T−1
j=t (1−Bj)

, εt = −
T−1∑
k=t

(E[qk])
2Bk

T−1∏
j=k+1

(E[qj ])
2(1−Bj)

k−1∏
j=t

E[q2
j ] +

T−1∏
j=t

E[q2
j ],

δt = −
T−1∏
j=t

(E[qj ])
2(1−Bj)−

T−1∑
k=t

(E[qk])
2Bk

( T−1∏
j=k+1

(E[qj ])
2(1−Bj)

)( k−1∏
j=t

E[q2
j ]

)
+
T−1∏
j=t

E[q2
j ].

We get the following corollary for Particular case 3.

Corollary 3 When the rates of return of assets and liability are independent, and exit time is
fixed to the terminal time T , the optimal strategy of problem (2) is given by

π∗t = −E−1[PtP
′
t]E[Pt]st

(
xt − γ

T−1∏
j=t

s−1
j −

T−1∏
j=t

E[qj ]

sj
lt

)
,

where

γ = x0

T−1∏
j=0

sj +
w

2

T−1∏
j=0

1

1−Bj
− l0

T−1∏
j=0

E[qj ].

Moreover, the efficient frontier of problem (2) is given by

Var(xT − lT ) =

∏T−1
j=t (1−Bj)

1−
∏T−1
j=0 (1−Bj)

(
E[xT − lT ]−

T−1∏
j=0

sjx0 +

T−1∏
j=0

E[qj ]l0

)2

+ δ0l
2
0, (11)

for E[xT − lT ] ≥
T−1∏
j=0

sjx0 −
T−1∏
j=0

E[qj ]l0.

4 Sensitivity Analysis and a Real-life Example

In this section, we study the impacts of different parameters through sensitivity analysis of an
artificial example. Then, we analyze a real-life example to learn the practical consequences of
the derived optimal strategy.
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Table 1: Information of the risky asset and the liability
risky asset liability

Expected return 14% 10%
Standard deviation 18.5% 20%

Correlation coefficient 0.25

First, let us consider an artificial market, in which there are one risk-free asset, one risky
asset and one liability. The annual return of the risk-free asset is 5%. Other information of the
annual rates of return of the risky asset and the liability are given in Table 1. We further assume
that the investor has initial wealth x0 = 3, initial liability l0 = 1, a trade-off parameter between
the mean and the variance w = 1 and an investment horizon T = 5 years. Then, according to
equation (6) in Theorem 1, the optimal mean-variance strategy takes a linear feedback form as
follows,

π∗t = −ktxt + k̃tlt + ktk̂t, t = 0, 1, 2, 3, 4,

where

kt = E−1[P 2
t ]E[Pt]st = 2.2327,

k̂t = E[xt] +
wζt+1 + 2ηt+1

(
B̂t − E[qt]

)
E[lt]

2stξt+1(1−Bt)
,

k̃t =
ηt+1

ξt+1
E−1[P 2

t ]E[Ptqt].

The optimal strategy consists of three components: a wealth-dependent component −ktxt, a
liability-dependent component k̃tlt and a time-varying component ktk̂t. It is easy to see that
the coefficient of the wealth-dependent component only relies on the investment opportunity of
the market (i.e., the parameter Pt and st).

In the following three subsections, we analyze the impacts of the uncertain exit time τ , the
liability lt and the correlation coefficient ρ, respectively.

4.1 The impact of the uncertain exit time

In this subsection, we assume that the actual exit time T ∧τ has four different probability mass

functions, α(i) = (α
(i)
1 , α

(i)
2 , α

(i)
3 , α

(i)
4 , α

(i)
5 )′, (i = 1, 2, 3, 4), as follows,

α(1) = (0.1, 0.15, 0.2, 0.25, 0.3)′, α(2) = (0, 0.1, 0.1, 0.3, 0.5)′,

α(3) = (0, 0, 0.1, 0.2, 0.7)′, α(4) = (0, 0, 0, 0, 1)′,

where α(4) means that the investor exits the market at the terminal time T . Table 2 shows
the parameters k̂t, k̃t of the optimal strategy, the expected value and variance of the wealth
at exit time, for different α(i)s. We can see that under our setting, the later the investor exits
the financial market, the bigger the values of k̂t and k̃t, i.e., the larger the liability-dependent
component and the time-varying component. As a result, a larger expected value of the wealth
can be achieved. Furthermore, when t increases, k̂t increases and k̃t decreases. Thus, the
investor would like to increase the time-varying component and decrease the liability-dependent
component of the optimal strategy as time evolves.

