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Abstract

The design of complex underground infrastructure projects involves various empirical, analytical or numerical
models with different levels of complexity. The use of simulation models in current state-of-the-art tunnel design
process can be cumbersome when significant manual, time-consuming preparation, analysis and excessive computing
resources are required. This paper addresses the challenges connected with minimising the user workload and
computational time, as well as enabling real-time computations during the construction. To ensure a seamless
workflow during design and to minimise the computation time of the analysis, we propose a novel concept for BIM-
based numerical simulations, enabling the modelling of the tunnel advance on different levels of detail in terms of
geometrical representation, material modelling and modelling of the advancement process. To ensure computational
efficiency, the simulation software has been developed with special emphasis on efficient implementation, including
parallelisation strategies on shared and distributed memory systems. For real-time on-demand calculations, simulation-
based meta models are integrated into the software platform. The components of the BIM-based multi-level simulation

concept are described and evaluated in detail by means of representative numerical examples.

1. Introduction and related work

With increasing urbanisation and demand for efficient and environmentally friendly urban mobility, the use of the
underground space for tunnel facilities often is the only solution. For the planning of large infrastructure projects
such as inner-city subway tracks, engineers have to conduct investigations and develop models with consideration of
different scales (from the kilometre scale for the general routing of the track down to the centimetre scale for detailed
design of connection points). Evidently, in the planning and design phase adequate models need to be generated to
perform computational simulations and visualization considering the different scales involved in such projects.

In order to come up with an optimal design, different design alternatives need to be created, assessed and compared.
Assessing the effects of various design alternatives for urban tunnelling projects considering the existing environment

is a complex multi-disciplinary problem. Concepts of Building Information Modelling (BIM) have been used recently
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to address the challenges of interaction modelling in mechanised tunnelling [28, 27, 45]. While some work has focused
on the system modelling of coupled simulations using the System Modelling Language (SysML) [40], others have
applied product modelling techniques to model individual components of a tunnelling project, for example the shield
tunnel [9, 10], the tunnel boring machine [22] and the soil [48, 34, 18], and to interlink and integrate these parts within
a holistic Tunnel Information Modelling framework [22].

The use of numerical methods for the assessment of the mechanised tunnelling design has a number of advantages
compared to empirical or analytical solutions, since it provides deeper insight into 3D non-linear soil-structure
interaction effects. Since the early 1980s, numerous 2D and 3D numerical models for machine driven tunnelling are
proposed (see [46, 20, 24, 14, 26] and references therein). Currently, the process-oriented simulation model EKATE
is being developed for arbitrarily curved tunnel alignments in soft, partially and fully saturated soils [35, 2]. The
application of numerical models to the analysis of the construction of large project sections, including modelling of
the existing infrastructure and taking care of adequate discretisation, implies significant modelling and computational
efforts [12, 37]. If such analyses are applied for the investigation of different design alternatives, both modelling and
computational efforts might become excessive if proper techniques for improving efficiency are not employed.

In this paper we propose a software platform for simulation of the mechanised tunnelling process that address both
important aspects of the computational efficiency - the user and computer workload. To reduce the user workload,
the platform supports the acquisition of data and model generation and the visualisation of important results using
BIM. Moreover, the user-friendly parametric model generation concept decreases the time needed for learning to use
the software. The computational time is minimised by optimising the model size and using parallelisation strategies
for the solution on the one hand, and applying the meta models for the real time prediction on the other hand. The
remainder of this paper is organised as follows: The challenges in reducing computational efforts in complex numerical
simulations and the main research objectives of this paper are presented in Section 2. In the subsequent Section 3
three different aspects of the efficiency in numerical modelling are described: i) multi-level BIM-based parametric
modelling in Section 3.1, ii) parallelisation of the finite element (FE) simulation model in Section 3.2, and iii) real-time
calculation using simulation-based meta models in Section 3.3. Several examples to demonstrate the main features
and the performance of the proposed BIM-based simulation methods are given in Section 4. Finally, in Section 5, we

summarise the most imortant findings of this paper and provide conclusions.

