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Abstract: Over-height vehicle drivers continuously ignore warning signs and strike onto bridges despite the 18 

number of preventative methods installed at low clearance bridges. In this paper, the authors present a new 19 

method for over-height vehicle strike prevention with a single calibrated camera mounted on the side of the 20 

roadway. The camera is installed at the height of the “over-height plane” formed by the average of the 21 

maximum allowable heights across all lanes in a given traffic direction; the error caused by the road gradient 22 

is assumed to be negligible and absorbed through the calibration process. At that height, the over-height plane 23 

can be safely approximated as a line in the camera view. Any vehicle exceeding this line is consequently 24 

over-height. The camera position and orientation is determined via a calibration process proposed. Instances 25 

of over-height vehicles are detected via optical flow monitoring. Evaluation of the system resulted in a height 26 

accuracy of ±2.875 mm; outperforming the target accuracy of ±5 cm, OH detection accuracy of 68.9%, and 27 

classification performance of 83.3%. While its accuracy is comparable to existing laser beam systems, it 28 

outperforms them on cost which is an order of magnitude less due to eliminating the need for new permanent 29 

infrastructure. 30 
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Introduction 36 

 37 

An over-height vehicle strike (OHVS) is an incident in which a vehicle, typically a lorry (truck) or double-38 

decker bus, tries to pass under a bridge or tunnel that is lower than its height, subsequently colliding with the 39 

structure. Accidental collisions between over-height (OH) vehicles and bridge superstructures are a global 40 

and frequent phenomenon occurring throughout transportation networks worldwide (Xu et al. 2012, El-Tawil 41 

et al. 2005, Fu et al. 2004). The US Federal Highway Administration reports that the third most common 42 

cause of bridge failure is vehicle or vessel collision (Federal Highway Administration 2013). These strikes 43 

lead to traffic delays, damage to bridge structures, bridge closures and injuries. In the worst-case scenario, 44 

derailments, immediate collapse of bridge structures, and fatalities may occur (Ghose 2009, Washington State 45 

Department of Transportation 2013). 46 

Managing OHVS requires attention in three domains: prevention (discouraging strikes in the first place); 47 

detection (accurately recording strikes that do occur); and reporting (efficiently communicating OHVS 48 

details to the relevant authorities). The latter two aspects of OHVS management are effectively managed by 49 

current systems. Many OHVS technology that currently exist on the market is targeted towards preventing 50 

OHVS from occurring in the first place. Very few systems are designed to mitigate OHVS impact, as asset 51 

owners are interested in protecting the structure and limiting any risk of structural instability.  52 

Current prevention systems are categorized into passive, sacrificial, and active types. Practitioners favor 53 

quick, cheap, and accessible passive methods such as signage, bridge markings, and flashing beacons as an 54 

initial attempt to warn drivers. These passive interventions are readily available, easily installed, and 55 

minimize additional infrastructure installation.   They prevent ~10-20% of strikes, meaning that additional 56 

complimentary systems are necessary for higher prevention rates (Cawley 2002). Where strikes have 57 

persisted, practitioners incorporate sacrificial or active systems. Sacrificial systems (also known as rigid 58 

passive systems) are ideal for asset owners as post-installation maintenance is minimal and further discussed 59 

in Section II.  60 
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Active systems, also known as Early Warning Detection Systems (EWDS), detect and notify vehicle 61 

operators ahead of the presence of low structures. Current systems consist of a transmitter and a receiver, 62 

placed directly across the lane(s) of traffic with an inductive loop to detect presence of a vehicle in advance 63 

of the warning sign (TRIGG Industries International 2015). Asset owners in the US, Australia, China, Canada 64 

and Netherlands have deployed the active systems using laser or infrared light warning systems at low 65 

clearance locations (New York State 2015, LaserVision 2015, Sina 2012, Alberta Infrastructure & 66 

Transportation 2008, Dutch Ministry of Infrastructure, & Environmental Department of Waterways and 67 

Public Works 2015). However, at non-critical low height locations, most asset owners have chosen not to use 68 

EWDS due to unfavorable cost-benefit analyses. The reported installation costs range in the hundreds of 69 

thousands of dollars therefore limiting the widespread adoption of EWSD due its high costs associated with 70 

the physical infrastructure requirements (Sandidge, unpublished thesis, 2012, Dai et al. 2015, Singhal, 71 

unpublished data, 2015). The biggest issues for asset owners are affordability and reliability, without 72 

compromising the accuracy and performance of such a system. Many systems exist on the market; none cover 73 

the three aspects of OHVS management affordably. 74 

In this paper, the authors propose a potentially viable solution for OH vehicle detection, specifically 75 

addressing the prevention problem. The paper is organized as follows: Section II describes the ideal 76 

framework for OHVS management, followed by non-rigid and rigid passive methods, and leading (active vs. 77 

passive) and lagging sensing methods. Section III introduces the overall framework with the proposed 78 

geometry, camera installation procedure, and detection algorithm. An evaluation of the system is presented 79 

in Section IV with results, discussion and concluding remarks.  80 

 81 

Background 82 

 83 

As vehicle heights are continually increasing, and bridge structures built by standards that are decades out-84 

of-date and often inadequate today, the problem of OHVS is an ongoing nuisance for asset owners. One of 85 

the earliest systems designed to deal with the problem date back to 1906, patented by the American engineer 86 



 

 

 

4 

 

James H. Donaldson (1906). The guard system was invented to warn drivers that the train is about to pass 87 

into a tunnel or under a bridge. The guards consisted of a number of strips of flexible material attached to a 88 

wire stretched across the track striking the top of the train, and warning drivers to stop to allow for the train 89 

to pass. Over the years, this type of OH vehicle detection and early warning system has evolved into the 90 

commonly used OHVS prevention tools still with us today.  91 

Figure 1 depicts a more recent schematic layout of the OH vehicle detection and warning system. The 92 

system employs the main components: sensing technology (1), warning device (2), alternative route (3), 93 

detection sensors (4) and, collision reporting (5) positioned upstream of low bridge. Components (1), (2), 94 

and (3) cover the prevention aspect of OHVS management by installing a sensing device to detect the OH 95 

vehicle and a warning device to warn the OH driver. These methods are considered to be leading methods. 96 