Figure 1 describes the efficient frontiers with different α(i)s by changing ω from 0 to +∞.
We can see that the efficient frontiers cross each other. When the investor can bear a relative

10



Table 2: The impact of the uncertain exit time
α1 α2 α3 α4

k̂0 2.7946 2.8847 2.9425 3.0048

k̂1 2.9619 3.0289 3.0896 3.1550

k̂2 3.1393 3.2024 3.2441 3.3128

k̂3 3.3245 3.3754 3.4195 3.4784

k̂4 3.5164 3.5655 3.6034 3.6523

k̃0 2.7047 2.7562 2.7868 2.8171

k̃1 2.6619 2.6904 2.7203 2.7498

k̃2 2.6243 2.6452 2.6553 2.6842

k̃3 2.5899 2.5950 2.6050 2.6201

k̃4 2.5576 2.5576 2.5576 2.5576

E(τ)(x5∧τ ) 2.8442 3.0563 3.1894 3.3349

Var(τ)(x5∧τ ) 0.4643 0.5870 0.6651 0.7516

large risk (i.e., ω is large), the later the investor exits the financial market, the better efficient
frontier he can achieve. However, when the investor aims to minimize the risk only or can bear
a relative small risk (i.e., ω is small), the sooner the investor exists the financial market, the
better the achieved efficient frontier. The reason behind is the existence of the liability. When
the investor exits the financial market early, the uncertainty of the liability is not large and
can be largely reduced by the asset, which results in a portfolio with low risk. But when the
investor exits the financial market late, the uncertainty of the liability is large and can only be
partially reduced by the asset.

Figure 1: Efficient frontiers with different α(i)s

4.2 The impact of the liability

In this subsection, we choose α = (0.1, 0.15, 0.2, 0.25, 0.3). To see the impact of the liability,
we consider the case without liability as benchmark and assume that the standard deviation
of the rate of return of the liability has three choices, 0.2, 0.3, 0.4, (i.e., Std[qt] = 0.2, 0.3, 0.4).
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The parameters k̂t, k̃t of the optimal strategy, the expected value and variance of the wealth at
exit time are showed in Table 3 and the efficient frontiers are represented in Figure 2.

Table 3: The impact of the liability
no liability Std[qt] = 0.2 Std[qt] = 0.3 Std[qt] = 0.4

k̂0 3.8780 2.7946 2.8348 2.8737

k̂1 4.1091 2.9619 3.0088 3.0541

k̂2 4.3564 3.1393 3.1945 3.2480

k̂3 4.6175 3.3245 3.3896 3.4529

k̂4 4.8913 3.5164 3.5929 3.6676

k̃0 0.0000 2.7047 2.7466 2.7843

k̃1 0.0000 2.6619 2.7237 2.7820

k̃2 0.0000 2.6243 2.7033 2.7799

k̃3 0.0000 2.5899 2.6846 2.7780

k̃4 0.0000 2.5576 2.6669 2.7761

E(τ)(x5∧τ ) 4.1414 2.8442 2.8965 2.9472

Var(τ)(x5∧τ ) 0.2877 0.4643 0.7067 1.1

Figure 2: Efficient frontiers with different Std[qt]s

From Table 3, we can see that both the liability-dependent component and the time-varying
component increase as the standard deviation of the liability increases. Thus, the investor
should maintain larger risky asset holding to offset the increasing uncertainty of the liability.
Similar to the result of Subsection 4.1, the investor would like to increase the time-varying
component and decrease the liability-dependent component of the optimal strategy as time
evolves. From Figure 2, we can see that if there is no liability, the efficient frontier is much
higher and the minimum variance portfolio can achieve zero risk level by only investing the
risk-free asset. When there exists a liability in the market, the efficient frontier decreases as
the standard deviation of the rate of return of the liability increases.
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4.3 The impact of the correlation coefficient

In this subsection, we choose α = (0.1, 0.15, 0.2, 0.25, 0.3). To see the impact of the correlation
coefficient, we assume that ρ = −1,−0.5, 0, 0.5, 1. The parameters k̂t, k̃t of the optimal strategy,
the expected value and variance of the wealth at exit time are showed in Table 4 and the efficient
frontiers are represented in Figure 3.

