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Abstract: This paper proposes a novel hierarchical data fusion technique for the non-destructive testing 4 

(NDT) and condition assessment of timber utility poles. The new method analyses stress wave data from 5 

multi-sensor multi-excitation guided wave testing using a hierarchical data fusion model consisting of feature 6 

extraction, data compression, pattern recognition and decision fusion algorithms. The proposed technique is 7 

validated on guided waved at a of in-situ timber poles. The actual health states of these poles are known from 8 

autopsies conducted after the testing, forming a ground-truth for supervised classification. In the proposed 9 

method, a data fusion level extracts the main features from the sampled stress wave signals using power 10 

spectrum density (PSD) estimation, wavelet packet transform (WPT) and empirical mode decomposition 11 

(EMD). These features are then compiled to a feature vector via real-number encoding and sent to the next 12 

level for further processing. Principal component analysis (PCA) is also adopted for feature compression and 13 

to minimise information redundancy and noise interference. In the feature fusion level, two classifiers based 14 

on support vector machine (SVM) are applied to sensor separated data of the two excitation types and the 15 

pole condition is identified. In the decision making fusion level, the D-S evidence theory is employed to 16 

integrate the results from the individual sensors obtaining a final decision. The results of the in-situ timber 17 

pole testing show that the proposed hierarchical data fusion model was able to distinguish between healthy 18 

and faulty poles demonstrating the effectiveness of the new method.  19 
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Introduction 23 

 24 

Timber utility poles are used all over the world for power and communication distribution due to their low 25 

cost and practicality. In Australia, an estimated number of more than seven million timber poles form part of 26 

the country‟s infrastructure (Nguyen et al. 2004). Among these, about five million poles are used for 27 

communication and power supply and are worth more than $10 billion. For pole management and 28 

maintenance, the Australian government spends every year approximately $50 million to ensure reliability of 29 

the network and to avoid potentially disastrous pole failures. The conventional methods for pole assessment 30 

are sounding, visual inspection and core drilling (Tansasoiu et al. 2002). These methods, however, are 31 

subjective techniques, which highly depend on the experience and skills of the inspector. More importantly, 32 

none of these methods are able to provide reliable assessment of the underground sections of the poles, 33 

which are indeed the most critical and vulnerable in terms of structural safety. These drawbacks severely 34 

compromise the inspection and maintenance management of timber poles. According to (Nguyen et al. 2004), 35 

around 30,000 electricity poles are annually substituted in the Eastern States of Australia, although more than 36 

80% of the substituted poles still maintain in a healthy condition, resulting in a large waste of natural 37 

resources and money. In addition, research studies have shown that while the present averaged serviceable 38 

lifespan of timber utility poles is around 35 years, the life expectancy can be prolonged to more than 75 years 39 

if appropriate maintenance and inspection techniques are adopted (Stewart 1996).  40 

 41 

In the last two decades, various NDT techniques have been developed to evaluate the integrity and condition 42 

of pile structures such as deep foundation piling. Among these techniques, stress wave methods based on 43 

guided wave testing such as the impulse response (IR) method (Davis and Dunn 1974), the sonic echo (SE) 44 

method (Paquet 1968; Steinbach and Vey 1975; Lin et al. 1991; Van and Middendorp 1980) and the bending 45 

wave (BW) method (White and Ross 2014; Qian and Mita 2005) are well established in the pile testing 46 

industry. For these tests, an excitation force is applied and the structural responses are measured using a 47 

sensor installed on the top of pile structure. By analysing the reflexogenic signals, the health condition of the 48 

pile including the underground section can be evaluated. Although some of these stress wave methods have 49 

been adopted for the condition assessment of timber poles, most of this work is research-based and many 50 



challenges still have to be overcomed before accurate and reliable assessment can be achieved (Dackermann 51 

et al. 2014a; Krause et al. 2014; Li et al. 2012; Subhani et al. 2013).These challenges include complicated 52 

wave propagation in timber, related to the complexity of the timber material with anisotropic characteristics 53 

and uncertainties from natural defects and deterioration, as well as unknown soil conditions and 54 

environmental factors such as temperature and moisture fluctuations influencing the wave propagation. As a 55 

result, traditional and newly developed signal processing methods often fail to fully interpret wave patterns 56 

and to produce accurate and reliable condition assessment. Challenges further stem from practical field 57 

testing conditions, where sensor measurements are influenced by noise submerging the actual wave 58 

propagation information. Furthermore, if testing data originates only from one source, it is non-inclusive and 59 

may by subject to errors from operators and environmental factors. Hence, to achieve comprehensive and 60 

reliable pole assessment, multiple types of signals should be recorded and analysed. Furthermore, using a 61 

multi-sensor system instead of only a single sensor or device can facilitate the higher identification accuracy. 62 

In such case, however, sensors installed at different positions of the pole may result in conflicting assessment 63 

results, making a final decision difficult. 64 

 65 

Aiming at solving some of the challenges above, this paper proposes a novel hierarchical data fusion model, 66 

combined with multi-sensor and multi-excitation guided wave testing, to analyse stress wave signals for the 67 

condition assessment of timber poles. In the data analysis level, power spectrum density (PSD) estimation, 68 

wavelet packet transform (WPT) and empirical mode decomposition (EMD) are used to extract signal 69 

features from the stress wave data. Next, a feature vector is formed, which is fed into a support vector 70 

machine (SVM) classifier for pattern recognition. In order to enhance the classification accuracy and prevent 71 

a slow convergence rate, a genetic algorithm (GA) is employed to optimize the classifier parameters. 72 