Adequate latency is required between data processing and warning issuance, to provide the driver of an OH 97 

vehicle with sufficient time to react, brake or exit. In ideal situations, an alternative route is provided for a 98 

quick and safe exit. Components (4) and (5) are lagging methods covering the detection and reporting aspects 99 

of the system. Detection sensors are mounted on the bridge structure to record any frequencies caused by 100 

strike and real-time collision reporting technologies are used to notify authorities of the strike. The system 101 

presents a holistic solution for early warning and detection system for OH vehicles. Asset owners seek an 102 

affordable method that will cover prevention (with an accuracy of ±5 cm), detection (and concomitant 103 

emergency services response), and real-time reporting. 104 

A) Prevention Methods  105 

 106 

1) Passive Non-Rigid and Rigid Methods 107 

 108 

Non-rigid passive methods include flashing beacons and bridge markings. Flashing beacons are commonly 109 

used at low bridge approaches to warn drivers of an oncoming ‘hazard’ and typically paired with other 110 

preventative methods such as bridge markings to emphasize the warning. A study by Horberry et al. (2002), 111 

tests various designs of bridge markings to reduce the risk of OHV strikes. The study attempts to optimally 112 
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redesign bridge markings to appear lower and more confined, making drivers more reluctant to pass 113 

underneath. Although this preventative initiative makes drivers more cautious, it only addresses part of the 114 

OHVS management problem therefore relying on drivers to take appropriate precautions; additional 115 

preventative mechanisms are required.    116 

At the policy level, asset owners have attempted to manage the problem of OHVS by implementing 117 

permits, axel load restrictions, fines, driver education and awareness programs, good practice manuals and 118 

newsletters. Although these strategies may not directly prevent OHVS from occurring, increased awareness 119 

plays a positive role and can be effective for passengers, professional drivers and transport managers.   120 

Rigid passive methods are typified of crash beams, metal hanging chains and road-narrowing techniques. 121 

Crash beams act as a ‘cushion’ to the bridge structure (Yang and Qiao 2010); energy transferred by the strike 122 

is dissipated by the beam therefore reducing damage to the main structure. Crash beams are costly and an 123 

effective mitigation strategy but they too only solve part of the problem; the beams do not warn vehicle 124 

operators and are protective rather than preventative. An alternative option is the use of metal hanging chains 125 

and road-narrowing (calming) techniques such as speed bumps, rumble strips and chicanes. Weathering 126 

causes major damage to the metal chains and calming techniques require major road reconfiguration; two 127 

non-ideal cases.    128 

2) Active vs. Passive Sensing Methods (Leading) 129 

 130 

Preventative methods are actively being researched in order to find an effective solution, from the perspective 131 

of high performance and low cost. This section reviews the research, concentrating on preventative methods 132 

that are based on imaging or electromagnetic waves. Imaging-or vision-based sensing solutions are divisible 133 

into two categories based on the sensor modality used. The first involves sensors with active illuminators or 134 

active emission of electromagnetic waves, for which lasers and radar are prominent examples. The second 135 

involves sensors that passively measure the ambient electromagnetic energy, the standard video camera being 136 
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the main example. The review of passive prevention methods will be further decomposed into active sensing 137 

and passive sensing strategies. 138 

 Active methods consist of optoelectronic single- or dual-eye infrared, visible beam, radar or laser beam 139 

detection systems, all of which detect OH vehicles when the laser or light beam is interrupted (Sinfield, 140 

unpublished data 2010). In Massoud (2013), a laser system was shown to function well, and was 141 

recommended over equivalent mechanical methods. Such sensing technology methods are representative of 142 

those currently on the market and provide little incentive for asset owners since the outdoor infrastructure 143 

installation requirements are financially prohibitive. Outdoor infrastructure entails the installation of new 144 

permanent poles, typically a receiver and transmitter for laser-based cases. Urazghildiiev et al. (2002; 2007), 145 

proposes overhead installation of a microwave (MW) radar system for detecting both the height and the 146 

vertical profile of passing vehicles in the sensing lane (a single lane per radar). The radar measurement system 147 

performed well under most weather conditions and to vibrations still requires the installation of additional 148 

outdoor infrastructure. One unit is required for each lane therefore increasing the overall cost of installation, 149 

which is suboptimal for asset owners.   150 

Passive sensing methods utilize vision-based methods, such as those currently used in several IT systems 151 

developed for vehicle detection, vehicle classification, and license plate recognition (Anagnostopoulos et al. 152 

2006). As part of these systems, the utilization of vision and imaging methods have been extensively 153 

researched for scene change detection (background subtraction), vehicle tracking and motion detection, all 154 

of which are essential for OH vehicle detection (Piccardi 2004, Coifman et al. 1998, Jazayeri et al. 2011). 155 

Researchers have studied alternative approaches using vision-based methods to extract vehicle height 156 

measurements but to-date, no active vision-based system exist on the market. The research has been 157 

somewhat limited but provides a solid starting point in determining the potential for further development.  158 

Khorramshahi et al. (2008) presents a passive vision-based method for OH detection. Their algorithm uses 159 

a cubic detection zone to obtain vertical projections of feature points of blobs in 2D coordinates. The feature 160 

points over a specified threshold are tracked as OH vehicles. Although this method satisfies the economic 161 
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efficiency criterion, the method is less robust when occlusions and shadows are present which can result in 162 

false negative detections. Other methods of OH detection are presented in Kanhere and Birchfield (2008), 163 

Shao et al. (2010), Criminisi et al. (2000), Sturm and Maybank (1999) using vanishing lines and reference 164 

objects to extract height measurements of vehicles and objects. These passive methods presented consist of 165 

the same underlying concept that given a known ground plane and upper and lower limit, the vision-based 166 

methods are able to recover the height of objects. The computer vision methods rely on geometric shapes and 167 

structures to recover usable information in complex scenes that increases the set of confounding factors such 168 

as the need for ground plane information. For example, Dai et al. (2015) contributed the most recent research 169 

to OH vehicle detection using line detection and blob tracking to estimate heights of box-shaped vehicles. 170 