Table 4: The impact of the correlation coefficient
ρ = −1 ρ = −0.5 ρ = 0 ρ = 0.5 ρ = 1

k̂0 2.3129 2.5240 2.7101 2.8737 3.0171

k̂1 2.4036 2.6477 2.8637 3.0541 3.2216

k̂2 2.4877 2.7714 3.0239 3.2480 3.4466

k̂3 2.5656 2.8940 3.1888 3.4529 3.6892

k̂4 2.6376 3.0152 3.3575 3.6676 3.9485

k̃0 2.0105 2.3541 2.6075 2.7843 2.8967

k̃1 1.8358 2.2146 2.5279 2.7820 2.9830

k̃2 1.6927 2.0971 2.4588 2.7799 3.0624

k̃3 1.5711 1.9943 2.3966 2.7780 3.1384

k̃4 1.4649 1.9019 2.3390 2.7761 3.2132

E(τ)(x5∧τ ) 2.2224 2.4939 2.7345 2.9472 3.1347

Var(τ)(x5∧τ ) 0.2915 0.4548 0.4865 0.4219 0.2880

Figure 3: Efficient frontiers with different ρs

As shown in Table 4, when the correlation coefficient ρ increases, both the liability-dependent
component and the time-varying component increases. Taking ρ = −1 (or ρ = 1) as an ex-
ample, the investor would like to take short position (or long position) in the risky asset to
hedge the liability. From the expression of the optimal strategy π∗, we can see that the only
way to maintain a short position (or long position) in risky asset is decreasing (or increasing)
the liability-dependent component and the time-varying component. Furthermore, the case of
ρ = 0 gives the largest risk. The reason behind is that when the absolute value of the corre-
lation coefficient is large, it is much easier for the investor to overcome the uncertainty of the
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liability through investing the risky asset. Figure 3 shows that the efficient frontier with higher
ρ is better. It is also straightforward. To control the risk, the investor tends to take more and
more long position in the risky asset as ρ increases. As the expect rate of excess return of the
risky asset is positive, the larger long position in risky asset, the bigger the expected value of
the wealth at the exit time, i.e., the better the efficient frontier.

4.4 A Real-life Example

In this subsection, we consider a real-life example and study the practical consequences of the
derived optimal strategy.

The investor is a 60-year old worker, who will retire at age 65. He has 3 million Chinese
yuan cash and 1 million Chinese yuan loan to repay. The loan is adjusted annually according
to the inflation rate in the year. The worker wants to invest in a bank account and Chinese
stock market index ETF (CSI 300 Index ETF) until his retirement. During the investment, he
suffers from a possible death, which is characterised by the life table. Therefore, the worker’s in-
vestment decision problem can be formulated as a 5-year asset-liability mean-variance portfolio
selection with an uncertain exit time.

In details, the expected value and variance of the annual rate of return of CSI 300 Index
ETF is computed using the monthly data of CSI 300 Index from January 2001 to February
2016. The expected value and variance of the annual rate of return of the loan are computed
using the monthly data of CPI (Consumer Price Index) from January 2001 to February 2016.
Then, the correlation coefficient between the annual rates of return of CSI 300 Index ETF and
the load is also estimated. The annual rate of return of the bank account is set 1.75%, which
is the one-year fixed deposit rate. The probability mass function of the uncertain exit time is
computed using 2010 Life Table for Chinese Males. More specifically, we have

x0 = 3 million, l0 = 1 million, st = 1.0175, E[Pt] = 0.0411, Var[Pt] = 0.0822,

E[qt] = 1.0268, Var[qt] = 4.84× 10−4, ρ = 0.0751,

α1 = 0.0085, α2 = 0.00934, α3 = 0.01033 α4 = 0.01106, α5 = 0.96077.