Furthermore, the sigmoid function is adopted to transform the standard outputs of SVM into the confidence 73 

probability, realizing the objective assignments of basic probability assignment function. In the decision 74 

level, the D-S evidence theory is adopted to fuse the initial identification results from different sensors in the 75 

testing system and to make a final decision. In-situ field testing data is used to verify the feasibility and 76 

performance of the proposed hierarchical model. 77 

 78 



The remainder of this paper is organized as follows: the second section gives background information on the 79 

field testing and the hierarchical data fusion model; in the third section, the related data analysis algorithms 80 

are described in detailed together with feature analysis and model setup of the stress wave signals. The fourth 81 

section presents the performance results of the proposed model for condition assessment of timber poles 82 

using the experimental field data. Finally, a conclusion is drawn in the last section. 83 

 84 

Guided wave testing and hierarchical data fusion model 85 

 86 

Guided wave testing 87 

 88 

To validate the proposed method, guided wave testing was conducted on eight in-situ timber poles that were 89 

scheduled for decommissioning. After the testing, the poles were dismembered to determine their actual 90 

health states. For the guided wave testing, an impact hammer, seven accelerometers and a data acquisition 91 

system were employed. The experimental field setup is depicted in Fig. 1. For the testing, a hammer impact 92 

was induced at a height of 1.6 m in either longitudinal direction (using an impact angle) to generate primarily 93 

longitudinal waves or in transverse direction to generate bending waves. The impact hammer used was a 94 

PCB model HP 086C05 of sensitivity 0.24mV/N. The responses of the pole were captured by an array of 95 

sensors, which were installed on the side of the pole with a uniform spacing of 0.2 m as illustrated in Fig.1 96 

(a). The sensors were low cost dual-axis piezoresistive accelerometers of model ADXL320, with a sensitivity 97 

range between 154 and 194 mV/g and a frequency bandwidth from 0.5 to 2.5 kHz. All the sensors were 98 

embedded within the plastic cases, which were drilled to the tested poles. The data acquisition system was a 99 

mid-range 8 channel system with 13-bit 4M sample/second per channel of model NI PCI-6133. For the 100 

testing, the sampling frequency was set to 1 Hz with 0.2 s sampling time. Each test was repeated five tests, 101 

i.e. for each pole five hammer strikes were executed in longitudinal direction and five in transverse direction. 102 

More details on the conducted experimental setup and testing can be found in (Dackermann et al. 2014b). 103 

 104 



                105 

                                             (a)  Experimental field setup              (b)Testing execution 106 

Fig. 1.Experimental field setup and guided wave testing execution 107 

 108 

Hierarchical data fusion model 109 

 110 

The proposed hierarchical data fusion model is shown schematically in Fig.2. This model is divided into 111 

three analysis levels, i.e. a data level, a feature level and a decision level. In the first level, dominate signal 112 

features are extracted minimising information redundancies and disturbances such as environmental noise 113 

and wave dispersion. In this level, three different signal processing methods (PSD, WPT and EMD) and PCA 114 

are employed to isolate information sensitive to the health condition of the pole structure. In the second level, 115 

a state-of-the-art SVM classifier is constructed to intelligently analyse these feature parameters, facilitating 116 

the initial evaluation of the pole condition. In the third level, influences from different sensor locations, 117 

excitation types and training samples on the condition assessment are addressed. Here, according to the 118 

probability outputs of the SVM, the basic probability assignment (BPA) of each proposition of the pole 119 

condition discernment frame is obtained. The initial recognition result can be regarded as independent 120 

evidence and all results including conflicting evidences are combined using evidence combination rule, 121 

solving the problem of conflicting and inaccurate identification of the pole condition using only one SVM 122 



classifier. The entire model employs a hierarchical structure, in which the results from the former level are 123 

used as the inputs for the next level. Accordingly, this method can separately realize multiple levels of 124 

information processing, guaranteeing the robustness and accuracy of assessment results. 125 

 126 

Methodology 127 

 128 

Data level fusion based on multi-feature extraction 129 

 130 

Stress-wave-based condition assessment of timber poles is essentially a pattern recognition problem. Hence, 131 

signal feature extraction is a key element in the data processing and its performance is closely related to the 132 

accuracy of the final assessment results. While there are many feature extraction methods available, each 133 

approach has its limitations. Therefore, in the proposed method, three different analytical methods are 134 

employed in parallel to extract key features of the stress wave signals, i.e. PSD (Gangopadhyay et al. 1989), 135 

WPT (Sun and Chang 2002) and EMD (Huang et al. 1998). 136 

 137 
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Fig. 2. Hierarchical data fusion model for pole condition assessment 140 