2. Problem statement and objectives

The computational efficiency of finite element program has grown following the evolution of computer architecture.

To meet the demands of higher accuracy and simulation of larger physical domains, the maximum size of finite element
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models has risen from approximately 18,000 degrees of freedoms (DOFs) in the 1960s [53] to more than ~ 10'3 DOFs
nowadays [41]. In addition, the complexity of the underlying physical description has increased with the use of coupled
multiphase formulations and sophisticated constitutive laws to reflect the material behaviour under different loading
scenarios. This nontrivial complexity introduces enormous challenges to keep the computational efficiency of the
finite element program required in tunnelling engineering practice. These challenges are connected in particular with
the effectiveness of the solution strategy of the resulting discretised linear system and of the robust integration of the

nonlinear constitutive laws.
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Fig. 1. (a) Total workload for the design assessment of engineering problems using numerical analysis. (b) Parallelisation in each stage of the
computational model.

In computational modelling, the total workload can be broadly defined as “the total requests made by users and
applications of a system” [25]. The total workload can be divided into user workload and computational workload
as illustrated in Figure 1 (a). User workload reflects the time needed for the user to i) learn how to use the software,
ii) setup and adjust the software for the particular problem to solve, iii) collect input parameters, iv) generate the
computational simulation model, and v) visualise the output of the simulation model in a comprehensible form. The
computational workload encompasses the total runtime required for the assembly and solving of the FE system as well
as the I/O time (see Figure 1 (a)). The schematic diagram in Figure 1 (b) explains how the parallel processing is done
in different stages of the computation: i) domain decomposition to reduce the assembly time, ii) iterative solver using
parallelised sparse matrix-vector multiplication and preconditioner to reduce the linear solving time, and iii) the results
are distributed and stored in each computing node to reduce I/O time. In addition, the memory consumption can also
be seen as part of the computational workload. Therefore, the overall efficiency of computational modelling has to be

assessed on the level of software design and implementation, where each level requires an appropriate approach on
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how to quantify and improve the efficiency.

The resulting user workload highly depends on the problem to be solved. In case of a parametric study, which is
often applied to parameter identification problems, optimisation, or sensitivity analysis, a user executes the same model
with different parameters many times. The most efficient way to solve this problem would be to once generate the
model and the algorithms (software) for the assignment of different sets of parameters and for the automatic execution
of simulations. In this case, the total workload would be mostly dependent on the computational workload and could
be reduced by an efficient implementation of the solution strategies. Another problem is the investigation of different
design alternatives. In that case, each design alternative requires an individual numerical model, and the generation of
these numerical models becomes a user workload overhead [38]. In the first scenario, efficient modelling requires fast
execution of each simulation and a robust and fail-safe performance of the simulation software, while in the second
scenario, it is crucial to automate the generation of different numerical models. In both cases, the parallelisation of
the solver contributes significantly to computational efficiency.

Parallelisation of numerical simulations plays a crucial role to speed-up the simulation of a particular type of
problem. For small and medium-sized problems, which fit in the computer memory, the shared-memory paradigm is
usually employed, particularly for its ease of adoption. Nevertheless, for large scale problems, the distributed memory
paradigm must be used to enable storing the problem-dependent data in different computing nodes. Designing a
scalable algorithm for distributed computing platforms, i.e. an algorithm that makes the computing time converge
asymptotically to Amdahl’s rule, is not a trivial task. In practice, one generally focusses on the slowest path of the
program, i.e. the hot-spot, and optimise it to improve responding run-time. In typical finite element applications,
the most time-consuming tasks are I/O operations and linear system solving. In alternative computational methods,
such as the finite cell method, the computing time shifts towards the intensive assembly operation due to the excessive
number of integration points. For details on the finite cell method the reader is referred to [43].

