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Abstract: An algorithm is described for determining the interior layout of a building given three pieces of information: (1) the footprint of
each story; (2) a reasonably complete set of exterior features; and (3) a shape grammar that describes the building style. Essentially, the
algorithm prunes a layout tree generated by interpreting the shape grammar with constraints extracted from the footprint and exterior features.
The Queen Anne house, commonly located in Pittsburgh, is chosen as the exemplars of the building style. It is shown how a shape-grammar
interpreter for the Queen Anne house was developed and applied to the preceding problem. This shape-grammar interpreter provides the basis
for developing grammar interpreters for general parametric shapes. For the purposes of illustration and comparison, applications of the
approach to two other distinct building styles are briefly described. DOI: 10.1061/(ASCE)CP.1943-5487.0000129. © 2012 American
Society of Civil Engineers.
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Introduction

Buildings are a good resource of exemplars of design, aesthetics,
construction, and technology. Buildings make for good “copy,” in-
spiring designers and intriguing critics alike with their features.
Buildings are grist to the mill for the historian and valuable in other
ways too. During situations of urban strife, buildings become stra-
tegic entities for law enforcement. From a perspective of sustain-
ability, buildings provide reusable material. Indeed, assessing the
environmental effect of demolishing and salvaging building stock
requires one to estimate the amount of renewable materials in a
building. In particular, the last two examples suggest the following
question: how much can one say about a building without actually
stepping into it? For example, could one approximately predict the
layout of the interior of a building from observations of its exterior
and surrounding features (e.g., entrances, windows, ornaments, and
decorations)? In reality, providing an answer, perhaps, although it
might not be difficult for a human, particularly for buildings in a
familiar style, it is a hard computational problem.

Fig. 1 shows two photographs of a Queen Anne house, a well-
established housing style in Pittsburgh. The images clearly portray
a three-story building. On the left side photograph, it is easy to see
a front porch, on the ground floor. The two columns on the left,
together with the steps and double door, “tell” us that this is the
main entrance. To the right, the front porch defines a patio; the large

window at the back suggests that the interior must be a living room
(that is, a parlor room). This is somewhat confirmed by the pres-
ence of a chimney over the roof; see the right side of the photo-
graph. The bay window and dormer shown indicate two rooms
(spaces) behind the living room; the room in the interior of the
bay window must be another public room. Typically, rooms on
the second and third floor are bedrooms. As more features are ob-
served, (e.g., from other views), the ability to guess become better
and more refined. Fig. 2 shows the real floor plans for the building.

Estimating the layout of a building is a nonsimple task for a
machine, even with present day technology. Although the precise
mechanisms for human recognition remain unclear, it is safe to as-
sume that human abilities rely on reasoning based upon accumu-
lated knowledge of the past. In the absence of such knowledge; for
example, an individual in an unfamiliar (say, a different cultural or
vernacular) setting might also find it difficult to estimate the interior
layout of a building, or even the nature of the building. This is typ-
ical of the kinds of problems encountered in building restoration
and preservation activities. This leads to speculation that were there
ways of providing a machine with the necessary knowledge,
together with algorithms to reason against input features, a machine
might be able to generate possible layouts, at least for buildings of
certain special types.

Potentially, such a technology would be useful for a variety of
practical applications. For example, as previously mentioned, as-
sessing the environmental effect of demolition and salvage of build-
ing stock. The city of Baltimore is a case in point (Lund and Yost
1997). Automating the process of interior layout determination
would greatly assist this endeavor. Potential application of this
work includes assisting firefighters in estimating interiors of a
building and automated building restoration from historical or dam-
aged remains.

Forming the Problem as a Research Question

Even for humans, it can be extremely hard to ascertain the interior
layout of particular buildings from their exterior features. For
example, the Walt Disney Concert Hall by Frank Gehry does not
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conform to any known normal architectural conventions (Meyer
2008). Clearly, it is unlikely that one can develop a general com-
putational solution strategy for the problem of estimating interior
layouts.

On the other hand, many buildings follow a pattern book
(Downing 1981; Flemming et al. 1985; Hayward and Belfoure
2005); as such, this provides a handle on how this problem might
be tackled. That is, buildings that vary according to well-defined
configurational patterns and/or certain well-established sets of reg-
ulations and dimensions exist. Then, collections of buildings can be
recognized as belonging to particular styles. Among these, Frank
Lloyd Wright’s Prairie House (Koning and Eizenberg 1981), the
Queen Anne house (Flemming 1987), and the Baltimore rowhouse
(Hayward 1981) are well-known exemplars, each characterized by
features distinctive of their form and design. Employing knowledge
about building styles might make the problem more tractable.

For a human designer, a pattern book might well suffice,
whereas from a programming perspective a computational

mechanism is needed to represent style data encapsulated in the
pattern book. For this, a shape grammar (Stiny 2006) is employed,
although it is possible to use other rule-based or generative
approaches to describe buildings that fall within a particular style.
A shape grammar provides a remarkable facility for capturing the
spatial and topological aspects of building styles and for generating
these designs.