 141 



Power spectrum density (PSD) feature extraction 142 

 143 

Typical stress wave signals captured from guided wave testing have nonlinear and random characteristics 144 

and are polluted with noise. These characteristics can be seen in Fig. 3, which displays stress wave signals of 145 

one intact pole from sensor 1 with longitudinal and bending wave excitations. Generally, PSD estimation is 146 

an effective way to analyse this type of signals. Up to present, various signal PSD estimation techniques have 147 

been reported including parametric and nonparametric methods. Compared with nonparametric methods, 148 

parametric ones are apt to provide better results especially when the analysed signal length is relatively short, 149 

which is always regarded as short quasi-stationary sequence. In this work, a parametric approach using 150 

autoregressive (AR) coefficient estimation is utilised to transform the time-series stress wave signals into a 151 

series of real-valued variables based on the assumption that signals can be obtained from a time-series model 152 

of a random process. As well, AR model is able to model stress wave signals as the output of a linear m-153 

order AR model combined with zero-mean Gaussian white noise and its specific expression is given by 154 

(Fugate et al. 2001): 155 

1

( ) ( ) ( ) ( )
m

i

y n a i y n i e n


   
                                                                 

(1) 156 

where y(n) is the discrete time-history response that model the stress-wave signals, a(i) is an AR coefficient 157 

and e(n) is the time-series sequence of a Gaussian white noise process.  158 

 159 

The Burg method is utilized here to estimate the AR parameters of the signals, which is mainly based on 160 

Levinson-Durbin recursion and least square criterion. The order m in the AR model is an important 161 

parameter to be identified from the signals and describes a trade-off relationship between adding resolution 162 

and declining model accuracy. Here, the trial-and-error method is used to identify the optimal model order 163 

via minimizing the Akaike information criterion (AIC) function (Marple 1987): 164 

min       [ ] ln( ) 2AIC m N m  
                                                           

(2) 165 

where m denotes the model order of the AR system, N denotes the total number of sampling points, and τ 166 

denotes the variance estimation of the white noise input to the AR model for order m. 167 
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(a) Longitudinal wave excitation                                           (b) Bending wave excitation 170 

Fig. 3. Typical stress wave signals of an intact pole from sensor 1.  171 

 172 

Fig. 4 shows the relationship between variance estimation and AR model order for both longitudinal and 173 

bending waves obtained from the sensor array. It can clearly be observed that the variance estimation shows 174 

a decreasing trend with an increasing model order. This decreasing trend reduces once the order exceeds the 175 

knee points. In general, a higher order will lead to a high-dimensional feature vector which may influence the 176 

classification accuracy of the SVM. Therefore, the knee points of AIC curves are selected as the optimal 177 

order in this work, i.e. m=20 for longitudinal wave and m=17 for bending wave excitation. 178 
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(a) Longitudinal wave data  (b) Bending wave data 181 

Fig. 4. Mean AIC responses 182 
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(a) Longitudinal wave data                                                      (b) Bending wave data 185 

Fig. 5. AR coefficients for both intact and damaged poles 186 

 187 

Fig. 5 showsa typical case of the resulting AR coefficients calculated using the parametric method for 188 

longitudinal and bending wave signals for an intact and a damaged timber pole. These results show that only 189 

tiny AR coefficient differences can be found between intact and damaged poles, which verifies the 190 

importance and necessity of multi-sensor extraction for condition assessment of timber poles. 191 

 192 

Wavelet packettransform(WPT) feature extraction 193 

 194 

The second feature extraction method employed is WPT, which is a further development of the wavelet 195 

transform and can provide a broader scope of probabilities for the analysis of the sampling signals(Sun and 196 

Chang 2002). In WPT, both low frequency and high frequency elements are separatedbased on successive 197 

time fixation of frequency sub-bands produced by a tree structure of high-pass and low-pass filtering 198 

operation. The process of WPT is schematically depicted in Fig. 6, in which an original time series signal 199 

S0,0(n) with length N in the first level is split into a low frequency and a high frequency signal as follows 200 

(Sun and Chang 2002): 201 

1

1,0 0,0

0

( ) ( ) ( )
N

i

S n g i S n i




 
                                                                

(3) 202 



1

1,1 0,0

0

( ) ( ) ( )
N

i

S n h i S n i



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(4) 203 

whereS1,1(i) and S1,0(i) denote the details and approximations in the first level, and h(i) and g(i) denote the 204 

response functions of high-pass and low-pass filters, which are dependent on the selection of the wavelet 205 

function. To guarantee the time fixation of every frequency band and improve the frequency resolution, the 206 

outputs of the filters are reduced to half of the signal length in the upper level at the end of every filtering 207 

phase (Yen and Lin 2000). 208 
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Fig. 6. Tree structure of WPT 211 

 212 

Previous studies haveshown that very good classification results can be achieved if the BiorSplines 6.8 213 

wavelet function is selected. This is mainly due to its good orthogonality and symmetry together with high 214 

vanishing moments. Fig.7 shows the WPT reconstructed bending wave signals of the first 16 frequency 215 

bands after 10 layers of decomposition.It is noticed that in the first 2 bands there is no remarkable amplitude 216 

difference between intact and damaged poles. However, starting from the third frequency band, clear 217 

differences are present between the stress wave signal frequency compositions of the different transform 218 

scales. This characteristic is mainly reflected in energy and can be expressed by: 219 

2

, ,

1

[ ( )]
N

k j k j

i

E S i



                                                                               

(5) 220 

where j=3,…,16 , and N is the length of reconstructed signal. Fig. 8 shows the sectional energy features of 221 

WPT signals from intact and damaged poles. It is noticeable that the signal energy of the fourth frequency 222 

band from the intact pole is clearly higher than that of the damaged pole. Hence, these energy features of 223 

WPT scale space can be used as feature parameters for timber pole condition assessment. 224 