The top and bottom boundaries are determined in 2D pixel coordinates and converted into 3D height 171 

measurements. The research shows promise as a novelty approach; however, the method does not perform 172 

well during scenes of occlusions or nighttime conditions. When vehicle shadows and occlusions were present, 173 

it impacted the reliability and accuracy causing incorrect extractions of height measure leading to false 174 

positive and negative detections. In contrast, Nguyen et al. (2016) presented an improved method that 175 

eliminated the need for physical vehicle height extractions. The method uses a vision-based approach set at 176 

the height of the low bridge. The camera (when calibrated) acts like a laser-beam; any moving motion over 177 

that height is further analyzed to correctly classify the motion as a positive instance i.e. OH vehicle. The OH 178 

detection method was tested under ideal conditions: sunny, non-windy weather conditions resulting in an 179 

overall detection accuracy of 99.9% with a false positive rate of 0.1%. The method performed well under 180 

ideal weather conditions but has not been tested under more vigorous weather conditions. Vehicle occlusions 181 

and shadows do not interfere with the detection process since the camera is situated at a height where 182 

occlusions and shadows are non-existent or less frequent. The viability of the method is premature, further 183 

real-time testing is needed to show its robustness and true value. 184 

 185 
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B. Collision Detection and Reporting Methods (Lagging) 186 

 187 

Practitioners have access to readily available systems for the detecting and reporting aspects of OHVS 188 

management, but the devices alone will not prevent strikes; the main area of concern lies with prevention. 189 

Devices that could be used as complementary detection and reporting methods are structural monitoring and 190 

impact detection sensors and accelerometers that are installed on the bridge structure to record changes in 191 

frequencies caused by vehicular impact, hence ‘lagging’ method (Park et al. 2000).  Many strike accidents 192 

that occur today are not reported, and asset owners are left to remedy the damage caused by drivers. 193 

Companies such as Strainstall and Trimble help to rectify this problem by providing a web-based structural 194 

monitoring product for real-time access to data (Strainstall 2015, Trimble 2015). The sensors are used as a 195 

data acquisition system, collecting data at a single node for centralized processing. An accelerometer can be 196 

used to parameterize a model of the structure: when damage occurs on the bridge structure, the parameters 197 

of this model changes (Xu et al. 2004). Connectivity to a wireless network enables the device to send the 198 

measurements to a remote location for processing and decision-making. Collision notification technology 199 

relays the message to the control room.  200 

C) Related Computer Vision-based Methods 201 

The capability for intelligent transportation systems to detect and track moving objects still presents a 202 

challenge using vision-based systems. However, with the increased computational speed of processors today, 203 

this has enabled the applications of vision technology possible. Below presents related methods for detecting 204 

OH motion and feature detection, tracking & classification. 205 

1) Optical Flow (motion) 206 

Yoo and Park (2008) presents a novel approach for detecting moving objects in the camera view using a 207 

differencing method, Earth Mover’s Distance to find motion patterns in a given region.  The algorithm works 208 

such that it finds motion patterns by subtracting two consecutive frames and assigning motion blocks to detect 209 

regions with movement showing robustness with local illumination changes.  210 
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Similarly, researchers Mittal and Paragios (2004) present a patented technique for modeling dynamic 211 

scenes using a novel kernel-based multivariate density estimation for motion detection. The technique 212 

performs well under adverse weather conditions and motion with vigorous moments such as moving trees 213 

and bushes; the algorithm is able to minimize background noise therefore presenting a good foundation for 214 

OH vehicle detection.  215 

Niu & Jiang (2008) presents an improved adaptive background subtraction detection method using a 216 

Gaussian mixture model to minimize shadow interference of moving objects.  The method shows robustness 217 

to shadow removal and lighting sensitivities. The adaptive background subtraction is promising for OH 218 

vehicle detection in variable weather conditions.   219 

2) Feature Detection, Tracking & Classification 220 

Researchers Zheng & Chellappa (1995), Yao & Chellappa (1994), Tomasi and Kanade (1992) and 221 

Chetverikov & Verestói (1999) have shown effective methods to detect moving objects using feature-based 222 

detection, tracking & classification. Of those, researchers Tomasi and Kanade present a widely used method 223 

using factorization to track the motion of features in an image stream. The method utilizes the size of 224 

eigenvalues to detect corners and regions with high spatial frequency content, second-order derivatives and 225 

intensity variance. The method compares past and present fixed-sized feature windows by taking the sum of 226 

the squared intensity differences over the windows and finding the displacement of one frame to the next 227 

using texture-rich pixels. The method shows robustness to occlusions and noisy images – both of which are 228 

ideal for effective OH vehicle detection and tracking. 229 

Feature detection and tracking is a crucial step in preventing false positive detections for OH vehicle 230 

detection. Vision-based methods shows promise for OHVS; however, despite the favorable affordability 231 

criterion, asset owners are not yet convinced that vision-based systems are suitable to handle the vigorous 232 

outdoor conditions while meeting its performance accuracy. Further testing is required to achieve and 233 

demonstrate the true effectiveness and value of the approach. In essence, if the system is able to achieve the 234 
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accuracy target of  ±5 cm, a low cost vision-based system (paired with complimentary detecting and reporting 235 

tools) could provide a holistic solution to the problem of bridge and tunnel strike prevention. 236 

Proposed solution framework 237 

 238 

Existing EWDS are the most accurate warning systems, yet are not cost effective due to their significant 239 

physical infrastructure requirements. Cost considerations drastically limit their adoption and suitability. New 240 

EWDS are needed that can bring the cost down by at least one order of magnitude to make them attractive to 241 

infrastructure owners. Therefore, this paper presents a new solution for OH vehicle detection using 242 

perspective projection, inspired by the laser beam method. The objective is to replace the transmitter, 243 

receiver, and loop detectors with a single camera mounted upstream of a low bridge.  244 

The proposed method adopts a previously developed method Nguyen et al. (2016); however, the study 245 

expands the method using optimized parameters under variable weather conditions. The method is based on 246 

the following geometric principle: when a camera is properly mounted at the height of the bridge clearance 247 

relative to the local roadway, then the OH plane will appear as a line in the camera image. The method is 248 

suitable for various shapes and sizes of vehicles, numbers of laneways, and illumination conditions (day and 249 

night time). The camera placement is crucial; this step minimizes any potential captures of noisy motion that 250 

may contribute to triggering false positive alarms. The camera location should be free of potholes (to 251 

minimize height variations), vegetation, branches, trees, and over-head cables. According to the 252 

mathematical modelling of perspective projection, if the object is less than the set camera height, it will not 253 

be detected within the ROI despite distance from the camera (this includes buildings and occupant motions 254 

from across the roadway). However, if the occupants are on the second floor and captured within the ROI, 255 

the practitioners should find an alternative location to minimize the potential unwanted noise. If alternative 256 

locations are not possible, the threshold will need to be adjusted to account for the noise (further explained 257 

under Evaluation of System).  258 

 259 
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The primary innovations are the specialized camera placement relative to the roadway and the associated 260 

setup procedure that minimizes installation efforts. All components of the system thus far described are 261 

intended to minimize inspection, maintenance and repair costs. If the proposed solutions achieve the accuracy 262 

of laser-based systems and maintains the low cost of typical passive vision-based systems, then pairing the 263 

proposed prevention method with complimentary detecting and reporting methods will provide a holistic 264 

solution to the problem of bridge and tunnel strikes. The proposed solution is also applicable to low-deck 265 

parking garages and shipping barges with low height restrictions. 266 

 267 
The overview process for OH vehicle detection is presented in Figure 2. Video is converted into image 268 

frames, which are then used as inputs for the OH detection process. The MATLAB code uses the 269 