The time required by I/O operations generally is limited by system resources and hardware capabilities. It can
be improved by using faster hardware (e.g. memories, system network). In the post-processing stage, the results are
stored on separated computing nodes in order to reduce the time to access the memory, as can be seen in Figure 1(b).
The results can be merged and used for visualisation after the computation is finished. In addition, however, I/O time
can be significantly reduced by extracting only the useful information from the simulation data, since most of the data
is not of particular interest for further analysis.

The solution of the linear systems of equations arising during the iterative solution of nonlinear problems is more
relevant in regards to computational efforts and needs to be optimised, since the solution time depends on the employed

solution algorithm. The optimisation of linear solvers has been the topic of intensive research for decades [42]. For



large systems, iterative linear solvers are typically employed to solve the linear system up to the prescribed accuracy,
rather than its direct solver counterpart, mostly due to its memory requirement characterised by a linear increase of
the order O(n), where n is the size of the linear problem. For direct solvers, the memory requirement grows with
O(n?). While the theoretical properties of iterative linear solvers depends are attractive for large scale problems, their
convergence properties depend on the quality of the preconditioner. A suitable preconditioner is therefore crucial for
the performance of iterative solvers and needs to be designed specifically for the problem at hand.

When simulation models are used during tunnel construction, the model parameters have to be updated according
to the actual monitoring data and the actual geological conditions in already constructed sections to ensure reliable
predictions in forthcoming advancement steps. In this case, even if all aforementioned techniques for the optimisation
of software efficiency are applied, the required continuous model updating during the tunnel drive would not be
feasible in practice when using 3D Finite Element (FE) models discretised in space and time, as it requires an inverse
identification of the model parameters by performing a large number of (several hundred) realizations.

In order to address the aforementioned problems and to improve the existing modelling approach in terms of

efficiency, the following research question has to be answered:

* How to devise and implement an integrated platform for the efficient design, analysis and visualisation of

mechanised tunneling projects in urban environments? This includes the following sub-questions:

1. How to reduce the user workload when creating numerical simulations?
2. How to reduce computational workload?

3. How to enable real-time calculations?

3. Methodology: Efficiency aspects in numerical analysis of urban mechanised tunnelling

3.1. Reducing user workload and model size: BIM-supported parametric modelling using a multi-level approach

3.1.1. BIM-based numerical modelling

Nowadays, the design and process information of complex, integrated, multi-disciplinary systems as encountered
in mechanised tunnelling are often managed and stored in BIM [55, 9]. The underlying information needed for
numerical analysis is therefore available in a BIM, however the translation from this information to the format accepted
by numerical design tools currently is still a largely manual process.

In this paper, we propose the integrated design-analysis framework SATBIM, where numerical models are auto-
matically generated based on the geometry and semantics stored in BIM design tools (see Figure 2). In the SATBIM

platform, an automatic link between a parametric BIM for tunnelling, denoted as Tunnel Information Model (TIM)
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Fig. 2. Generation of numerical simulation based on design data stored in a BIM.

and an adequate multi-level simulation model is developed to enable a consistent and efficient assessment of the design
(or of several design alternatives) by means of numerical analysis. SATBIM is an integrated, open-source platform
for information modelling, structural analysis and visualisation of the mechanised tunnelling process. Within this
platform, industry-standard tools (Autodesk Revit) are employed for the design of the tunnel structure and the sur-
rounding infrastructure with consideration of different Levels of Detail (LoDs) for all system components. As opposed
to the concept of Level of Development (LOD), or Level of Model Definition (LOMD), that has been introduced by
the American Institute of Architects (AIA) in collaboration with the American BIMforum [1, 8], in this paper we
refer to Level of Detail (LoD). According to [8], LoD defines how much detail is included in the model element,
whereas LOD defines the degree to which the element’s geometry and semantic information has been thought through
in the development process. LOD, in that sense, specifies the reliability and maturity of information in the model.
In conclusion, in this paper we do not focus on the model development process, but on the degree of detail (for
both geometry and information) that are captured in each of the system components. Based on the parametric TIM,
numerical models for each component are generated, considering proper representations of geometric properties as
well as material data, interfaces between components and the construction process. The numerical models are then
fully automatically instantiated and executed based on the workflow of the BIM model for mechanised tunnelling.
Finally, the simulation outputs are read back and visualised within Revit [36].