 225 

 226 

(a) Intact pole 227 

 228 

(b) Damaged pole 229 

Fig. 7. WPTof bending wave signals 230 

 231 
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(a) Longitudinal wavedata                   (b) Bending wave data 233 

Fig. 8. Comparison of WPT signal energy features between intact and damaged pole 234 

 235 

Empirical mode decomposition (EMD) feature extraction 236 

 237 

EMD is an effective and adaptive method for analysing non-stationary and nonlinear signals and was first 238 

proposed by Huang (1998). Using this method, a complex signal can be decomposedinto a collection of 239 

intrinsic mode functions (IMFs) and a residue.Since the decomposition of the signal is mainly dependent on 240 

the information contained in the signal, the IMF number is always limited and its components gained via 241 

decomposition are steady (Reddy et al. 2015; Rezaei and Taheri 2010; Yang and Tavner 2009). The IMFs 242 

generally satisfy two conditions: 1) in the entire signal sequence, the number of extreme points and crossing 243 

through zero points should be the same or the difference no more than 1; 2) at any time point, the averaged 244 

value of the envelop constructed by the local maximum and minimum points is 0. The procedure of EMD 245 

can be described as follows.First, identify all extreme points of the signal x(t) and interpolate these minimum 246 

and maximum points into the lower and upper envelop of the signal using the cubic spline method. Second, 247 

calculatethe averaged value of the lower and upper envelop, which is denoted as m1(t), thus the detail d1(t) 248 

can be extracted by (Huang 1998): 249 

1 1( ) ( ) ( )d t x t m t                                                                         
(6) 250 

If d1(t) dissatisfies the conditions of IMF, it will be regarded as a new signal and all the steps are repeated 251 

until the condition is satisfied. At this point, the detail d1(t) is an effective IMF, denoted as c1(t) that is the 252 



highest frequency component in theoriginal signal. Third, the difference r1(t) is obtained by subtracting c1(t) 253 

fromx(t) (Huang 1998): 254 

1 1( ) ( ) ( )r t x t c t                                                                        
(7) 255 

Then take r1(t) as a new signal and repeat all the steps to obtain c2(t), c3(t),…,cn(t) and r2(t), r3(t),…,rn(t). If 256 

rn(t) or cn(t) meets the pre-set stopping criterion, and rn(t) becomes a monotone function, the cycle is 257 

terminated. Finally, the following expression is obtained (Huang 1998): 258 

1

( ) ( ) ( )
n

i n

i

x t c t r t

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(8) 259 

where ci(t) is the ith
 
IMF and rn(t) is the residue. c1(t) contains the highest frequency while cn(t) has the 260 

lowest frequency, representing the tendency of x(t). 261 

 262 

 263 

(a) Intact pole                                                            (b) Damaged pole 264 

Fig. 9. EMD of bendingwave signals 265 

 266 

After EMD decomposition, the obtained IMFs represent a group of steady signals on the feature scale and 267 

every IMF has its own unique energy information. Moreover, it has been found that the signal energy mainly 268 

focuses on the first eight layers, which means that the first eight IMFs can completely portray the signal 269 

energy feature. Fig.9 shows the first eight layers and the residue of EMD decomposition of bending wave 270 

signals for anintact and a damaged timber pole.Based on these results, the energy features of the EMD 271 

decomposition areobtained and the energy coefficient of each IMF is given by: 272 
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(9) 273 
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(10) 274 

where N is the signal length. The comparative results of energy coefficients of the first eight IMFs between 275 

an intact and a damaged pole are displayed in Fig.10. It is clearly seen that for both signal types, the last 276 

three IMFs have obvious distinguishable patterns for the intact and the damaged case. This shows the 277 

feasibility of usingthe energy coefficients of IMFs as a feature vector for pole condition identification. 278 

 279 

1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6  Intact pole

 Damaged pole

E
n

er
g

y
 c

o
ef

fi
ci

en
t

IMF index

1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

 Intact pole

 Damaged pole

E
n

er
g

y
 c

o
ef

fi
ci

en
t

IMF index  280 

(a) Longitudinal wave data                                                     (b) Bending wave data 281 

Fig. 10. Comparison of energy coefficients of IMFs between intact and damaged poles 282 

 283 

Construction of feature vector 284 

 285 

After feature extraction of the stress wave signals, the final step in the data levelinvolves the construction of 286 

a single vector containing the signal state information to be used as input for the SVM for classification 287 

learning and testing. Here, three types of signal features (AR model coefficients, energy values of WPT and 288 

energy coefficients of EMD) are combined together with a class label by real-number encoding. Fig. 11 289 

shows the specific encoding process. According to the analysis above, there is a total of 44 indicators in the 290 

vector for longitudinal wave signals and 41 indicators for bending wave signals. 291 

 292 
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Fig. 11. Encoding for single feature vector  294 

 295 

Although multiple feature extraction is able to provide comprehensive information on the signal features, 296 

some of these features may be redundant or polluted with noise. If the full feature vector is directly usedas 297 

input for the SVM classifier, the classification accuracy and generalization capacity will be greatly affected. 298 

As a result, the number of indicators should be reduced to obtain an optimal classification model. 299 