For the purposes of this paper, it is assumed that the reader is
familiar with the subject matter of shape grammars (Stiny 1980,
1991, 2006). Briefly, a shape grammar is a system of rules, each
consisting, notionally, of a left and right part, both of which are
parametric shapes augmented with labels (or markers). A paramet-
ric shape specifies a family of shapes defined by associating param-
eters or parametric expressions to satisfy certain conditions in the
given shape. A particular member of this family is specified by giv-
ing an assignment of real values to parameters that satisfies the con-
ditions. Labels are typically associated with points, which stand in
relation to the shape, although they could also be associated with
elements of the shape; for example, labeled lines. A shape rule can
apply to a “current” layout whenever the left part can be “found” in
the layout under some transformation together with and including
parameter assignment. When the rule is applied, that found part is
then replaced by the right part of the rule under the same transfor-
mation to produce a new current layout. Symbolically, c� tðaÞ þ
tðbÞ expresses shape-rule application, in which c = current layout;
a → b denotes a shape rule with left part a and right part b; and t
denotes a transformation: tðaÞ is assumed to be a part of c denoted
tðaÞ ≤ c. A shape grammar always has a starting shape, which
serves as the initial current layout. The collection of unlabeled non-
parametric shapes generated by the grammar is its language, which
serves to describe style. The role of a shape grammar as a descriptor
of style has been richly documented in literature for a variety of
fields (Stiny and Mitchell 1978; Knight 1980; Downing and
Flemming 1981; Knight 1981a, b; Koning and Eizenberg 1981;
Baker and Fenves 1990; Meyer 1995; Chiou and Krishnamurti
1995; Cagdas 1996; Antonsson and Cagan 2001; Pugliese and

Fig. 1. House I: A Queen Anne house; Pittsburgh (image by Kui Yue)

Fig. 2. Floor plans for House I [adapted and annotated by the authors from Flemming et al. (1985) © Ulrich Flemming; reproduced with
permission]
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Cagan 2002; McCormack et al. 2004; Colakoglu 2005; Duarte
2005; Stiny 2006; Duarte et al. 2007; Eilouti and Al-Jokhadar
2007).

Assuming that data on needed building features are available,
the original problem can be reformulated as seeking an algorithm
to determine the interior layout of a building given three pieces of
information: (1) the footprint of each story; (2) a reasonably com-
plete set of exterior features, e.g., windows, chimneys, and sur-
rounding buildings; and (3) a shape grammar, which describes
the building style. At this juncture, the focus and emphasis in this
paper is solely algorithmic. That is, accuracy of determination is not
on the basis of any statistically derived metric; instead, visual com-
parison of generated outcome and ground truth serve as the basis
for verification.

Fig. 3 illustrates the general approach, which is based on the
fact that when applied exhaustively, a shape grammar generates,
as a tree, the entire layout space of a building style. The approach
begins with an initial layout estimation employing constraints on
certain building features, specifically the ones that serve as input.
Spatial and topological constraints from this estimate are then used
to prune the layout tree, and “fix” possible open terms in the current
configuration. The layouts that remain correspond to desired
layouts.

Essentially, the approach requires a shape-grammar interpreter
to apply the rules of the shape grammar for the building style,
and generates a layout tree. Computationwise, both initial layout
estimation and layout-tree generation can involve exponential
searches. However, in practice, more often than not, both proce-
dures are restricted in such a way that search takes polynomial
time. Those shape grammars that satisfy this complexity criterion
for search are tractable (Yue 2009). In this paper, a tractable ap-
proach is examined in detail by using the Queen Anne house style
as the test case. The Queen Anne house was chosen for two main
reasons: the existence of a developed shape grammar (Flemming
1987) and geographic convenience afforded by the location of such
houses for obtaining photographic data. To illustrate the approach
presented in this paper, two other test cases, the Baltimore row-
house and a high-rise apartment are described briefly.

Layout-Tree Generation of Queen Anne Houses

Flemming et al. (1985, 1987) analyze the Queen Anne house
and present a shape grammar describing its style. In reality, the
typical Queen Anne house has a nonrectangular boundary, whereas
Flemming’s grammar considers and specifies just neighborhood
relationships of rectangular room spaces, which is sufficient to cap-
ture the Queen Anne style. Accordingly, a layout in this grammar
consisted solely of rectangular spaces; nonrectangular spaces that
occur in reality are approximated as such. The grammar starts with
a hallway; other rooms are progressively generated by either aggre-
gation or subdivision, that is, splitting a room into two. A subset of
Flemming’s shape rules is adopted to produce Queen Anne style
layouts, as shown in Fig. 4. A sample derivation is illustrated
in Fig. 5.

Labels and markers are typically employed in shape grammars.
In the Queen Anne grammar, room labels serve to indicate their
function; for example, H = hallway; R = room; D = dining room;
K = kitchen; Pt = pantry; and S = stairway. Label X is used to de-
note an unspecified room function. Other labels mark special parts
of the building, e.g., B for back; F for front; and C for corner. Again
X is used as a parametric label to denote either B or F, determined
by the spatial context. Labels also indicate status; for example, R
indicates the state of generating rooms, S of generating staircases,
and K of generating kitchen. The labeling convention adopted in
this paper follows Flemming (1987), with the exception of the
R-* notation used in Fig. 5. There it specifies the shape rule ap-
plied; for example, R-1 for Rule 1, R-2 for Rule 2, and so on.

The entire corpus of the Queen Anne House style can be speci-
fied by a tree structure, wherein each node represents a stage in the
generation; each edge represents a rule application; and each leaf
node represents a valid layout. The generated layout tree is used to
implement, that is, to interpret, the Queen Anne grammar. In prin-
ciple and in general, interpreting a shape grammar is intractable
(Yue et al. 2009). See Gips (1999) and Chau et al. (2004) on the
difficulty of implementing shape grammars. However, the Queen
Anne shape rules have been redesigned so that implementation
is in fact tractable.

Implementation requires a data structure containing informa-
tion, both topological on spaces (rooms) and geometrical, which
for this paper are two-dimensional data on layouts that include
walls, doors, windows, and staircases. The data structure must sup-
port manipulations such as viewing a layout as a whole, viewing a
layout from a particular room together with any of its neighboring
spaces, or simply focusing on a single room. Moreover, the data
structure needs to support Euclidean transformations augmented
by both uniform and anamorphic scaling. A layout rotated through
multiples of 90° is still a layout in the same sense. A layout re-
flected is likewise a layout. To these ends, a graphlike data structure
has been designed, which represents general layouts comprising
rectangular spaces and supports easy manipulation of geometric
transformations for shape-rule application.