Using this approach, the user workload is minimised in terms of model generation as well as time and effort needed
for learning how to operate the software. The BIM model for mechanised tunnelling implemented in the design tool
Autodesk Revit is fully parametrised, using the Dynamo plug-in. This provides a visual programming environment
that allows to make use of external libraries to enable data processing, generating geometries and manipulating BIM
objects at runtime. The user provides the model design parameters (geometry, semantics, external geometries etc.)

through the user-friendly interface of Dynamo, and generates the tunnel design model based on parametric Revit



objects (instances of so-called “families”). Subsequently, the user executes an automatic SatBimModeller (explained

below) to generate numerical models based on this BIM design model.

3.1.2. Multi-level approach

In the planning phase of tunnelling projects, decisions have to be made on the tunnel project, which cover different
spatial scales: At the kilometre scale the tunnel alignment needs to be optimised, while the design of the TBM and
the tunnel structure, including e.g. details of joints, are related to the centimetre scale (see Figure 3a).
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Fig. 3. a) Multi-level representation of geometry; b) parameter consistency between different LoDs for individual components

Each scale is characterised by a certain amount of information (detail of description) and corresponding numerical
models. Those scales have to be consistently connected in order to avoid conflicts and a lack of compatibility in
numerical analysis. Moreover, in different design phases, a different type and amount of information is available.
Hence, the complexity of an adequate numerical assessment changes accordingly.

To have consistency between different sub-models throughout different phases in design and analysis, characterised
by using building information and computational simulation approaches, in SATBIM we propose a multi-level ap-
proach. For each component of the shield tunnelling process described in Section 3.1.4, three LoDs are defined: Low,
Medium and High, also referred to as LoD 1, 2, and 3 in the following.

In general, on the lowest LoD (LoD 1), a non-volumetric representation of the component is assumed, since in
the corresponding numerical models, the respective component is not represented with actual structural models, but
instead with an empirical model realised through a set of boundary conditions. On the medium LoD (LoD 2), a
volumetric representation is established for each component, where the component is “occupying” the exact volume,
however, the geometry is simplified, i.e. approximated. Finally, on the highest LoD (LoD 3), we include more details
about the actual geometry of the individual component (see Section 3.1.4).

For each component and on each LoD, a so-called “Revit family” for the corresponding component is created. In

order to keep consistency between different LoDs, parametric consistency between families is defined as shown in
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Figure 3b. The full set of parameters defining a component is needed for definition of the highest LoD, while only
a subset of the parameter list is used on lower LoDs. This way of handling parameters allows one to automatically
preserve the consistency of the multi-scale model.

Selecting the “optimal” complexity of the model with respect to (w.r.t.) the objective of the analysis leads to
the optimal (reduced) size of the numerical models, and consequently, reduced computational efforts. For example,
minimising the overall risk of damage to buildings needs high LoD for structures and low-detail modelling of the
lining ring installation, while estimating stresses in the lining structure needs high LoD for lining, while low LoD for

buildings is sufficient.

3.1.3. Automatic model generation

One of the most important aspects of efficient modelling is automation in model generation. The SATBIM platform
integrates different tools for BIM, (re-)meshing and numerical analysis into a user-friendly platform with a high level
of automation to enable a seamless integration of the of design, analysis and assessment tasks. As mentioned, the
geometry and the semantics of the design are generated and stored using the industry-standard BIM tools Autodesk
Revit [3]. For pre-processing and solving the numerical model, we employ G1D [29] and the open-source FE framework
KRATOS [13], respectively. SatBimModeller enables the model generation, setup and execution of the simulation
model by connecting the multi-level Tunnel Information Model with the simulation software KRATOS and the GiD
pre/post-processor. The core of the SatBimModeller is a Python program, which reads all defined specifications of
the model from ACIS files together with model, material and semantic parameters, and automatically generates the FE
simulation model and a simulation script for KRATOS (see Figure 4).