 300 

In this work, before beingused for training in the SVM classifier, the extracted feature vector is pre-301 

processed adopting principal component analysis (PCA), which is considered as an effective statistical multi-302 

variable data processing method for reducing feature dimensionality. This method is based on the linear 303 

transformation of the original data set into a new data set with fewer components, which are termed principal 304 

components (PCs) (Kuzniar and Waszczyszyn 2006). Every PC is a linear combination of the components in 305 

the original data set, and all are orthogonal to each other, thus setting up an orthogonal basis of data space. 306 

By disregarding PCs of small contribution, the dimension of the feature vector is decreased without 307 

remarkably influencing the signal information.  308 

 309 

In this case, there are a total of 44 components in the vector for longitudinal wave signals and 41 components 310 

for bending wave signals, corresponding to 44 and 41 SVM input nodes, respectively. However, such large 311 

number of input nodescan cause problems in calculation efficiency and training convergence. Hence, PCA is 312 

employed to reduce the dimension size. Here, for each sensor in the array, there are 40 samples of 313 

longitudinal wave signals and 30 samples of bending wave signals. As presented above, after projection, 314 

there are 44 and 41 PCs corresponding to longitudinal and bending wave signals, respectively. Fig.12 315 

showsthe individual and cumulative contributions of the first 20 PCs of the feature vector of sensor 1of 316 



bending wave signals. It can be seen thatthe first 8 PCs make up more than 95% contribution of the original 317 

information (first 15 PCs for longitudinal wave data). So with a 5% loss ofinformation, the vector 318 

dimensions can be significantly reduced, which is greatly beneficial toSVM training. The resulting input 319 

vector dimensions for the SVMs for the remaining sensors are listed in Table 1. 320 
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(a) Individual contribution                                   (b) Cumulative contribution 323 

Fig. 12. PCA results of bending wave signals from sensor 1 324 

 325 

Table 1. Feature vector dimensions of other six sensors 326 

Signal type 
Feature vector dimension 

Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 

Longitudinal wave 14 16 17 15 12 15 

Bending wave 10 5 7 8 12 7 

 327 

Feature level fusion based on SVM 328 

 329 

Theoretical background 330 

 331 

SVM is a machine learning algorithm, which is based on the principle of structural risk minimization and 332 

kernel-based method (Qu et al. 2013; Ao et al. 2014). SVM utilizes afinite number of samples to train the 333 

model toexplore the optimal compromise between generalization performance and classification accuracy, 334 

and reveals the distinct benefits in dealing with problems of nonlinearity, small samples and high dimension. 335 

Hence it is considered as one of the most effective machine learning algorithms. The principle of SVM for 336 



classification is to seek anoptimal line or hyperplane between two groups of data with maximum margin. For 337 

a given training set            
  , where xi denotes the input vector and yi is the class label, the characteristic 338 

space of SVM is represented by (Vapnik 1998): 339 

( )f x x b                                                                        
(11) 340 

where ω is the vector of connecting weight and b is a bias. The optimal classifier can be obtained by 341 

calculating the following minimization optimization problem (Vapnik 1998): 342 
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(12) 343 

where C represents the penalty factor to adjust the balance between the classifier complexity and to minimize 344 

the training error, and  ζi denotes the classification errors. By incorporating a Lagrange function, the above 345 

optimization problem canbe written as a dual optimization problem, expressed by (Vapnik 1998): 346 
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(13) 348 

Therefore, the optimal nonlinear decision function can be obtained by solving the above problem, which is 349 

expressed by: 350 

1

( ) sgn[ ( , ) ]
l

i i i

i

f x y K x x b


 
                                                       

(14) 351 

where K(xi,x) is the kernel function, which is used in SVM for nonlinear classification. In this paper, the 352 

radial basis function (RBF) is employed as the kernel function due to its excellent performance on nonlinear 353 

classification. The expression of RBF is  354 

2

2
( , ) exp( )
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i

i

x x
K x x




 

                                                            
(15) 355 

where σ is the width of RBF. 356 



Construction of SVM classifier 357 

 358 

To identify the health condition of the timber poles from the extracted feature vector, fourteen sub SVM 359 

classifiers, corresponding to the two signal types (longitudinal and bending waves) and seven sensors, are 360 

built. The PCs selected from the feature vector in Section 3.1.4 are used as the inputs of the SVM classifier 361 

while the output of the model is the pole condition. There are two condition types denoted as 0 and 1, where 362 

0 means „damaged‟ and 1 represents „intact‟. The classifier parameters are also selected, which are related to 363 

the model generalization performance and classification accuracy. Here, the genetic algorithm (GA) is 364 

adopted to optimize the penalty factor C and the kernel function parameter σ in the classifier model. The 365 

classification accuracy is evaluated by leave-one-out cross-validation using the fitness function for parameter 366 

optimization. The optimization process can be regarded as solving the following maximization optimization 367 

problem: 368 
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(16) 369 

where Rcv(C,σ
2
) denotes the ratio between correct classification samples and the total samples. For each sub 370 

SVM classifier, the optimization process can be divided into the following steps: 371 

Step 1. Initialize the chromosome number N, maximal iteration numberT, search range of parameter (C,σ
2
), 372 

crossover probability Pc and the mutation probability Pm. In this case, N=20, T=100, Cmin=0, 373 