Data Structure

A rectangular space is specified by a set of walls so that the space
is considered rectangular by the human vision system. Fig. 6 illus-
trates some variations: a space specified by four connected walls
each adjoins pairwise, four disjoint walls, three connected walls,
or framed by four corners.

A graphlike data structure (also illustrated in Fig. 6) consisting
of nodes and edges has been designed to specify such rectangular
spaces. There are three types of nodes in the data structure. The first
is a corner node (shown in black) for each corner of the rectangular
space. The second is a wall node (shown in gray) for each endpoint

Fig. 3. General approach to layout determination
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of a wall. These nodes are connected by either a wall edge (indi-
cated by a solid line) or an empty edge (indicated by a dotted line).
The third type of node is a room node (shown in white) that rep-
resents the space (room) and is connected to the four corners by

diagonal edges (indicated by dashed lines). These edges are nec-
essary when manipulating the corner nodes of a room unit; for
instance, when dividing a wall by node insertions, creating an open-
ing in a wall by changing its edge type (say, to empty), and so on.

Fig. 4. Shape rules to produce Queen Anne style layouts [redrawn by the authors from Flemming (1987) © Ulrich Flemming; reproduced with
permission]

Fig. 5. Derivation of a Queen Anne style layout
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Additional information about a room is recorded in the room node;
for instance, whether a staircase is within the space. Windows
and doors are assigned as attributes of wall edges. However, unlike
conventional graph data structures, geometry information is also
included in this data structure in that the angle measure at each
corner is set to 90°. A node has at most eight neighbors. A collec-
tion of these graph units can be combined to represent complex
layouts comprising rectangular spaces as shown in Fig. 7.

Transformations of the Data Structure

A shape rule applies under allowable geometric transformations.
Determining exact transformations under which a shape rule ap-
plies is typically difficult, and this is at the core of the implemen-
tation of a shape-grammar interpreter. Here, the target layout is
assumed to consist of only rectangular spaces, and allowable
transformations are specific Euclidean transformations augmented
with uniform and anamorphic scaling.

When shape-rule application is label-driven, translation is auto-
matically handled. The graphlike data structure facilitates handling
of uniform and anamorphic scaling initially by matching room
names, then, by matching labels on corner nodes, and finally by
comparing possible room ratios or dimension requirements.

Rotations and reflections still remain to be considered. The data
structure can always be preprocessed so that room spaces are ori-
ented either horizontally or vertically. As rooms are rectangular,
rotations are limited to multiples of 90° and reflections about either
the horizontal or vertical axes. Moreover, a vertical reflection can
be viewed as a combination of a horizontal reflection and a rotation.
Hence, any combination of reflections and rotations is equivalent to
some combination of horizontal reflections and rotations. Thus, the
following transformations are the ones actually needed. (Here, Rθ
denotes a rotation through an angle θ, and H denotes a horizontal
reflection.)
• R0: default; no rotation, with possible translation and/or scale.
• R90, R180, and R270: a rotation through 90, 180, or 270°, respec-

tively, possibly augmented with translation and/or scale.
• HR0, HR90, HR180, and HR270: a rotation through 0, 90, 180,

or 270°, respectively, followed by a horizontal reflection repre-
senting a horizontal reflection, a vertical reflection, or their com-
bination possibly augmented with translation and/or scale.
Transformations can be implemented on the data structure by

index manipulation; see Fig. 8. Each of the eight possible neigh-
bors of a node is assigned an index from 0 to 7; indices can be
transformed by using modulo arithmetic. For example, indexþ 2
(modulo 8) represents a counterclockwise rotation through 90° of
the neighbor vertices. Other rotations and reflections are likewise
achieved.

By viewing the original neighbor relationship for each node
with the transformed indices, the same transformation can be ob-
tained for the whole graph. By taking advantage of this fact in any
shape-rule application, only the interior layout is needed to manipu-
late rather than the left part of the rule. Thus, general shape-rule
application is simplified to the case of applying the shape rule with

Fig. 6. Example rectangular spaces and corresponding graphlike data structures

Fig. 7. Layout represented by a set of graph units

Fig. 8. Transformations of the graphlike data structures
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the default transformation, which then can be made automatically
applicable to the configuration under the different possible trans-
formations. This gives the same results but it is much simpler to
achieve.

Implementation of the Data Structure

By using the previous data structure, a layout is represented by an
eight-way doubly linked list of nodes and edges. Each shape-rule
application manipulates this structure; in this respect, a set of
common functions shared by the shape rules can be identified.
These functions are implemented in an object-oriented fashion.

Classes LNodeCorner and LNodeRoom represent corner and
room nodes, respectively. The LNode class represents all other
nodes. Edges are represented by the Edge class, with an attribute
to represent edge type. To traverse a layout, it suffices to know
just the handle to a node or an edge. For easy manipulation, an
InteriorLayout class is defined to represent an interior layout con-
figuration. Several ways of viewing an InteriorLayout object exist:
(1) as a layout with a certain status; (2) as a list of rooms (room
nodes); and (3) as a list of nodes and edges. Each view is useful for
different contexts. For example, view 3 is convenient for displaying
the underlying layout by first drawing all edges and associated
components and then drawing all nodes and their associated com-
ponents. To accommodate the different views, the Interior Layout
maintains the following fields:
• A status marker;
• Name for display and debugging purposes;
• A hash map of a room name to a list of room nodes for fast

retrieval of one or more room nodes with a given name;
• A list of room nodes for the entire layout;
• A list of all nodes for the entire layout;
• A list of all edges for the entire layout; and
• A hash map of attributes to values for other status values parti-

cular to a special shape grammar.