As the worker may want to achieve a remarkable wealth for his retirement, it is reasonable
to assume that he has a moderate risk-averse attitude. Thus, we choose ω = 10. Table 5 shows
the optimal strategy at time 0, the parameters k̂t, k̃t of the optimal strategy, the expected value
and variance of the wealth at exit time for four cases. We can see that once the uncertain exit
time is considered, the worker tends to take smaller positions in the risky asset. However, as the
probability of death before retirement is small, the uncertain exit time has limited impact on
the optimal strategy and the expected value and variance of the wealth. When the liability is
considered, the worker tends to take larger positions in the risky asset at time 0, and achieves a
larger risk. As the correlation coefficient and the variance of the liability are small, the liability
has limited impact on the optimal strategy and the variance of the wealth. But it does have a
large impact on the expected value of the wealth, for the liability should be repaid at the exit
time.

The main difference between multi-period asset-liability mean-variance portfolio selection
with an uncertain exit time and a classical multi-period mean-variance portfolio selection is
the inclusion of the liability and the uncertain exit time. The probability mass function of the
exit time, the variance of the liability and the correlation coefficients are key parameters, which
need to be estimated accurately.
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Table 5: The parameters k̂t, k̃t and investment performances
general case fixed exit time no liability no liability and

fixed exit time

π∗0 2.5355 2.5362 2.5295 2.5302

k̂0 7.0295 7.0301 8.0740 8.0754

k̂1 7.1527 7.1531 8.2158 8.2167

k̂2 7.2781 7.2783 8.3600 8.3605

k̂3 7.4055 7.4056 8.5066 8.5068

k̂4 7.5352 7.5352 8.6556 8.6557

k̃0 0.5267 0.5271 0.0000 0.0000

k̃1 0.5222 0.5224 0.0000 0.0000

k̃2 0.5177 0.5178 0.0000 0.0000

k̃3 0.5132 0.5133 0.0000 0.0000

k̃4 0.5087 0.5087 0.0000 0.0000

E(τ)(x5∧τ ) 2.6544 2.6671 3.7917 3.8072

Var(τ)(x5∧τ ) 2.6282 2.6795 2.6254 2.6766

5 Conclusion

In financial practices, the investor may encounter multi-period asset-liability mean-variance
portfolio selection problem with an uncertain exit time. Different from other approaches in
the current literature, we propose a mean-field reformulation for dealing with this problem,
and derive its analytical optimal strategy and efficient frontier. The corresponding sensitivity
analysis and a real-life example show that the probability mass function of the exit time, the
variance of the liability and the correlation coefficients are key parameters for the model. The
investor tends to enlarge the risky assets’ holding during the investment, when i) he exits the
market late, ii) the variance of the liability increases, or iii) the correlation coefficient increases.

Appendix A: Proof of Theorem 1

We prove the main results by dynamic programming approach. For the information set Ft, the
cost-to-go functional at period t is computed by

Jt(E[xt], xt − E[xt],E[lt], lt − E[lt])

= min
{πt−E[πt],E[πt]}

E
[
Jt+1

(
E[xt+1], xt+1 − E[xt+1],E[lt+1], lt+1 − E[lt+1]

)∣∣Ft]
+ αt

(
xt − lt − E[xt − lt]

)2 − wαtE[xt − lt].

The cost-to-go functional at terminal time T is

JT
(
E[xT ], xT − E[xT ],E[lT ], lT − E[lT ]

)
=αT

(
xT − lT − E[xT − lT ]

)2 − wαTE[xT − lT ]
=ξT

(
xT − E[xT ]

)2 − 2ηT
(
lT − E[lT ]

)(
xT − E[xT ]

)
+ εT

(
lT − E[lT ]

)2
− wζTE[xT ] + wθTE[lT ] + δT (E[lT ])2 + w2ψT .
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Assume that the cost-to-go functional at time t+ 1 is the following expression

Jt+1

(
E[xt+1], xt+1 − E[xt+1],E[lt+1], lt+1 − E[lt+1]

)
= ξt+1

(
xt+1 − E[xt+1]

)2 − 2ηt+1

(
lt+1 − E[lt+1]

)(
xt+1 − E[xt+1]

)
+ εt+1

(
lt+1 − E[lt+1])2

−wζt+1E[xt+1] + ωθt+1E[lt+1] + δt+1(E[lt+1])2 + w2ψt+1.