Cmax=100,     
 =0,     

 =100, Pc=0.7 and Pm=0.01. 374 

Step 2. Chromosome encoding for parameter (C,σ
2
). Randomly generate initial chromosome and set initial 375 

iteration t=0.  376 

Step 3. Calculate the individual fitness, i.e. Rcv(C,σ
2
). 377 

Step 4. Select the part of the chromosome to produce the new chromosome by roulette wheel strategy. 378 

Step 5. Carry out the crossover and mutation operation to generate the new chromosome. 379 

Step 6. If the termination rule is not satisfied and t ≤ T, go to Step 2. 380 

 381 



Fig.13 shows the parameter optimization process of sub SVM of bending wave signals from sensor 1. Fig. 382 

13(a) showsthe algorithm convergence during the iteration while Fig. 13(b) gives the variance trend of each 383 

parameter. It is apparent that the best fitness gradually increases with the addition of iteration number though 384 

some fluctuations still exists in the average fitness (classification accuracy). Moreover, it is found that the 385 

parameter C can quickly arrive at its optimum compared with σ
2
, which requires more iteration. Table 2 386 

gives the classification results for both wave types of all sub SVMs usingleave-one-out cross-validation. It is 387 

observed that the classification accuracies of sub SVMs based on bending wave data are higher than those of 388 

longitudinal wave data. This may bedue to two reasons: 1) due to the shorter wavelength in the induced 389 

frequency band, the bending wave is more susceptible to smaller damage compared to the longitudinal wave; 390 

2) the bending wave has more prominent radial and longitudinal displacement components on the surface of 391 

the tested pole. Therefore, the bending wave is able to reflect the damage scenarios more accurately 392 

compared to the longitudinal wave since the radial component is more susceptible to the real damages. 393 

 394 
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(a) Convergence rate                                          (b) Parameter optimization 396 

Fig. 13. Parameter optimization process of sub SVM of bending wave from Sensor 1 397 

 398 

Table 2. Classification results of all sub SVMs using leave-one-out cross-validation 399 

Sensor Number 
Classification accuracy 

Longitudinal wave Bending wave Mean 

Sensor 1 80% (32/40) 86.67% (26/30) 82.86% (58/70) 

Sensor 2 87.5% (35/40) 90% (27/30) 88.57% (62/70) 

Sensor 3 87.5% (35/40) 96.67% (29/30) 91.43% (64/70) 

Sensor 4 77.5% (31/40) 83.33% (25/30) 80% (56/70) 

Sensor 5 62.5% (25/40) 80% (24/30) 70% (49/70) 

Sensor 6 92.5% (37/40) 93.33% (28/30) 92.86% (65/70) 



Sensor 7 82.5% (33/40) 86.67% (26/30) 84.29%(59/70) 

Mean 81.43% (228/280) 88.1% (185/210)  

 400 

Probability output of SVM classifier 401 

 402 

The standard outputs of SVM classifiers are based on hard decision and are dependent on avoting method. 403 

However, for practical engineering applicationswith nonlinear classification problems, a soft decision with 404 

probability outputs is required to provide an objective evaluation with different categories. In this work, the 405 

sigmoid function is adopted to map the outputs of SVM to the range of [0, 1] to obtain posterior probability 406 

outputs. The specific expression is given by: 407 

1
( )

1 exp[ ( ) ]
p x

Af x B


 
                                                          

(17) 408 

where A and B are two factors to adjust the flexibility of the sigmoid function and their optimal values can be 409 

obtained by solving the following minimization problem: 410 
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(18) 411 

where
1
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p
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i
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y
t


 , yi is the classification label of sample i. 412 

 413 

Decision level fusion based on D-S evidence theory 414 

 415 

The evidence theory is usedto manipulate and model incomplete, inaccurate, uncertain and even conflicting 416 

information. It was first presented by Dempsterbased on the notion of upper and lower probabilities, and then 417 

consummated by Shafer (Dampster 1967; Shafer 1976). This method has been successfully applied in many 418 

application fields such as data fusion, image analysis, pattern recognition and decision making (Talon et al. 419 

2014). For probability estimation, the evidence theory adopts a belief function, which is built usingevent 420 

probability and constraint expression withthe novel percept notions, i.e. unknown or uncertainty. 421 

 422 

Frame of discernment 423 



 424 

In the evidence theory, a non-null set, which contains N exhaustive and exclusive hypotheses, is defined as 425 

the frame of discernment. The power set is denoted by 2
θ
. In this work, the frame of discernment for pole 426 

condition assessment is θ = {A1, A2}, where A1 and A2 represent the damaged and intact conditions, 427 

respectively. 428 

 429 

Basic Probability Assignment  430 

 431 

The basic probability assignment function (BPA) of the proposition A is a mappingfrom 2
θ
 to the interval [0, 432 

1], which meets the following relationship (Dampster 1967; Shafer 1976): 433 

( ) 0

( ) 1
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m A
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 

 



                                                                          

(19) 434 

where m(A) is called the BPA of event A, which denotes a certain piece of evidence. Generally, the 435 

probability output of sub SVM classifier can be regarded as the BPAs, which means that p(x) denotes the 436 

BPA value of the damaged condition, 1−p(x) denotes the BPA value of the intact condition. Also, how to 437 

assign the uncertainty is an important issue to be solved. Here, the error upper bound of SVM classification 438 

identification is introduced and adopted: if a group of training samples are able to be separated by an optimal 439 

hyperplane, the classification error upper bound of testing samples is the ratio of mean number of support 440 

vectors in the training set to the total training sample number: 441 

( )
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(20) 442 

where Nt and Nsv denote the total training sample number and mean number of support vectors, respectively. 443 