VideoReader to read video files. The elapse time is 36.8658 seconds to process 30 frames, equating to 1.2289 270 

fps. A frame grabbing code is used to convert the video files into image frames.  After the frame is converted, 271 

each frame is passed through the image blur metric (Do 2009). If the frame is identified as blurry, the code 272 

discards the frame and uses the succeeding frame. The blur metric works such that the images are passed 273 

through several filters and assigned a ‘blur annoyance’ rating estimated using neighboring pixels. If this 274 

variation is high, the initial image is considered sharp. If the variation is moderate or low, the initial image is 275 

blurry. The blur perception is calculated based on the sum of the coefficients and selected using the vertical 276 

and horizontal blur value, resulting in a binary solution (0 and 1) for the best and the worst quality images 277 

(Crete et al. 2007).   278 

  An OH vehicle is typically in the scene for 2 seconds. If the camera is set at 30 fps then this equates to 60 279 

frames to be processed. In order for an alert to be triggered, only one OH instance is required. When the 280 

message board is on ‘active’ alert, any positive OH instances are considered redundant. If the message board 281 

is no longer ‘active’, any positive OH instance will re-trigger the message board to warn the driver.  The 282 

system does not count (the frames that is), there is a simple if elseif statement (if this is true then execute this, 283 
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else if this is true then execute this) that works such that if the message board is active then disregard any 284 

positive instance else if the message board is inactive then turn the message board on.  285 

When an OH vehicle is detected, recording of cameras and accelerometers are activated; a message is 286 

issued on the display unit, warning the driver of the low bridge. The driver warning process may take one of 287 

two paths: 1) if the driver exits or stops, and no impact is detected, then video data is discarded and 288 

accelerometers are deactivated; 2) if the driver continues and an impact is detected, then the vehicle license 289 

plate number is extracted from the recorded video and impact data from the accelerometer is stored. The 290 

collision report (video segment, license plate, and accelerometer data) is sent to the relevant authorities. 291 

C. Camera Geometry and Detection Policy 292 

 293 

The method models an active laser sheet using passive vision methods. Figure 3(a) depicts the scenario 294 

displaying a crop version of the infinite OH plane offset from road plane by bridge clearance height h, where 295 

the camera coordinate system is Xc, Yc, Zc
 and world coordinate system is x, y, and z axes. The camera 296 

rotation is defined as θyaw,  θpitch,  θroll. The OH plane is defined by offsetting the local road plane by the height 297 

h, and the camera is placed such that the optical center lies on the plane. The light rays of object points located 298 

on the OH plane will project to a line.  The plane divides the world into two regions, those above and those 299 

below.  Likewise, the line in the image divides the image into object points below- or above- the line. The 300 

method assumes that the lanes are approximately planar across the road width of each direction, trucks are 301 

located to the right except to pass and that camera lens distortions are rectified through camera calibration.  302 

Figure 3(b) depicts a side view of the OH scenario with an OH region of interest (ROI indicated in red). 303 

The 𝜃pitch of the camera is shown tilted downwards (𝜃pitch ≥ 0)  to minimize any illumination reflection on 304 

the lens caused by sunlight. This volume projects onto the image as a band. Any OH vehicles passing through 305 

the sense scene will cross the line in the image view and project into the band, thereby triggering an OH 306 

detection. Vehicles not tall enough to strike the bridge will not project into the band, and can therefore be 307 

ignored.  In this sense, the proposed geometric setup resembles that of an active laser sheet. Figure 3(c) 308 
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displays the top view of the camera setup. The optical axis of the camera Zc
 intersects with the road plane 309 

along the y-axis at p = (0, h cot 𝜃pitch, 0). All figures use the right-handed system, such that x and Xc are into 310 

the page in the side view, while y is coming out of the page in the top view figure 3(c), noted by the red dot.  311 

D. Camera Installation Procedure 312 

 313 

This section summarizes the mechanics of the proposed methodology. There are two aspects to the calibration 314 

process involving the intrinsic and extrinsic parameters of the camera. The intrinsic parameters are constants 315 

that hold irrespective of the placement of the camera, whereas the extrinsic are fundamentally tied to the 316 

placement of the camera in the world. The installation requires the extrinsic parameters to be specifically 317 

determined by the local roadway and the desired OH value h.  However, there is some dependence on the 318 

intrinsic parameters, thus they should be established first.  319 

The intrinsic parameters, being independent of placement, can be estimated anywhere.  This should be 320 

done away from the installation site where the necessary calibration infrastructure may be better controlled 321 

for accuracy. The standard method for intrinsic parameter calibration involves a calibration pattern. Taking 322 

pictures of the calibration pattern at different positions and orientations enables the estimation of the intrinsic 323 

components of the camera such as focal length (fx, fy), camera center (cx, cy) and radial distortion coefficients 324 

(k1, k2) of the camera (two coefficients are typically sufficient for compensation of radial lens distortion 325 