PostProcessing
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data ACIS Model Geometry
geometry & FE mesh
Revit & Dynamo ‘ SatbimModeller ‘ KRATOS Outpu.t of
Tunnel Numerical model FE model AT
information model for tunneling anaysis
. Model Simulation
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component
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Fig. 4. Data flow in SATBIM.

The SATBIM software is organised in a highly modular way to provide high flexibility not only for further
extensions, but also to allow for adaptations in KRATOS. Moreover, SatBimModeller allows one to generate

simulation output in a form which can be imported back into Revit for the purpose of visualisation of the computational
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results. Visualisation of simulation results within the TIM is essential to enable a comprehensive, intuitive and quick
understanding of effects of design variants on relevant parameters such as soil settlements or the risk of damage of the

existing environment (see Figure 4).

3.1.4. Multi-level simulation model for machine driven tunnel advancement

A realistic model to be applied during construction and in the design phase has to represent all components of
the tunnelling process relevant for the prognosis of the response of the surrounding soil during excavation. These
components include: i) the soil and the excavation domain, ii) the segmental lining with the support measures applied
at the tunnel face and at the tail void, iii) the TBM and iv) existing infrastructure. In the SATBIM project, for each
of these components a multi-level representation of the information models and corresponding numerical models is

developed. To this end, the main components and their LoDs are illustrated in Figure 5 and described below:

¢ Soil model:

— LoD 1: In the information model, the soil is not described with geometry, but only via parametrically
assigned semantics of the material properties. The equivalent numerical representation is the subgrade
reaction model, where the soil is modelled with infinitely thin, uncoupled linear springs, described with
subgrade reaction modulus K (see [50, 23]), neglecting the soil-structure interaction and the weight of the
excavated soil. The material model is the simplest possible soil model, a linear-elastic model.

— LoD 2: In the information model, the geometry, determined as a rectangularly bounded box, is used to
delimit the volume occupied by soil layers. The corresponding numerical representation is a 3D structural
model discretized with tetrahedral elements and described as a two-phase fully saturated material, according
to the theory of porous media (see [35] for details). The applied material models are different elasto-plastic
constitutive models that are available in KRATOS, including the Mohr-Coulomb and the Drucker Prager
model, which are preferably used for sandy soils.

— LoD 3: The 3D geological model consisting of geotechnical layers is represented with a single or multiple
geometric volume and material descriptions for each corresponding layer. The geometry is defined using
the actual CAD geometry containing soil or rock layers, their boundaries, and their geotechnical properties
in a standard format for tunnel ground models. In terms of numerical modelling, the same FE representation
of the soil as for LoD 2 is employed here. The material model is the more general Clay and Sand Model

(CASM), characterised by non-associative plasticity and Lode-angle dependent yield surfaces [52].
e Lining model:

— LoD 1: The information model is represented by a shell, representing the outer boundary of the lining
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structure. Numerically, the confinement and support provided by the lining structure is represented with a
volume loss method and a prescribed volume loss coefficient V; = (Vo - Vdef) /Vo - 100 %.

— LoD 2: In the information model, the lining tube is represented by a set of lining rings described with
ring geometry and material properties. Numerically, a structural 3D model is applied, where the ring
volume elements, discretised by linear hexahedral finite elements, are activated during the simulated
tunnel advance.

— LoD 3: In the information model, each segment is represented as a single volume. In the numerical
representation, a structural 3D model of segmented lining is used. The longitudinal and circumferential
joints between segments are modelled in a discrete manner. The joints are modelled by introducing bolts
represented by beam elements and a surface-to-surface normal contact condition between segments and
transversal joins of the lining rings. In the simulation of the tunnel construction process, the segment-wise
installation of the tunnel lining is modelled.