Implementation of Queen Anne Grammar

In principle, the implementation of the Queen Anne grammar in-
volves converting each shape rule into a piece of code that manip-
ulates the underlying data structure. In reality, the process becomes
slightly more complex because the original Queen Anne grammar
described by Flemming (1987) is neither properly nor fully well-
defined computationally. To convert a shape rule into a piece of
code, additional constraints are required; certain shape rules need
to be decompacted so that different possibilities are clarified. Fig. 9
illustrates one such situation involving Shape Rule 2 of the gram-
mar. The shape rule shown in Fig. 9(a) is applicable to the shapes
shown in Fig. 9(b) and Fig. 9(c). Rule application to the shape in
Fig. 9(b) produces a reasonable layout, whereas rule application to
the shape in Fig. 9(c) produces a room that is dimensionally too
small. Although dimensions as such were not important in the
original Queen Anne grammar, for implementation to eliminate
inappropriate cases, a sense of dimension has to be incorporated.

Another example is the interpretation of Shape Rule 8 shown
in Fig. 10. From the shape rule on the left, it would appear that
two rooms have only to partially overlap along a wall in order for
the rule to apply. However, from the sample layouts given by
Flemming (1987), it is possible for an entire wall to be shared.
For a tractable shape grammar, these two cases would need to
be separately specified so that implementation becomes simply a
task of coding rules.

Fig. 11 shows 15 screenshots [labeled (a) through (o)] of sample
layouts generated by the implementation. Observe that the layouts
in (k) and (l) are not valid in any realistic sense because the top
rooms are dimensionally much too wide. However, no simple

solutions exist whereby merely adding constraints to the shape
rules would result in eliminating such cases. Theoretically, during
the fixing step, unrealistic dimensions could be obtained for such
rooms so that such layouts can be removed. In the current imple-
mentation, the fixing step was not implemented; instead, it was
replaced by a postprocessing procedure to remove invalid layouts.
A total of 506 unique possible layouts were generated by the
implementation.

Layout-Tree Pruning and Initial Layout Estimation

A computer implementation of a shape grammar that captures the
corpus of a building style consists, essentially, of an enumeration of
the possible shapes in the language of the grammar. The enumer-
ation procedure (that is, derivations in the shape grammar) can be
viewed as a tree structure, namely, a layout tree. Valid layouts cor-
respond to certain nodes of the tree. These nodes are mostly leaf
nodes, although certain internal ones are also possible; an internal
node is a layout of smaller size, whereas a leaf node represents a
layout of larger size and typically with more rooms.

Accordingly, layout determination reduces to “picking up”
nodes consistent with the feature input from the layout tree. Direct
node pickup is generally difficult; it can be achieved through tree
pruning; that is, by eliminating those nodes inconsistent with cer-
tain constraints and the remaining nodes as the desired results.

Shape grammars that capture building corpora are typically
parametric: relationships specified are generally topological. An
example is specifying one room as adjacent to another under certain
spatial conditions, in which exact dimensions are left largely
unspecified. As a result, many constraints for pruning a layout tree
are necessarily topological, especially for branches near the root of
the tree. This makes it difficult to prune the tree because the feature
input specifies objects with real dimensions. A procedure to obtain

Fig. 9. Two possible applications of Shape Rule 2

Fig. 10. Two possible interpretations of Shape Rule 8
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topological constraints therefore becomes necessary. For the layout
estimation problem, these topological constraints are obtained
through a process termed initial layout estimation. This process
makes use of building knowledge in the form of constraints on
building features.

Additionally, topological constraints alone cannot prune the tree
in a way that the desired final layouts can be directly determined.
Before reaching the final layouts, variables (also known as param-
eters) in the intermediate configurations have to be fixed to match
the feature input at a certain stage. Fixing can be progressively per-
formed or done in a single shot. Progressive fixing relies on con-
straints either directly specified by, or inferred from the feature
input or from a priori knowledge, with parameters partially fixed
at each step until they are all fixed. Parameter fixing of Queen
Anne houses in the implementation was progressive. Single-shot
parameter fixing could be viewed as a special case of progressive
parameter fixing.

Constraints on Building Features

Building features constrain one another; for example, windows are
not normally shared among rooms or spaces. That is, a window
belongs to a single room and no wall falls within this window.
Another constraint, on the basis of practicality, requires that the
minimum width of a space be at least 0.6 m (2 ft). Other constraints
require specific knowledge. For Queen Anne style houses, room
dimensions are approximately in the ratio of 1∶2. The height of each
story is determined by window and door geometries because the
height of windows to floor are typically approximately 0.9 m

(3 ft) and doors are between 2.1 and 2.4 m (7–8 ft); see Fig. 12.
Furthermore, once story height has been estimated, dimensions
of various staircases can be estimated by using common dimen-
sions for treads and risers (0:6 m ≤ treadþ 2 × riser ≤ 0:64 m, or
24 in: ≤ treadþ 2 × riser ≤ 25 in:). The width of a staircase is a
constant and typically 0.92 m (3 ft).

Fig. 11. Sample layouts generated by the Queen Anne grammar interpreter

Fig. 12. Windows and doors constrain height of each story
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Another example of feature interaction is that between window
and staircase. As shown in Fig. 13, for windows in known posi-
tions, possible positions for the staircase are greatly reduced;
the impossible region for a staircase is shaded on the basis of the
principle that no staircase crosses a window in a sectional view.
With further constraints that stem from the surrounding rooms, the
exact position of the staircase can be narrowed down to fall within a
narrow range.

Constraint Satisfaction

Determining the interior layout of a building involves identifying
the rooms in the building and their estimated dimensions. Some of
these rooms are adjacent to the building exterior. Accordingly, they
correspond to a set of exterior features. For instance, most rooms in
Queen Anne houses have centrally located fireplaces (Flemming
1987), which correspond to chimneys visible over the roof of the
building. The abundance of such constraints among exterior build-
ing features suggests that a preliminary layout can be found by
treating it as a constraint satisfaction problem.