(Heikkila and Silvén 1997). 326 

The extrinsic parameters represent the transformation from the 3D world coordinate system to the 3D 327 

camera coordinate system centered at the optical center; the two parameters, the extrinsic and intrinsic 328 

describes the transformation from 3D world points to 2D image points (Fathi and Brilakis 2014).  The camera 329 

installation and extrinsic calibration process will configure the OH system with the desired extrinsic camera 330 

parameters in a controlled and repeatable manner. The process relies on the facts that installation involves 331 

controlling for two variables, camera height h_c and camera roll 𝜃roll and that a plane is defined by three non-332 

collinear points lying on the plane.  333 
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A software installation prototype is created to help aid users perform the camera corrections needed in 334 

order to locate the three [xi, yi] points in the image view. The prototype functions such that it retrieves and 335 

undistorts a single image taken when the poles are at the respective marker locations (1) and (2). By using 336 

the mouse curser, the user clicks on the pole tip marker in the image. The prototype records the pixel locations 337 

of the points and compares their y-pixel values. If the y-pixel values do not match, the prototype instructs the 338 

user to adjust the camera by a specified amount. The same procedure is carried out for 𝜃roll of the camera at 339 

marker locations (2) and (3). This process may require a series of iterations; this process may require a series 340 

of iterations; this process can take between 15 to 60 minutes. The process is designed to allow people with 341 

no prior experience/training perform the calibration process. The process can be performed with one person; 342 

however, two people are recommended. One person will handle the software while the other is will position 343 

the pole in its respective location; this will allow for maximized set-up time. 344 

1) Camera Installation and Extrinsic Calibration Process 345 

 346 

The camera installation and extrinsic calibration process will manipulate the projection of three specifically 347 

determined OH plane points until the two parameters are correct. The images in Figure 4 provide a visual 348 

narrative of the installation process.  The red arrows contain text to indicate the corrections needed. Consider 349 

Figure 4(a), which depicts three non-collinear points [xi, yi, zi] set at the height of the bridge clearance h, 350 

relative to the local roadway. The light rays that make up the plane project onto the image view as three [xi, 351 

yi] points. When correctly installed, they will project onto a horizontal line in the image (which is the desired 352 

OH detection line) and referred to as the ‘OH line’. Initially, this will not be the case.  The installation process 353 

provides a means to arrive at a horizontal OH detection line object with a height equal to the height of the 354 

bridge clearance (tall pole with a bright marker at the tip). The pole method is an inexpensive, efficient, and 355 

readily available alternative to the total station method (access to which may be limited to a few). 356 

Assume that the camera is to be installed at the height h above the road plane, and that the projection to the 357 

road plane is the road plane origin (0, 0, 0). First, the camera is placed (on an existing pole) at an approximated 358 
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height to the desired height. Placing the camera on a pole limits the translational degrees of freedom to one. 359 

Then the following two rotations are set: 𝜃yaw is angled to capture license plates of vehicles and 𝜃pitch is angled 360 

downwards to allow for optimal positioning of the ROI, and less illumination interference. By performing 361 

these two rotations, the user has fulfilled two of the three rotational conditions: 𝜃yaw and 𝜃pitch. Therefore, one 362 

degree of freedom (𝜃roll) remains.  363 

At this point, the user should go out and perform two pole measurements. For the first point, the user should 364 

aim to capture a measurement towards the left side of the image. The second pole location should be located 365 

behind the first, which is achieved by walking away from the camera along the line defined by the camera 366 

installation point and the first pole point (both projected to the road plane). The simplest way to do this is to 367 

face the camera, then walk backwards with pole in hand. If the camera is at the pole height, then both of these 368 

pole locations will have the pole tip marker project to the same point in the image.  If not, then there will be 369 

an offset determined by the true height of the camera relative to the desired OH plane.  If it is below the OH 370 

plane, then the first point will appear “above” the second point and the camera should be lowered; this 371 

situation is depicted in Figure 4(a) with the red arrow denoting the correction to be made.  If it is above the 372 

OH plane, then the opposite will hold. The measure and adjust process should be repeated until the two pole 373 

tip markers project to the same point. 374 

At this point, the camera will be located at the proper height, however the OH detection line in the image 375 

will be at an angle determined by the camera roll relative to the road plane. The next step will modify the 376 

camera roll 𝜃roll so that the OH detection line is a horizontal line in the image. While not necessary, it is 377 

recommended as the additional step simplifies the OH detection computations. The user should then take a 378 

third measurement which projects to the right hand side of the image.  The further to the right, the more 379 

sensitive the roll estimation process will be, and hence the more accurate. If the camera is at the correct roll, 380 

then the third point will lie on the same horizontal line as the first two points (their y-pixel coordinates will 381 

be the same).  If not, then the line defined by the projected image coordinate of the first two pole tip points 382 

with the third will have a positive or a negative slope.  A positive slope requires clockwise roll adjustment, 383 



 

 

 

16 

 

and a negative slope requires counter-clockwise roll adjustment. The scenario is depicted in Figure 4(b). 384 

Some iteration may be necessary to arrive at the proper camera roll as depicted in Figure 4(c). For each 385 

iteration, two points will be needed, meaning that two pole tip measurements will be needed. One on the left 386 

side of the image and one on the right side, as depicted by marker locations (2) and (3) in Figure 4(b), 387 

respectively. 388 

The camera is now located at the proper height and with the necessary roll needed for the OH detection 389 

line to be horizontal.  However, this line may be located too low in the image.  A low placement means that 390 

the camera is measuring more of the OH volume as opposed to the non-OH roadway volume. While it is 391 

theoretically not a problem based on the geometry, there are illumination factors to consider. Having the 392 

camera aimed too much at the sky leads to false automatic exposure compensation that would darken the 393 

roadway. Adjusting the camera pitch to minimize bright sky regions and also impossible to achieve OH 394 

detection volumes should indirectly improve visual processing by minimizing confounding and unrelated 395 

imaging factors. At this point, the user can adjust 𝜃pitch so that the OH detection line creates a favorable 396 

division of the image while still allowing for measurement of OH vehicles within the determined OH 397 

detection region (see Figure 4(c)). 398 

E. Detection Procedure 399 

 400 

The detection procedure uses the video from the camera that is then converted into image frames as the initial 401 

input data. Motion segmentation is used as the main feature extraction to detect and track moving objects 402 

within the ROI. The ROI is simply a pixel area set above the OH plane in the image that is sized accordingly 403 

to minimize the risk of false detections. The detection algorithm calculates the motion differences within the 404 

ROI between the current image frame and background model by utilizing vehicle motion when OH vehicles 405 

are present in the scene. Motion is detected by calculating the vector difference (optical flow) between the 406 

current image frame and background model as shown in Figure 5.  The OH features points are automatically 407 

detected and tracked by using the Kanade Lucas Tomasi (KLT) algorithm (1981). The green circle represents 408 
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the initial detected feature point detection in the image, i and the red cross represents the motion of that same 409 

detected point in the next consecutive image, i++. If no motion is detected, the circle and cross are matched. 410 