We prove that the above statement still holds at time t. For given information set Ft, i.e.,
knowing xt − E[xt], E[xt], lt − E[lt] and E[lt], we have

E
[
Jt+1

(
E[xt+1], xt+1 − E[xt+1],E[lt+1], lt+1 − E[lt+1]

)∣∣Ft]
=E
[
ξt+1

[
st
(
xt − E[xt]

)
+ P′t

(
πt − E[πt]

)
+
(
P′t − E[P′t]

)
E[πt]

]2

− 2ηt+1

[
qt
(
lt − E[lt]

)
+
(
qt − E[qt]

)
E[lt]

][
st
(
xt − E[xt]

)
+ P′t

(
πt − E[πt]

)
+
(
P′t − E[P′t]

)
E[πt]

]
+ εt+1

[
qt(lt − E[lt]) + (qt − E[qt])E[lt]

]2 − wζt+1

(
stE[xt] + E[P′t]E[πt]

)
+ wθt+1E[qt]E[lt] + δt+1(E[qt]E[lt])

2 + w2ψt+1

∣∣∣∣Ft]
=ξt+1

[
s2
t

(
xt − E[xt]

)2
+
(
πt − E[πt]

)′E[PtP
′
t]
(
πt − E[πt]

)
+ 2st

(
xt − E[xt]

)
E[P′t]

(
πt − E[πt]

)
+ E[π′t]

(
E[PtP

′
t]− E[Pt]E[P′t]

)
E[πt] + 2

(
πt − E[πt]

)′(E[PtP
′
t]− E[Pt]E[P′t]

)
E[πt]

]
− 2ηt+1

[
stE[qt]

(
lt − E[lt]

)(
xt − E[xt]

)
+ E[qtP

′
t]
(
lt − E[lt]

)(
πt − E[πt]

)
+
(
E[qtP

′
t]− E[qt]E[P′t]

)(
E[lt]

(
πt − E[πt]

)
+
(
lt − E[lt]

)
E[πt] + E[lt]E[πt]

)]
+ εt+1

[
E[q2

t ](lt − E[lt])
2 + 2(E[q2

t ]− (E[qt])
2)(lt − E[lt])E[lt] + (E[q2

t ]− (E[qt])
2)(E[lt])

2
]

− wζt+1

(
stE[xt] + E[P′t]E[πt]

)
+ wθt+1E[qt]E[lt] + δt+1(E[qt]E[lt])

2 + w2ψt+1.

Since any admissible strategy of (E[πt],πt−E[πt]) satisfies E[πt−E[πt]] = 0 and E[lt−E[lt]] = 0
holds, we have

E
[(
πt − E[πt]

)′(E[PtP
′
t]− E[Pt]E[P′t]

)
E[πt]

∣∣∣F0

]
= 0,

E
[(
E[qtP

′
t]− E[qt]E[P′t]

)
E[lt]

(
πt − E[πt]

)∣∣∣F0

]
= 0,

E
[(
E[qtP

′
t]− E[qt]E[P′t]

)(
lt − E[lt]

)
E[πt]

∣∣∣F0

]
= 0,

E
[
(E[q2

t ]− (E[qt])
2)(lt − E[lt])E[lt]

∣∣∣F0

]
= 0.