A constraint satisfaction problem (CSP) has three components:
(1) a set of variables X ¼ fx1;…; xng; (2) a set of possible domain
values, Di, for each xi; and (3) a set of constraints to restrict the
values that variables can simultaneously take (Russell and Norvig
2003). Various acceleration techniques; for example, forward
checking and constraints propagation, have been developed to ef-
ficiently eliminate impossible values, thereby speeding up solving
a CSP.

In estimating an initial layout, the variables x1;…; xn correspond
to the set of rooms identified from the exterior features, such as a
chimney, windows, and doors. Each room is given a conservative
initial dimension. Domain Di corresponds to possible dimensions
for room xi. Constraints are either common building knowledge
(for example, rules specified in building codes) or style-specific
knowledge (for example, Queen Anne houses exhibit local sym-
metry, and symmetry axes are derivable from exterior features).

Benefits to considering a problem as a constraint satisfaction
problem exist. Four are identified here. First, representation as a
CSP is typically much closer to the original problem; variables
directly correspond to problem entities, and constraints can be
expressed more explicitly without awkward translation. Second,
CSP representations conform to standard patterns so that many
algorithms have already been written in a generic fashion. Third,
effective generic heuristics can be developed without requiring
additional, domain-specific expertise. Last, the structure of a con-
straint graph can be used to simplify the solution process, poten-
tially leading to an exponential reduction in algorithm complexity.

The CSP algorithm for initial layout estimation starts by gener-
ating rooms with conservative dimensions in conformance to the
given features. The algorithm then manipulates rooms as variables
according to constraints established by common properties of

buildings. Two kinds of manipulations are considered: expanding
room dimensions and merging rooms. Merging two rooms elimi-
nates a room variable; this is in contrast to the typical CSP algo-
rithm in which variables persist throughout the life of the algorithm.

Queen Anne Houses and CSP

Fig. 14 shows the results of applying the CSP algorithm to the first
floor of a Queen Anne house in Pittsburgh, hereafter referred to as
House W. The input features are locations in plan of windows,
doors, and chimneys, together with possible axes of symmetry that
can be inferred from the facades. In the case of Queen Anne houses,
chimneys correspond vertically to fireplaces on the first floor. This
is not always the case for North American vernacular houses. The
initial estimation can be specified in eight steps. Step 1 extends the
axes of exterior walls inward assuming a wall thickness of 0.3 m
(1 ft) to form wall hotspots; this enforces the tendency of interior
rooms to be aligned with one another. Step 2 uses the fact that larger
public rooms on the first floor have fireplaces, which correspond to
the chimneys. By projection, if the chimney falls within the interior
of the footprint, then two rooms possibly share the chimney, with a
fireplace each. If the chimney is on an exterior wall, only one room
uses the chimney. Such rooms are assigned with an initial dimen-
sion of 2:4 × 2:4 m (8 × 8 ft). Step 3 adjusts rooms that are close
on the basis of a 0.3-m (1-ft) threshold so that they should align
with the nearest axis. Step 4 uses the fact that rooms can contain
but do not intersect with other rooms and doors. Rooms are ex-
tended and include such features to resolve any conflict. Step 5 uses
the fact that the minimum distance between two walls has to be
large enough to be a useful space [usually > 0:9 m (> 3 ft)]. In
Step 6, rooms generated from the chimneys are stabilized. Step 7
specifies rooms with an initial dimension of 1:5 × 1:5 m (5 × 5 ft)
to unassigned windows and doors. A room may be left-, center-, or
right-aligned with a window or door. Two largely overlaying rooms
are merged as one. Further, the narrow space remaining between
rooms RM1 and RM5 is assigned to RM5 according to the sym-
metry axis SYM-4. Step 8 shows the final result; although incom-
plete, it is close to the actual condition. At this stage, ambiguities
that cannot be resolved without prior knowledge still remain; these
are left for the shape rules to handle.

In the previous example, estimated rooms are restricted to rec-
tangles. This can pose certain difficulties when evaluating buildings
partially with nonrectangular rooms as illustrated in Fig. 15(h) for
House A. The strategy adopted is to approximate the original non-
rectangular rooms by rectangles and then correspondingly project
their related windows. Such simplifications retain the necessary
constraints introduced by the original window features, making
constraint satisfaction applicable for a wider range of layouts, and
greatly reduce the complexity in implementing geometric manipu-
lation. Fig. 15 shows the original inputs (solid lines), the simplified
version (dashed line), and the manual derivation procedure based
on these approximations.

Apart from the complexity of geometry manipulation, the im-
plementation has to deal with issues of potential numerical round-
off and tolerance. For example, an intersection test between a
rectangle for chimney and a line segment for wall axis is used to
determine whether the chimney is on the boundary of a footprint or
not. However, chimney data are derived from parts over the roof
whose dimensions potentially shrink. This may result in a chimney
close enough to the line representing a wall without actually inter-
secting or coincident with it. Imperfect threshold values also cause
issues. For example, as shown in Fig. 15(a), the assumption of a
0.3-m (1-ft) wall thickness results in two hotspot wall axes (two
horizontal axes in the middle) that are very close to one other; this
can break the algorithm if it is not specially handled. Moreover,

Fig. 13. Window position constrains possible arrangements of a
staircase
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quite distinct from manual derivation, rooms in the upper-right
corner of Fig. 15(b) do not merge as desired because of the diffi-
culty in setting a “universal” threshold value, which results from the
fact that thresholds that work for a building or a part of may fail for
another building or for another part of the same style.