If movement is detected, a velocity displacement arrow is visible in blue showing direction of movement.  411 

The camera setup allows for OH vehicles to appear within the ROI; therefore any moving objects traveling 412 

at a more-or-less constant velocity in the direction of traffic are detected and tracked by the algorithm. A 413 

motion threshold value is determined by comparing the pixel differences and adjusted for sensitivity against 414 

noise and other moving objects such as trees that may interfere with the detection procedure. If an OH vehicle 415 

is detected, this will trigger a warning to the driver. Vehicle occlusions and shadows do not interfere with the 416 

detection process since the camera is situated at a height where occlusions and shadows are less frequent. For 417 

example, if the bridge clearance height is 6.0 m, then the ROI only detects vehicles over the height of 6.0 m. 418 

However, vehicle occlusions may occur when two or more OH vehicles are in the scene simultaneously; this 419 

occurrence will trigger one warning to both drivers. For vehicle shadows, they are generally on the road plane 420 

and out of range from the ROI, therefore posing no interference with the detection procedure. The other set 421 

of uncontrolled environmental drawbacks is the variable weather conditions: windy, rainy and cloudy 422 

conditions; hence an extension to the research study. The detection procedure is ideal for various shapes and 423 

sizes of OH vehicles. The common denominator is that their heights exceed a certain limit relative to the road 424 

surface. By exploiting this characteristic, the method avoids computing an exact height measurement of each 425 

vehicle, preferring a binary decision that returns one of two possible outcomes (OH / non-OH) for accurate 426 

detection. The camera geometry and its associated installation procedure overcome several of the current 427 

detection deficiencies associated to existing methods. In particular, it eliminates the requirement of a vision-428 

based ground plane measurement, which most of the other solutions require. Further, since the visual 429 

processing focuses only on offending vehicles, the set of confounding factors is less than the current 430 

strategies, which will improve computation time and discrimination. 431 

Evaluation of System 432 

 433 
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This section provides details of the experiments designed to evaluate the height and detection accuracy of the 434 

system. The implementation was conducted on two collector roadways with 2 and 4 lanes of traffic in sunny, 435 

cloudy and rainy weather conditions. A Canon EOS M camera was used to capture 2.5 hours of video data 436 

(1920 x 1080 resolution) at 30 frames per second (fps). The CPU is an Intel Core i7-4790. The camera was 437 

mounted at a fixed pole where the 𝜃yaw at 45° and 𝜃pitch at 10° were set to capture license plates and 438 

downwards to minimize sun glare on the camera lens. The camera was installed one km upstream of the low 439 

clearance structure at a height of 5.0m, to allow for: (1) detection of the OH vehicle, (2) issuance of driver 440 

warning message, and (3) sufficient time for the driver to react and take the nearest exit. The camera was 441 

located such that obstructions (excessive vegetation, trees, branches, overhead cables) are not visible in the 442 

field of view. The camera was offset from the roadway at 1.5 m to avoid any potential damage from the 443 

vehicles and to allow for a greater field of view. The latter risks the potential of vehicle occlusion when there 444 

is inadequate offset from the camera and roadway. The roadway selected was relatively planar; no potholes 445 

or rutting were present to minimize the errors during calibration and detection stage.  446 

An 8 x 6 calibration checkerboard pattern with 26 mm squares was used as part of the intrinsic calibration 447 

process. EmguCV camera calibration was used to find the intrinsic matrix, Ψ and two radial distortion 448 

coefficients, k1, k2. These parameters were then used to undistort the images in order to find the [xi, yi] points 449 

on the image plane. The extrinsic calibration was performed using an extensible window washing pole set at 450 

the height of the bridge clearance h with an attached prefabricated levelling bubble set plumb to the road 451 

plane. The OH plane is determined based on the pole heights relative to the road plane; the error caused by 452 

the road gradient is assumed to be negligible and absorbed through the calibration process. The road gradient 453 

under most Department of Transportation’s road design specifications require a minimum of a 2% road slope 454 

(“rise” to “run” ratio) for sufficient water runoff to nearest outlets i.e. catch basins, ditches, culverts.  This 455 

process takes into account the road gradient despite whether the poles are parallel to the road surface’s normal 456 

direction. For example, if the road grade is on a decline the camera will be tilted to the same degree, as the 457 

calibration process will correctly position and align the OH plane.  458 
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In Figure 6, the image shows a screenshot of the prototype at Points 1 and 2 (i.e. marker locations (1) and 459 

(2)) saved with its respective y-pixel values. The prototype compared the differences in y-pixel values: 329 460 

and 319, and instructed the user to move the camera vertically upwards by 50 – 100 mm. When the two points 461 

arrive at the same y-pixel value, this ensures the camera is at the correct height for OH detection. 462 

The first component of the experiment was performed 16 times to validate the installation procedure; a 463 

total station was used as ground truth data. A sanity check was performed after each experiment to ensure 464 

the installation procedure accuracy. The check consisted of capturing three undistorted photos at marker 465 

locations (1), (2) and (3). If the three world points projected onto the image view with the same corresponding 466 

y-pixel values, this would confirm that the camera was set at the correct height representing the OH plane.  467 

The second component of the experiment determined the optimal parameters for accurate detection of OH 468 

vehicles using an iterative optimization process. The goal is to find the optimal filter pixel response value 469 

and window size by optimizing two control variables: 1) filter pixel response value i.e. an adaptive 470 

background differencing algorithm to accommodate for variable weather conditions and 2) vertical pixel 471 

height i.e. the ROI above the OH plane to detect OH vehicles.  Table 1 shows the initial parameters for the 472 

optimization procedure: 1) dependent variable, dv(horz_ROI) horizontal axis (x) at 1920 pixels to maximize 473 

the camera field of view, and 2) control variables, cv(threshold) and cv(vert_ROI) respectively. The 474 

dependent variable dv(horz_ROI) relates to the horizontal pixel dimension of the region of interest and the 475 

two control variables cv(threshold) sets the filter pixel response value parameter and cv(vert_ROI) is the size 476 

(horizontal and vertical pixel dimensions) of the region of interest in which OH vehicles are present.  477 