We first identify optimal (E[π∗t ],π
∗
t − E[π∗t ]) by minmimizing the following equivalent cost
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functional,

E
[
Jt+1

(
E[xt+1], xt+1 − E[xt+1],E[lt+1], lt+1 − E[lt+1]

)∣∣Ft]
=ξt+1

[
s2
t

(
xt − E[xt]

)2
+
(
πt − E[πt]

)′E[PtP
′
t]
(
πt − E[πt]

)
+ 2st

(
xt − E[xt]

)
E[P′t]

(
πt − E[πt]

)
+ E[π′t]

(
E[PtP

′
t]− E[Pt]E[P′t]

)
E[πt]

]
− 2ηt+1

[
stE[qt]

(
lt − E[lt]

)(
xt − E[xt]

)
+ E[qtP

′
t]
(
lt − E[lt]

)(
πt − E[πt]

)
+
(
E[qtP

′
t]− E[qt]E[P′t]

)
E[lt]E[πt]

]
+ εt+1

[
E[q2

t ](lt − E[lt])
2 + (E[q2

t ]− (E[qt])
2)(E[lt])

2
]

− wζt+1

(
stE[xt] + E[P′t]E[πt]

)
+ wθt+1E[qt]E[lt] + δt+1(E[qt]E[lt])

2 + w2ψt+1,

without considering the linear constraint E[πt−E[πt]] = 0, and verify then the derived optimal
strategy satisfies this constraint automatically.

It is easy to see that π∗t − E[π∗t ] can be expressed by the linear form of states and their
expected states, and E[π∗t ] can be constructed by the linear form of the expected states, i.e.,

π∗t − E[π∗t ] = −E−1[PtP
′
t]E[Pt]st

(
xt − E[xt]

)
+ ηt+1ξ

−1
t+1E

−1[PtP
′
t]E[Ptqt]

(
lt − E[lt]

)
, (12)

E[π∗t ] =
(
E[PtP

′
t]− E[Pt]E[P′t]

)−1
[
wζt+1

2ξt+1
E[Pt] +

ηt+1

ξt+1

(
E[Ptqt]− E[qt]E[Pt]

)
E[lt]

]
=
wζt+1 + 2ηt+1

(
B̂t − E[qt]

)
E[lt]

2ξt+1(1−Bt)
E−1[PtP

′
t]E[Pt] +

ηt+1

ξt+1
E−1[PtP

′
t]E[Ptqt]E[lt]. (13)

In order to get the explicit expression of the cost-to-go functional at time t, we substitute
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π∗t − E[π∗t ] and E[π∗t ] back and derive

Jt
(
E[xt], xt − E[xt],E[lt], lt − E[lt]

)
= min
{πt−E[πt],E[πt]}

E
[
Jt+1

(
E[xt+1], xt+1 − E[xt+1],E[lt+1], lt+1 − E[lt+1]

)∣∣Ft]
+ αt

(
xt − lt − E[xt − lt]

)2 − wαtE[xt − lt]

=ξt+1s
2
t

(
xt − E[xt]

)2 − 2ηt+1stE[qt]
(
lt − E[lt]

)(
xt − E[xt]

)
− wζt+1stE[xt] + wθt+1E[qt]E[lt]

+ εt+1

[
E[q2

t ](lt − E[lt])
2 + (E[q2

t ]− (E[qt])
2)(E[lt])

2
]

+ δt+1(E[qt]E[lt])
2 + w2ψt+1

− ξt+1

[
− E−1[PtP

′
t]E[P′t]st

(
xt − E[xt]

)
+ ηt+1ξ

−1
t+1E

−1[PtP
′
t]E[qtP

′
t]
(
lt − E[lt]

)]
· E[PtP

′
t]
[
− E−1[PtP

′
t]E[Pt]st

(
xt − E[xt]

)
+ ηt+1ξ

−1
t+1E

−1[PtP
′
t]E[Ptqt]

(
lt − E[lt]

)]
− ξt+1

[
wζt+1

2ξt+1
E[P′t] +

ηt+1

ξt+1

(
E[qtP

′
t]− E[qt]E[P′t]

)
E[lt]

]
·
(
E[PtP

′
t]− E[Pt]E[P′t]

)−1
[
wζt+1

2ξt+1
E[Pt] +

ηt+1

ξt+1

(
E[Ptqt]− E[qt]E[Pt]

)
E[lt]

]
+ αt

[
(xt − E[xt])− (lt − E[lt])

]2 − wαtE[xt − lt]