Fig. 16 shows the results of the computer implementation of the
preceding CSP algorithm. The partial layout, determined from the
initial layout estimation by using constraint satisfaction, provides
useful topological constraints for pruning the layout tree. For
House W, shown on the left in Fig. 16, three rooms are in the front
lower side; their widths have been determined. This converts to a
topological constraint on the three front rooms. Moreover, the
widths of these rooms can be fixed to those respective values.
The three rooms on the left side can be treated similarly. The
two partial rooms on the right side convert to a slightly weaker

topological constraint, namely that at least two rooms are on the
right side with a determined width value. For House A shown
in the middle of Fig. 16, the two front rooms have fixed width
dimensions. For the left side, the dimension of the rearmost room
is fixed; otherwise, the only sure constraint is that at least three
rooms are on that side. Likewise, at least two rear rooms exist.
For House I, shown on the right in Fig. 16, at least three rooms
and at most four rooms exist.

Layout Determination of Queen Anne Houses

All algorithms described or mentioned in this paper were imple-
mented in Java by using the Swing graphical user interface
(GUI) toolkit on the open-source Eclipse development platform.
Implementing the Queen Anne grammar is equivalent to generating
a layout tree whereupon layout determination becomes simply a

Fig. 14. Initial layout estimation of Queen Anne houses by CSP
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matter of pruning the tree by using constraints from the initial
layout estimation. Fig. 17 shows the screenshot of the computer
implementation. On the left are four small windows: (1) the Truth
window, which shows the true layout for purposes of comparison;
(2) the Feature Input window, which shows the features used as
input for the initial layout estimation; (3) the Derivation window,
which shows the result of the initial layout estimation by the
CSP algorithm and can be step animated; and (4) the Constraints
window, which shows the constraints exacted from the partial
layout resulting from the initial layout estimation. On the right
is the Grammar Tree window. The top-left panel shows the lay-
out tree generated by applying all the shape rules; those that are
crossed out correspond to layouts inconsistent with the constraints

extracted. The top-right panel shows the layouts remaining after
pruning the layout tree by the extracted constraints. The central
panel on the top is the drawing panel; when clicking on entries
of the top-right or top-left panel, the corresponding layout is dis-
played. The bottom is the status bar, displaying the summary of
layout-tree generation and pruning. Above the status bar is the rule
panel, displaying all the shape rules for the Queen Anne grammar;
when an entry of the layout tree is mouse-selected, the currently
applicable shape rules are highlighted.

Simple topological constraints extracted from the partial layout
results of the initial layout estimation are used to prune the layout
tree. For the purpose of demonstration, such constraints were ex-
tracted manually, with the proviso that they could be automatically

Fig. 15. Manual layout derivation of House A

Fig. 16. Results from computer implementation of CSP
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Fig. 17. Screenshot of layout determination of Queen Anne houses

Fig. 18. Layout results for House W
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extracted. Partial constraints used here come directly from the
feature input instead of the initial layout estimation. Each staircase
is considered as a space (room) in the data structure. The three
exemplar Queen Anne houses, named W, A and I, were tested

on the implementation. Screenshots of the outputs are shown
in Fig. 16.

For House W, the extracted constraints include the following:
(1) the hallway is central; (2) the number of rooms to the left of

Fig. 19. Layout results for House A

Fig. 20. Layout results for House I
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the hallway is at least two; (3) the number of rooms to the right of
the hallway is, at least two and at most three; (4) there must be a
kitchen and a staircase to the right of the hallway; (5) none of the
rooms directly behind the hallway is a dining room; and (6) rooms
behind the hallway are aligned with the hallway.

Fig. 18 shows the results from pruning the layout tree with these
constraints. Figs. 18(a), 18(b), and 18(d) are results closest to the
truth; deviations are caused by omissions in the specification of the
Queen Anne grammar rules; the leftmost rear room is a sun porch
room, which is not as common among Queen Anne houses and this
would have to be considered a special case outwith the grammar.
Figs. 18(c) and 18(e) do not appear to be correct; these layouts are
easily removed when fixing layouts to real dimensions.

For House A, the extracted constraints include the following:
(1) the hallway is central; (2) the number of rooms at the right side
of the hallway is two; (3) the number of rooms at the left side of the
hallway is at least two and at most three; (4) there must be a kitchen
and a staircase to the left side of the hallway; (5) from the front, the
first two rooms contain no staircases; and (6) when the left front
corner room is a dining room, the right rear corner room must be a
parlor room and vice versa. Fig. 19 shows the results from pruning
the layout tree by these constraints. Fig. 19(b) is closer to the truth
than Fig. 19(a), which is removed when fixed to real dimensions.

For House I, the extracted constraints include the following:
(1) the hallway is central; (2) the number of rooms at the right
side of the hallway is at least three and at most four; (3) there must
be a kitchen and staircase to the right of the hallway; (4) from the
front, the first three rooms to the right of the hallway do not have a
staircase; (5) the top of the layout is flat; and (6) no dining room
is behind the hallway. Fig. 20 shows the results from pruning the
layout tree by these constraints. Fig. 20(d) is closer to the ground
truth than the other layouts. Again, Figs. 20(a) and 20(c) are re-
moved when fixing dimensions. Eliminating Fig. 20(b) is nontri-
vial, because it is almost the same as Fig. 20(d).

Other Constraints on Queen Anne Houses

As the previous results show, it is advantageous to introduce other
types of constraints so that the candidate layout results can be
narrowed down further. In this section, ideas of how to deal with
complicated boundaries are illustrated.

Footprints of Queen Anne houses typically have a nonsimple
boundary shape, which poses an extra difficulty. On the other hand,
such boundaries place constraints on the interior layout. For exam-
ple, as shown in Fig. 21, the partial footprint shown in bold lines
on the lower-left corner specifies a bulging corner room, in this
case, the parlor. Moreover, this shape pattern is generally true for
most Queen Anne houses. Such boundary constraints can be taken
advantage of.