The optimization procedure functions such that, a video containing all positive (relevant i.e. OH vehicle is 478 

present) and negative (non-relevant i.e. OH vehicle not present) image frames are passed through the 479 

algorithm with two set parameters: 1) filter pixel response value (ranging from 0 to 255), and 2) ROI (vertical 480 

by horizontal window size). The purpose of the filter pixel response value is to detect moving objects within 481 

a specified ROI (area in which OH vehicles are present). White pixel values were used as trigger points to 482 

determine if there is motion within the ROI. White pixels are intensity values close or near 255. If motion is 483 
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detected, the algorithm calculates the number of white pixels present in the current image within each region 484 

and returns a percentage value. If the percentage value is above or equal to a trigger point value, the KLT 485 

algorithm will detect the white pixel points which are displayed as the detected feature points. The 486 

relationship between the filter pixel response value and the KLT algorithm is such that when the white pixel 487 

values are present, the KLT algorithm detects and tracks these features throughout the ROI; this event will 488 

flag as a positive OH instance. The KLT feature tracker is applied as a post-processing stage to the 489 

cv(threshold) and cv(ROI), and mainly used to detect and track white pixel values > (greater than) the 490 

specified trigger points. Trigger point values are spaced at intervals from 10% to 100%. The purpose of the 491 

window size is to determine the appropriate size to detect OH vehicles while minimizing the amount of 492 

background noise. The dataset used a generality of 1.9% positive retrieval rate using negative and positive 493 

image frames. The negative frames are calculated based on the number of irrelevant items for a particular 494 

query (embedding size). The positive frames are the number of relevant items for a particular query (relevant 495 

class size). Refer to Table 2 for sample size calculation using the generality calculation (Huijsmans & Sebe, 496 

2005). 497 

Table 3 shows the results of the data using precision & recall metrics to assess the performance of the 498 

algorithm at each of the optimization iterations, where the “positive” class = 1 and “negative” class = 0. Ý is 499 

denoted as the estimate of the true class label Y.  The recall value represents the measure of how many of the 500 

positive samples (OH vehicles) were indeed positive instances. Precision represents the amount of OH 501 

vehicles classified correctly from the positive instances. The acceptable recall rate for the system was set at 502 

0.950 – 1.000 i.e. no more than 5% of missed OH vehicles to allow for high detection accuracy.  503 

A. Results: Height Accuracy (OH Plane) 504 
 505 

Two methods were evaluated for the height accuracy of the OH plane – (1) via the pole method, and (2) 506 

via total station method. The ground truth data for method (1) was obtained by manual measurement and for 507 

method (2) a total station was used to validate the height. A total of three points were measured for each of 508 
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the experiments. The height accuracies are summarized and analyzed in Table 4 and Figure 7, respectively. 509 

The two methods yielded an overall error of ±2.875 mm.  510 

B. Results: Detection Accuracy  511 

Two performance metrics were considered for the detection accuracy: 1) precision and recall metrics to 512 

evaluate the performances of the control variables and 2) receiving operating characteristic curve (ROC) to 513 

evaluate the performance of the algorithm. Figure 8 shows the results of the optimization iterations using a 514 

binary classification to differentiate between relevant vs. non relevant instances of OH instances within a 515 

ROI. The optimization converged at a window size of 70 ± 3 x 1920 pixels and filter pixel response value of 516 

142 ± 5. The average precision value was 0.689 (sunny: 0.751; cloudy: 0.631; rainy: 0.685) and recall of 517 

1.000. The results showed that the minimum number of white pixel values required to detect an OH vehicle 518 

was 10% i.e. known as trigger points. Figure 9 shows the optimum performance of the filter pixel response 519 

value of 142 (window size 70 x 1920), resulting in an algorithm performance of 83.3% (area under the curve).  520 

C. Discussion/ Conclusions 521 

 522 

The study focuses on presenting a holistic solution to the overall problem of OHVS management, with a 523 

specific contribution to the prevention problem. In this paper, the authors present an extended study of 524 

Nguyen et al. (2016) using optimized parameters for OH detection under variable weather conditions. The 525 

method models an active laser sheet using passive vision methods, as a major improvement to the existing 526 

laser beam method. The paper includes the installation and camera configuration procedure. The new method 527 

is based on a simple geometric principle: the OH plane, which appears as a line in the view of the camera, 528 

mounted at the height of the bridge clearance. Any vehicle exceeding the OH line in the image view is 529 

consequently OH. The proposed system demonstrates high performance with minimal installation efforts.  530 

Evaluation of the system resulted in a height accuracy of ±2.875 mm; outperforming the target accuracy of 531 

±5 cm, OH detection accuracy of 68.9%, and classification performance of 83.3%. This outperforms other 532 

vision-based system as the method eliminates the need to find the exact height of OH vehicles. The method 533 
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uses a much simpler approach using a binary decision that returns one of two possible outcomes (OH / non-534 

OH) for accurate detection. The parameters for the detection algorithm are not scene dependent. The 535 

calibration process is tuned for the specific low bridge and roadway (i.e. setting the OH plane) but the 536 

performance of the algorithm is optimized for any site chosen given the same camera specifications. The 537 

calibration process takes less than 60 minutes to perform, and once performed, does not have to be revisited 538 

unless the hardware is damaged. 539 

     The camera installation requires a bracket to be installed on an existing pole upstream of the low bridge 540 

and access to power and a processing unit; therefore, requiring a professional electrician. The calibration 541 

process can take between 15 to 60 minutes; however, this process may require a series of iterations. The 542 

camera setup is a permanent installation and meant to be used for many years. The camera is fitted with 543 

outdoor housing to endure the rugged winter conditions. The setup time is low in comparison to the overall 544 

time needed to derive value out of the system. Leading competitor laser-based systems require permanent 545 

infrastructure installation therefore requiring permit approvals, sub-contracting teams, engineers, planners, 546 

designers, road closures, road cuts and more. The vision-based system does not require any of the above 547 

therefore saving the infrastructure owner a significant amount of upfront costs. 548 