The above expression represents the sample uncertainty by SVM classification, corresponding to the 444 

uncertaintiy degree Θ in the frame of discernment θ. In order to satisfy the requirement that the summation 445 

of BPAs equals to 1, the probability outputs of two categories (damaged and intact) should be multiplied by 446 

the coefficient 1−E(Perror). Accordingly, the mathematical expression of BPAs by SVM classifier is given as 447 

follows: 448 



1

2

( ) ( )(1 )
1

( ) [1 ( )](1 )
1

( )
1

sv

t

sv

t

sv

t

N
m A p x

N

N
m A p x

N

N
m

N


 




  



 

                                                        

(21) 449 

 450 

Evidence combination rule 451 

 452 

Suppose m1 and m2 are BPA functions from different evidence sources in the same frame of discernment, and 453 

its focal elements are Bi and Cj. The rule of combination of Bi and Cj is given as follows (Dampster 1967; 454 

Shafer 1976): 455 
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(22) 456 

where 1 2( ) ( )
i j

i j

B C

K m B m C
 

  denotes the conflict degree among different information sources. Generally, 457 

the combination result of nBPA functions (m1,…,mn) in the same frame of discernment is given by 458 

(Dampster 1967; Shafer 1976): 459 

1 2 nm m m m   
                                                              

(23) 460 

 461 

Decision making 462 

 463 

In this paper, the maximum trust degree approach is used to make a final decision in accordance with the 464 

evidence combination results: 465 

∃A1 and A2⊂ θ, m(A2)=max{m(Ak), Ak⊂ θ and Ak≠A1}. If the following expression is satisfied: 466 
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(24) 467 

A1 is the final result, where δ1 and δ2 denote the thresholds. In this work, δ1=0.3 and δ2=0.3. 468 

 469 

Case study 470 

 471 

To evaluate the performance of the hierarchical data fusion model on the condition assessment of timber 472 

utility poles, all cases of timber poles are utilized to testing the model using leave one pole out method, in 473 

which five cases related to the same pole are taken out in turn as the unknown validation samples and the rest 474 

are used as the training set. Tables 3 and 4 show the initial estimations of all sub SVM classifiers of the two 475 

randomly selected cases. According to the description in 3.3.4, when m(A1)−m(A2) > 0.3, m(Θ)< 0.3 and 476 

m(A1) > m(Θ), the assessment result is A1; when m(A2) −m(A1) > 0.3, m(Θ) < 0.3 and m(A2) > m(Θ), the 477 

assessment result is A2. Otherwise, there is no recognition result from the system. Consequently, it can be 478 

seen thatforthe damaged pole case, the assessment results from the sensors 2, 4, 5, 6 and 7 dissatisfy the 479 

decision rule. The same problem exists for the sensors 1, 3 and 5 for the intact pole case. It is believed that 480 

there are two possible reasons contributing to this phenomenon. One reason may be linked to noise 481 

sensitivity, sensor or measurement errors, which cause uncertainties in the input feature vectors of the sub 482 

SVM classifiers. The other reason is that the training samples are so limited that they are not able to include 483 

all the possible conditions, which may lead to the identification errors in sub SVM classifiers. 484 

 485 

Tables 5 and 6 give the first-layer evidence combination results of two sub SVM classifiers of the same 486 

sensor for the two cases. For the damaged pole case, the support probability of the proposition A1 (damaged 487 

condition) has increased to 0.8491 at sensor 1 while the support probability of A2 (intact condition) and 488 

uncertainty degree declined to 0.0372 and0.1137, respectively. This result meets the decision rule, which 489 

means that the assessment result of sensor 1 is A1 „damaged pole‟. Similarly, the other six sensors have the 490 

same assessment results. Therefore, after first-layer evidence combination, all the sensors in the testing 491 

system give the same result forA1, which conforms to the practical condition of the pole. However, for the 492 



intact pole, because m1(A1) >m1(A2) and m3(A1) >m3(A2), the assessment results from sensors 1 and 3 are still 506 

in contradiction with that of the other five sensors. Therefore, it is difficult for the system to make a final 507 

decision.  508 

 509 

 510 

Tables 7 and 8 show the second-layer evidence combination results of all seven sensors for the two cases. 511 

From the tables it can be seen that after the second-layer combination, the uncertainty degree declines to 0 512 

and the support probabilities of the propositions as the final decisions for the two cases ascend to 100%, 513 

which is in agreement with the practical conditions of the cases. The results verify that compared to 514 

theresults from the single SVM classifier, the confidence probability of the final decision is greatly improved 515 

through the two-layer evidence combination. 516 

 517 

 518 

Table 3. Initial recognition result by SVM 

classifiers for the damaged pole case 

BPA A1 A2 Θ 

m1,1 0.5734 0.1702 0.2564 

m1,2 0.6911 0.1020 0.2069 

m2,1 0.2940 0.4624 0.2436 

m2,2 0.7708 0.0395 0.1897 

m3,1 0.5858 0.1578 0.2564 

m3,2 0.7696 0.0063 0.2241 

m4,1 0.4170 0.3138 0.2692 

m4,2 0.7860 0.0243 0.1897 

m5,1 0.2747 0.4689 0.2564 

m5,2 0.6806 0.1125 0.2069 

m6,1 0.2770 0.4666 0.2564 

m6,2 0.7886 0.0217 0.1897 

m7,1 0.3245 0.4319 0.2436 

m7,2 0.7491 0.0440 0.2069 

 