Formally, the question is to look for a consecutive segment
sequence forming a certain pattern from which a rectangular room
can be generated. For this, a representation for a sequenced pattern
is developed. Fig. 22 shows the target sequence pattern of the
example shown in Fig. 21. Walking counterclockwise along the
footprint, the sequence starts from a point, turns right, then turns
left three times, and finally, turns right again. To describe such a
sequence mathematically, each segment of the footprint is viewed
as a vector. To turn right, the cross product of two consecutive
vectors is toward the negative z-axis direction; to turn left, the cross
product is toward the positive z-axis direction. By using “−” to
represent the negative z-axis and “+” for the positive, the sequence
pattern can be represented succinctly as −, +, +, +, −.

A potential issue of the previous representation is that it may be
too loose to define the exact type of sequence desired. Fig. 23

Fig. 21. Example of boundary constraints

Fig. 22. Corner-bulge-room sequence

Fig. 23. Variations of the corner-bulge-room sequence

Fig. 24. New point of a corner-bulge-room sequence
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shows two variations of the corner-bulge-room sequence. Both
have the exact same string representation as the corner-bulge-room
sequence, but the actual room type is each handled distinctly.

Because no dimensional information is associated with a pat-
tern, a sequence can actually match a physically large block con-
sisting of multiple rooms or it may not be meaningful in any real
way. To avoid such cases, further constraints are added, such as the
room area and ratio (see Fig. 22). To enable iterative application of
sequences, the original footprint is modified by deleting certain
points and optionally inserting new points after a sequence has been

applied; see Fig. 24. Fig. 25 shows the results of applying the
corner-bulge-room sequence on House A.

Two Applications of the Approach

It is natural to expect that the implementation of the CSP algorithm
applied to the Queen Anne House would work for a variety of
building types through simple adjustments of appropriate threshold
values. However, this is not always the case even when relatively
small morphological variations from the Queen Anne House exist.

Fig. 25. Application of corner-bulge-room sequence on House A

Fig. 26. Results of CSP implementation on Baltimore rowhouses
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The Baltimore rowhouse (Hayward 1981; Hayward and Belfoure
2005) is a case in point. On the other hand, apartment buildings do
work well with the CSP algorithms, although the apartments them-
selves are subject to a different set of grammatical rules. In this
case, it is convenient to consider the layout of an apartment floor
separately from the generation of the individual apartment units.
Moreover, additional exterior features would also need to be
considered.

Baltimore Rowhouse

The assumptions that apply to the Queen Anne House do not
readily apply to the Baltimore rowhouse; see Fig. 26. Spaces within
a rowhouse tend to be narrower and deeper than in a Queen Anne
house. Moreover, spaces containing fireplaces are not always sym-
metrical about the fireplace; this is especially true for the kitchen.
Fireplaces in a rowhouse do not necessarily align with a chimney
that is visible from the exterior of the building. Additionally, the
simplicity of the footprint of a typical rowhouse belies the difficulty
of inferring interior wall axes from the footprint alone. As a con-
sequence of the first two reasons, initial dimensions assigned to
rooms with chimneys may fall outside the building’s footprint.
Furthermore, chimneys do not correspond directly to fireplaces.
Although it is possible to modify the CSP algorithm to work for
the Baltimore rowhouse by revising existing constraints and adding
new types of constraints, a simpler alternative for initial layout
estimation can be employed.

Procedurally, the first floor of the rowhouse can be determined
by a decision tree (Fig. 27), essentially, as a process of subdivision.
The first floor is typically decomposed into two or three rectangular
blocks: a block containing the parlor toward the front, a block
containing the kitchen toward the rear, and an optional, smaller
central block connecting the two. In a three-block rowhouse, the
central block contains a pantry or a stair, whereas the front and rear
blocks are divided into one or two rooms. The kitchen is always
the rearmost space, whereas the parlor is the frontmost space.
The dining room usually appears in the front block behind the
parlor or in the rear block forward of the kitchen. The two cases
can be distinguished by comparing the depths of the front (h2) and
rear (h1) blocks.

Two-block rowhouses are more involved. Depending on the
depth (h) of the front block, it can contain a single room or be
divided into a parlor and dining room possibly separated by a stair-
case. If the front block comprises two rooms, the staircase can
occupy an enclosed space or it can be open to one or both rooms.
If the front block comprises a single room, the staircase may have
multiple possible arrangements. These configurations are too com-
plicated to be handled by the decision tree, which needs further
refinement by using shape rules.

Regardless of whether a layout has two or three blocks, the front
door enters into the frontmost room or a dedicated hallway. This is
determined from the width (w) and area (s) of the frontmost room.

Fig. 27. Space subdivision tree of Baltimore rowhouses
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A shape grammar was developed to capture the corpus of
the Baltimore rowhouse (Yue 2009). Fig. 28 shows sample layout
results of applying the general approach by pruning the layout
tree generated by the shape grammar with constraints extracted
from the initial layout estimation obtained through the decision
tree. Layouts are largely determined by using the decision tree;
the shape grammar essentially refines the layouts with added detail.

Yue (2009) provides further description of the algorithm and its
implementation.

High-Rise Apartment

The approach was employed to a specific high-rise apartment
building located in Baltimore. High-rise apartment buildings pose
a different kind of challenge because it is not feasible to capture all

Fig. 28. Sample layout results of Baltimore rowhouses

Fig. 29. Two possible layout results for a high-rise apartment building
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possible layouts on a floor by using a single shape grammar. On the
other hand, it is possible to develop a shape grammar to generate
apartment units so that all possible layouts of apartment units can
be derived. Assuming that a list of possible apartment units exists,
a different set of exterior features are needed so that the entire
floor layout can be assembled from the possible apartment units.
Unlike a Queen Anne house, high-rise apartments usually have
a uniform façade providing weak constraints by which to determine
interior layouts. However, equipment pipes over the roof can be
utilized because these more often than not directly reflect on the
interior arrangement. Bathroom ventilation pipes typically go over
the roof without changing direction. Other HVAC components also
provide hints for possible interior layouts.