The method performed as expected based on the predictions of the camera modeling (i.e. camera height 549 

and orientation) with an overall height error of ±2.875 mm. The box plot shows the one-sided error with a 550 

median height error of 2 mm and an upper height error of 8 mm. The preferred method of choice is the total 551 

station as the surveying station has a distance and height accuracy of 1/1000; however, total stations are 552 

expensive and requires specialized training to operate the system. Therefore, to overcome these challenges 553 

the accuracy of the “pole method” to the “total station method” were compared to determine if the accuracy 554 

provided by the pole method is acceptable without having to purchase expensive equipment to set the OH 555 

plane. The results demonstrated comparable accuracy between the pole installation and the total station 556 

method; therefore providing practitioners with more flexibility and accessibility without the burden of 557 

purchasing expensive total station equipment and requiring specialized training. On average, an OH vehicle 558 
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was present in the scene 6.56 % of the time during a period of 2.5 hours of video data. The system was able 559 

to easily detect OH vehicles as the visual processing focuses only on offending vehicles therefore improving 560 

the computation time and performance of the system.  Two special cases were detected where a truck carrying 561 

a ladder and pole exceeded the OH plane in the image view, activating a warning. Although the consequences 562 

are less damaging than a full-size truck striking into the bridge, this instance meets the criteria of an OH 563 

vehicle and therefore classified as a true positive.  564 

In the event the vehicle’s height is close to the OH plane (either above or below), this is important to note 565 

as the camera calibration plays a significant role in overall detection. The calibration process shows that the 566 

pole method can achieve millimetre accuracy when compared to ground truth data. The system error is 2.875 567 

mm and the effect of the error to be ± 0.040 mm per pixel in the real world (on the assumption that the 568 

calibration steps have been carried out as described in the paper).  569 

Recall values ranging from 0.950 to 0.100 were only considered while any values below were discarded in 570 

subsequent iterations of the optimization process to allow for high detection accuracy. As the window size 571 

increased more background noise was captured i.e. camera movement, swaying, vegetation etc. therefore, 572 

the optimization was required to determine the appropriate sized window to minimize the amount of 573 

additional noise. As for the filter pixel response value, the value started from 0 (restricted threshold) to 255 574 

(relaxed threshold). The images are grayscale, therefore each pixel represents a single intensity value ranging 575 

from 0 = black to 255 = white (despite the depth). The intensity of a pixel is expressed within a given range 576 

between a minimum and a maximum in an abstract way (which is adopted by the image processing 577 

community); this value is not calculated by the method. The threshold value is predicted to be closer to 255 578 

than 0 to minimize the amount of noise detected by the algorithm. At threshold value 132, the results show a 579 

predictiveness along the score of the model, arising from clustered observations of OH vehicles of similar 580 

sizes/ types and/or similarities in the background scenes. As the filter threshold response value increases, the 581 

values marginally improve while returning a classification performance of 83.3% at the final optimization 582 

iteration.  583 
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Based on the generality of 1.9%, the positive retrieval rate returned 31.1% of unuseful data i.e. false alarms 584 

caused by background noise. A false alarm in the essence causes no physical harm to the driver or 585 

infrastructure however, it decreases the accuracy of the system and may cause temporary confusion to the 586 

driver leading to the braking and stopping of the vehicle. The average precision value was 0.689 (sunny: 587 

0.751; cloudy: 0.631; rainy: 0.685) and recall of 1.000. Although the algorithm was able to recall 100% of 588 

all OH vehicles, the precision of each individual experiments varied significantly when wind was a factor, as 589 

reflected in the results. The dataset was taken in moderate to severe windy conditions, where the detection 590 

algorithm encountered instances of operational issues which resulted in the swaying of the streetlight pole in 591 

the horizontal (x) and lateral (y) directions.  The detection algorithm was unable to handle drastic pixel 592 

changes that contributed to false positive detections. Swaying in the horizontal axis had minimal effects on 593 

the OH line; however, if lateral displacements occur, offset of the OH line in the image view may occur, 594 

compromising the system accuracy.  595 

The basis for future work includes the assessment of camera motion and stabilization in variable weather 596 

conditions to further minimize the number of false positive detection (false alarms given to the driver) for 597 

overall system performance. In addition, the trigger point optimized at 10%; this means that an object with 598 

motion is in the ROI, therefore this event will trigger a warning. Based on the results, the system was accurate 599 

68.9% of the time for OH vehicle detection, however future works will be on improving the number of false 600 

positive detections. The KLT was used mainly to detect and track white pixel values > 10% across the ROI. 601 

An extension of this work is to evaluate and analyse the motion vectors through a number of ‘checks’ to 602 

minimize the number of false positive detections.  603 
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 631 

control variables units lower limit upper limit 

cv(threshold) filter intensity threshold 0 255 

cv(vert_ROI) pixels 1 275 

  

dependant variables  

dv(horz_ROI) pixels 1 1920 

 632 

Table 1. Control and Dependent Variables 633 
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 664 

Negative 

frames 

Positive 

frames 
Total frames 

Generality 

frames 

Expected 

random 

retrieval rate 

190303 3661 193964 
3661

193964
 1.9% 

 665 

where  666 

c = number of irrelevant items for a particular query = embedding size (1) 

d = number of relevant items for a particular query = relevant class size (2) 

e = total number of items in the ranked database = database size = (c + d) (3) 

 667 

Table 2. Sample Size Generality Calculation  668 
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 689 

 690 

 691 

 692 

 693 

 relevant nonrelevant 

retrieved true positives (tp) false positives (fp) 

not retrieved false negatives (fn) true negatives (tn) 

 

precision = tp/(tp + fp) = P(Y = 1| Ý = 1) 

 

(4) 

recall = sensitivity = tp/(tp + fn) = P(Ý = 1|Y = 1) (5) 

specificity = P(Ý = 0|Y = 0) (6) 

 694 

Table 3. Precision- Recall retrieval performance metrics 695 
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 710 

 711 

 712 

Experiment  

Height of over-

height plane 

using pole-

method (mm) 

Height of over-

height using 

total station 

method (mm) 

Diff 

(mm) 

Error     

(mm) 

1 1784 1782 2 2 

2 1803 1807 -4 4 

3 1810 1810 0 0 

4 1756 1755 1 1 

5 1880 1884 -4 4 

6 1768 1769 -1 1 

7 1813 1819 -6 6 

8 1800 1797 3 3 

9 1756 1760 -4 4 

10 1791 1794 -3 3 

11 1821 1823 -2 2 

12 1981 1983 -2 2 

13 1795 1791 4 4 

14 1897 1896 1 1 

15 1765 1766 -1 1 

16 2319 2327 -8 8 

 Overall Average Error  2.875 

 713 

Table 4. Height Accuracy 714 
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 716 

 717 