Table 4. Initial recognition result by SVM 

classifiers for the intact pole case 

BPA A1 A2 Θ 

m1,1 0.4836 0.2600 0.2564 

m1,2 0.5158 0.2773 0.2069 

m2,1 0.0203 0.7361 0.2436 

m2,2 0.0241 0.7862 0.1897 

m3,1 0.1292 0.6144 0.2564 

m3,2 0.7225 0.0534 0.2241 

m4,1 0.1816 0.5492 0.2692 

m4,2 0.0506 0.7597 0.1897 

m5,1 0.4625 0.2811 0.2564 

m5,2 0.0437 0.7494 0.2069 

m6,1  0.2144 0.5292 0.2564 

m6,2 0.0033 0.8070 0.1897 

m7,1 0.0646 0.6918 0.2436 

m7,2 0.0191 0.7740 0.2069 

 

Table 5. First-layer evidence combination for 

the damaged pole case 

BPA A1 A2 Θ 

m1 0.8491 0.0372 0.1137 

m2 0.7785 0.0627 0.1588 

m3 0.8852 0.0020 0.1128 

m4 0.8481 0.0198 0.1321 

m5 0.6386 0.1802 0.1812 

m6 0.7880 0.0365 0.1755 

m7 0.7779 0.0608 0.1613 

 

Table 6. First-layer evidence combination for 

the intact pole case 

BPA A1 A2 Θ 

m1 0.6659 0.1925 0.1416 

m2 0.0008 0.9253 0.0739 

m3 0.5084 0.1787 0.3129 

m4 0.0192 0.8738 0.1070 

m5 0.0712 0.7420 0.1868 

m6 0.0015 0.8964 0.1021 

m7 0.0022 0.9120 0.0858 

 



 537 

Fig. 14 gives the statistical accuracy analysis results of the proposed model for timber poles with longitudinal 538 

and bending wave excitations. Fig. 14 (a) displays theclassification accuracy distributions for two excitation 539 

cases. The results clearly illustrate that bending wave excitation outperforms longitudinal wave in the respect 540 

of classification accuracy with average value of 93.33% although the latter also could arrive at 87.5%. Fig. 541 

14 (b) shows the related Cohen Kappa values of the data fusion model with different excitation types. 542 

Generally, Kappa value is used to estimate the distribution of the forecast labels, which could not be 543 

expressed by the classification accuracy. Kappa value always changes between 0 and 1 with the maximal 544 

value representing the best forecast with all values located at the diagonal line in the confusion matrix 545 

(Witten et al. 2011). Similar to results in Fig. 14 (a), Fig. 14 (b) also verifies that bending wave cases also 546 

present a better result than the longitudinal wave cases, which accords with the previous analysis that 547 

captured signal features from bending wave are more sensitive to the damage scenario than that of 548 

longitudinal wave. 549 
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                 (a) Classification accuracy distribution   (b) Cohen Kappa value 552 

Fig. 14. Statistical indicators of the proposed model with different wave signal excitations 553 

 554 

Table 7. Second-layer evidence combination 

for the damaged pole case 

BPA A1 A2 Θ 

m 1.0000 0 0 

 

Table 8. Second-layer evidence combination 

for the intact pole case 

BPA A1 A2 Θ 

m 0 1.0000 0 

 



Conclusion 524 

 525 

This paper presented a novel method for the health condition assessment of in-situ timber utility poles based 526 

on a hierarchical data fusion model. In the proposed method, first, stress wave signals were recorded in a 527 

sensor array using two types of wave excitation (longitudinal and bending wave). Second, for each sensor, 528 

the stress wave data was analysed using AR coefficients, wavelet packet energies and energy coefficients of 529 

IMFs. The derived parameters were then used to form a feature vector and PCA was applied for data 530 

compression. Third, for each sensor, two sub SVM classifiers were built upfor initial estimation of the pole 531 

condition. Fourth, to improve the identification accuracy of the classifierand to obtain a final decision, GA 532 

was employed to optimize the two main parameters in the model. The experimental results from in-situ 533 

timber pole testing demonstrated that the proposedhierarchical model is able to greatly improve the 534 

identification accuracy.The support probability of right proposition was increased from 0.7886 to 1. This 535 

prevents the problem of difficult decision making and satisfies the requirement of condition assessment of 536 

timber utility poles in engineering application and management. In this work, the SVM model is set up based 537 

on the off-line learning, which is not suitable for real-time structural health monitoring of timer poles. In the 538 

future work, the model will be realised in the on-line way to update the model in real-time for the higher 539 

accuracy. Furthermore, except the application in the pole condition assessment, the proposed hierarchical 540 

model can also be developed for leakage detection of pipeline networks, fault diagnosis of machines and 541 

damage detection of bridge and building structures, in which the multi-sensor system is essential for 542 

capturing multi-source data information to implement the monitoring tasks. Moreover, sometimes the 543 

information provided by only one-type sensor may be incomplete or inaccurate due to the self-deficiency and 544 

environmental factors. Therefore, multi-type-sensor system and multi-source information fusion algorithm 545 

will be also investigated to realise their application in civil engineering in future.  546 
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