Fig. 29 shows two possible layout generated by an implemen-
tation that uses constraints from ventilation pipes. The system takes
as input a list of possible apartment units and positions of the
ventilation pipes, searches for reasonable arrangements by using
common constraints (such as no two units overlap, certain rooms
face the exterior, and so on) to eliminate unreasonable solutions.
The first layout shown in Fig. 29(a) matches the ground truth;
layout shown in Fig. 29(b), although logically correct, does not.
Additional constraints can be specified to rule out such layouts.
The method here employs a shortcut in searching the solution
space; if the generation of possible apartment units were included
along with the step of layout-tree generation, the search space
would be considerably larger and the implementation that much
more complicated.

Discussion

In this paper, it has been shown how the interior layout of a building
can be estimated provided certain feature information has been
specified. The approach described in this paper depends on an
underlying shape grammar. Constraints work against layouts gen-
erated by the grammar. Consequently, any change to the shape
grammar should result in a change to the layouts generated. That
is, to qualitatively improve possible layouts that can be generated
would necessitate changes to the set of shape rules that specify a
grammar. Thus, the efficacy of the approach depends on the effi-
cacy with which the style of the building has been faithfully
captured.

Ambiguity can pose a challenge for layout determination and
shape-grammar interpretation. In layout determination, ambiguity
is dealt with by employing a suitable set of threshold values. The
difficulty lies in specifying a set of threshold values that dynamically
adjusts to context and/or building type. Ambiguity in interpreting
shapes for shape-rule application is handled by forcing shape gram-
mars to be tractable (Yue 2009). Essentially, this entails that rules
can be codified.

The key idea to the approach described in this paper is that con-
straints are used to prune the layout tree corresponding to an under-
lying shape grammar with the proviso that the target building can
be described by a grammar and sufficient constraints can be found
to eliminate many unreasonable results. However, it is possible that
there are buildings that are difficult to describe grammatically.
Likewise, it is possible that it may be difficult to find appropriate
constraints to successfully prune a layout tree. On the other hand, in
practice, most typical buildings follow a pattern-book style, which
can be described grammatically. Moreover, such buildings follow
common building design and construction rules, which lend them-
selves to easily specified constraints. Accordingly, the approach is
likely to function well for most practical buildings.

Computationally, the complexity of the approach depends on
the computational costs for generating the layout tree and for prun-
ing the tree. The former depends on shape-rule application, or more
accurately, shape-rule interpretation. In general, this is intractable.
As shown by Yue (2009), the complexity of rule application for a
shape with n terms, of which k is open, is a superpolynomial in k;
as k approaches n=2, it becomes exponential. However, in practice,
it can be shown that shape grammars can be designed or enforced
so that rule application is solvable in polynomial time. As shown in
this paper, initial layout estimation depends on constraints that can
be resolved by different approaches. Two are illustrated in this
paper: the CSP algorithm employed in determining the layout
for a Queen Anne house and a high-rise apartment building and
the decision tree applied to a Baltimore rowhouse. Decision trees
typically have polynomial time complexity. In general, the CSP
algorithm requires exponential time; in practice, its computational
complexity depends on the number of constraints, which deter-
mines how fast and small a solution space can be specified. Again,
the number of rooms in a typical building is small; this tends to
make the CSP algorithm tractable.

The approach developed in this paper requires a general param-
etric shape-grammar interpreter, which caters to a variety of build-
ing types. For layout estimation, it is impractical to implement
individual interpreters for each building style or alternatively for
each grammar. Following this thread, the determination of building
interior layouts can be used as a vehicle to investigate the prac-
tical implementation of a general shape-grammar interpreter. Con-
versely, the former can be viewed as an application of the latter. The
implementation described here has been the basis of exploring
other building layout grammars and of general parametric shape
grammars (Yue et al. 2009).

Conclusion

This paper describes an approach based on a process of estimation
with an inadequate amount of information, namely, a footprint an-
notated as much as possible by exterior features and reasoning
based on the application of two kinds of spatial rules: constraints
and shape rules. The former relates to common practical architec-
tural conventions with added style considerations. Likewise, the
choice of shape rules that apply, i.e., the choice of the shape gram-
mar, is a matter of local style consideration. In other words, edu-
cated guesswork on building style governs the estimation.

The specific contributions of the paper are the algorithm for de-
termining the interior layout of a building by using shape grammars
and the data structure for implementing shape grammars to gener-
ate buildings consisting of rectangular spaces or can be approxi-
mated as such. Beyond these contributions, this paper reports on
a novel application of shape grammars.

Of course, limitations to the work exist.
Constraints currently employed in the CSP algorithm do not

extend readily to other building types; the Baltimore rowhouse
illustrates this point well. A set of constraints, which have wider
applicability needs further investigation.

Ambiguity poses a challenge for both layout determination and
shape-grammar interpretation. In this paper, ambiguity is handled
by using a set of threshold values and through preprocessing.
In general, it is difficult to develop with a set of threshold values
that is applicable to various contexts or building types. Further
research is necessary.

Layout pruning is based on the assumption that sufficient
constraints can be found to eliminate unreasonable results. It is
possible that buildings for which it will be difficult to find
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appropriate constraints exist. In this paper, a set of constraints
tailored to the underlying building type is employed. In practice,
it is preferable to develop a set of constraints that cater to a wider
range of building types.

Lastly, the approach is untested on buildings on a larger scale.
The high-rise example was estimated by floor, essentially as a two-
dimensional layout problem, initially decomposed into a collection
of single units. Larger buildings have more computational com-
plexity and perhaps may even be computationally intractable. To
handle larger scale buildings, improvements to the algorithm are
necessary.
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