— Grouting: A structural volumetric model is discretised with tetrahedral elements. To account for the
pressurization of the grouting mortar, a two-phase formulation for fully saturated media is adopted, and
the hydration is described by time-dependent material properties for both the strength characteristics and

the permeability (for details refer to [30]).
* TBM model:

— LoD 1: The information model is represented by a cylindrical shell, representing the outer boundary of
the TBM volume. This model corresponds to a non-structural model, where the shield is described by
boundary conditions [17]. In this approach, the shield is represented by a set of n segments with length L,
with uniformly defined boundaries in terms of radial displacements that approximate the conical surface
of the shield, where n = Ly /L, and Lyppy is the total length of the machine.

— LoD 2: The TBM is represented by a shield volume considering the thickness of the shield, its tapered
geometry and material. In the numerical model, this volume is discretised with tetrahedral finite elements
and is used to represent the TBM as a deformable body moving through the soil and interacting with the
soil through surface-to-surface contact.

— LoD 3: In the information model, details of the TBM such as the shield body, the shield wall (for abutment
of hydraulic jacks) and hydraulic jacks are modelled. In the numerical representation, these elements are
discretised with tetrahedral (shield body and wall) and linear truss (hydraulic jacks) finite elements. In
the simulation model, the TBM advance is accounted for by pushing forward the TBM by elongation of
hydraulic jacks [2].
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— Face support: For the two-phase elastoplastic soil models (LoD 2 and LoD 3), a surface pressure is applied
to the tunnel face by prescribing total stresses at the heading face with a linear distribution (a minimum

value at the tunnel crown and a maximum value at its bottom) according to design recommendations.
* Model for existing Buildings:

— LoD 1: In the information model, a building is represented with the building footprint and semantics
describing the building material. The corresponding numerical model is a non-structural representation,
where the building is substituted by a dead load from the building weight acting on the soil surface.

— LoD 2: The information model is a 3D geometry approximated with a cube volume that the building is
“occupying” and the semantics describing the building material. In the corresponding numerical model,
a building is described with a substitute elastic stiffness E, height H and weight p computed according
to an approach proposed in [44]. The volume is discretised with isotropic volume tri-linear hexahedral
elements.

— LoD 3: The information model is a full 3D structural frame model with material description. In the
numerical model, the columns and floors are both modelled by means of isotropic volume hexahedral
elements.

— Foundation-soil interactions (Building (LoD 2, LoD 3) with soil (LoD 2, LoD 3)): The interaction is
accomplished through a mesh-independent surface-to-solid tying algorithm using a penalty approach,
which prevents the penetration of the foundation further into the soil. Different mechanisms of soil-
structure interaction corresponding to “sagging” and “hogging” modes are considered by deactivating the
tying links between building and soil contact pairs when the tensile stress in tying links is larger than the

prescribed threshold.

3.2. Reducing computational time: Parallelisation

In this paper, parallelisation of the numerical analysis of the tunnel advancement process is applied to reduce
the computing time w.r.t. several aspects. Firstly, the system domain is decomposed into sub-domains using state-
of-the-art domain decompositioning packages [19], where each contribution of the sub-domains to the global linear
system is generated by separate computing processes. Secondly, a specialised preconditioner is used to speed-up the
convergence of the iterative solver. This reduces the computing time while maintaining the accuracy of the results.
Special attention needs to be paid to the specific structure of the tangent matrices (see Eq. 3) arising from coupled
hydro-mechanical problems as present in tunnel construction in partially or fully saturated soils (see e.g. [51, 7] for

applications of block preconditioners to multiphase problems). This is particularly addressed in Section 3.2.2.
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Fig. 5. Representation of the soil, lining, TBM and buildings as information and equivalent numerical models on different LoDs.