=ξt+1s
2
t (1−Bt)

(
xt − E[xt]

)2 − 2ηt+1st
(
E[qt]− B̂t

)(
lt − E[lt]

)(
xt − E[xt]

)
+
(
εt+1E[q2

t ]− η2
t+1ξ

−1
t+1B̃t

)(
lt − E[lt]

)2 − wζt+1stE[xt]

+ w

[
θt+1E[qt]−

ζt+1ηt+1

ξt+1

B̂t − E[qt]Bt
1−Bt

]
E[lt] + w2

[
ψt+1 −

ζ2
t+1

4ξt+1

Bt
1−Bt

]
+

[
δt+1(E[qt])

2 + εt+1(E[q2
t ]− (E[qt])

2)−
η2
t+1

ξt+1

(
B̃t − (E[qt])

2 +
(B̂t − E[qt])

2

1−Bt

)](
E[lt]

)2
+ αt(xt − E[xt])

2 − 2αt(lt − E[lt])(xt − E[xt]) + αt(lt − E[lt])
2 − wαtE[xt] + wαtE[lt]

=ξt
(
xt − E[xt]

)2 − 2ηt
(
lt − E[lt]

)(
xt − E[xt]

)
+ εt

(
lt − E[lt]

)2
− wζtE[xt] + wθtE[lt] + δt(E[lt])

2 + w2ψt.

Substituting E[π∗t ] to dynamics of E[xt] in (3) yields

E[xt+1] = stE[xt] +
w

2

ζt+1

ξt+1

Bt
1−Bt

+
ηt+1

ξt+1

B̂t − E[qt]Bt
1−Bt

E[lt],

which implies

E[xt] = x0

t−1∏
j=0

sj +
t−1∑
k=0

( t−1∏
j=k+1

sj

)(
wζk+1Bk

2ξk+1(1−Bk)
+
ηk+1

ξk+1

B̂k − E[qk]Bk
1−Bk

k−1∏
j=0

E[qj ]l0

)
. (14)

Hence, following from (12), (13) and (14), we derive the desired result, i.e., π∗t =
(
π∗t −E[π∗t ]

)
+

E[π∗t ] in (6).
Next, we show that this optimal strategy satisfies the linear constraints. At time 0, E[π∗0 −

E[π∗0]] = 0 is obvious due to x0 = E[x0] and l0 = E[l0]. Then, according to the dynamic system
of (4), we have E[x1−E[x1]] = 0 and E[l1−E[l1]] = 0, which further implies E[π∗1−E[π∗1]] = 0.
Repeating this argument, we have E[π∗t − E[π∗t ]] = 0 holds for all t.

Finally, we derive the efficient frontier. The optimal objective of problem (5) is as follows,

J0

(
E[x0], 0,E[l0], 0

)
= −wζ0x0 + wθ0l0 + δ0l

2
0 + w2ψ0. (15)
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In addition, from (14), we have

E(τ)[xT∧τ − lT∧τ ]

=
T∑
t=0

E[xt]αt −
T∑
t=1

E[lt]αt

=
T∑
t=0

(
x0

t−1∏
j=0

sj +
t−1∑
k=0

( t−1∏
j=k+1

sj

)(
wζk+1Bk

2ξt+1(1−Bk)
+
ηk+1

ξk+1

B̂k − E[qk]Bk
1−Bk

k−1∏
j=0

E[qj ]l0

)
− E[lt]

)
αt

= ζ0x0 − 2wψ0 − θ0l0,

i.e.,

w = −(2ψ0)−1
(
E(τ)[xT∧τ − lT∧τ ]− ζ0x0 + θ0l0

)
.

Hence, according to (15), we can derive the variance term as

Var(τ)(xT∧τ − lT∧τ )

=wE(τ)[xT∧τ − lT∧τ ] + J0

(
x0, 0, l0, 0

)
=− w2ψ0 + δ0l

2
0

=− (4ψ0)−1
(
E(τ)[xT∧τ − lT∧τ ]− ζ0x0 + θ0l0

)2
+ δ0l

2
0,

which implies the efficient frontier.
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