3.2.1. Governing equations and finite element discretisation

The governing equations describing the underlying physics of machine-driven tunnel advancement in partially or
fully saturated soils are presented in [35] and are not repeated here in detail. The weak form of the balance equations
(i.e. equilibrium of forces and the mass balance of the groundwater) and the conditions related to the frictional contact

between the tunnel boring machine and the soil is characterised by four terms:

SW = SW* + SWY + SWE + 6W', (1

where 6W?* and 6W" represent the weak form of equilibrium of forces and the mass balance of the groundwater,
respectively, 6W¢ represents the virtual work of the contact forces arising from the frictional contact between the
tunnel boring machine and the soil [11] and W’ is concerned with the contribution of the interaction forces between
the buildings and the soil, which result from the tying of the domains of the existing buildings and the soil surface via
the
penalty method:
SW! = /F , pi(6u! = 5u?) . (@) —u®)qv. )

This allows for a nonconforming, independent discretisation of the existing surface structures and the soil, which is an
important ingredient in terms of efficiency of model generation.
Eq. (1) involves the displacements u® and the water pressure p* the main unknowns. After linearisation of Eq. (1)

and spatial discretisation using finite elements, the resulting coupled system of equations arising during the iterative
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solution within the time interval [¢,, f,,+1] can be written in block-form:

i -1 i

At | A Aww|  |RE,-RE, )
pr Awu Aww R;th - Riv:”
n+l

The subscripts u and w refer to the mechanical and the fluid transport related subproblem, Au® and Ap"™ are the
incremental vectors of nodal displacements and pore pressures to be computed in the i-th iteration, and the vectors
Re.x: — Rin: denote the residuals of the external and internal force vectors. To furnish the spatial discretisation of
Eq. 1 compatible with the LBB conditions [54], the water pressure is approximated by a functional space of lower
order as compared to the approximation space of the displacements. In the numerical examples presented in Section
4, tetrahedral element, with 10 nodes are used for the approximation of the displacements, while 4-node tetrahedral

elements are employed for the pressure.

3.2.2. Computation and parallelisation strategy

The domain decomposition strategy for numerical simulations in mechanised tunnelling must account for the fact
that the contact surfaces between the TBM and the surrounding soil continuously change during the advancement of
the TBM. The contact surfaces are determined by a contact search algorithm based on Bounding Volume Hierarchy
(BVH). The TBM is denoted as the slave body and the surrounding soil as the master body. When using a domain
decomposition strategy, it can happen that when the TBM passes through the boundary between two computational
domains, the contact search algorithm may fail since some of the master segments do not belong to the current working
process. To cope with this issue, the master segments are distributed a priori to all computational domains as ghost
segments. Figure 6 illustrates the distributed ghost master segments related to the domain of soil elements containing
the contact surface between the soil and the TBM (vertical column slab of finite elements) .

In order to solve the block system (3) using iterative solvers effectively, the block preconditioner is employed. It is
well known from the literature that the Incomplete LU (ILU) preconditioner [6] is not suitable for multiphase problems,
as the LU preconditioner does not scale well when the size of the problem grows and due to the coupling characteristic
of the multiphase matrix resulting from the fact, that the solid block has much larger magnitude as compared to the
pressure block. This imposes an additional challenge for the ILU preconditioner to compute an appropriate inverse.
According to [7], block preconditioners are the preferred choices that can be used to speed up the convergence of

the iterative solver for multiphase problems. Several variants of block preconditioners exist, including the Block
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ghost master segments

ghost master segments

Fig. 6. Domain decomposition methods in mechanised tunnelling: Ghost master segments to account for TBM-soil contact in multiple computational
domains.

Gauss-Seidel preconditioner [4, 5],

I 0 I 0|4l o

Pl = , )
0 A [|-Awu I|| O I

and a class of block preconditioners based on the Schur complement, which is abbreviated as Schur preconditioners

[51,7],
I -AlAL 1AL 0O I 0
Pyl = e 5)
0 I 0 S |-AwALL T
Al 0 I 0
P;l — uu (6)
0 S |[-AwuAyl T
Pl = I -AlAL 1AL 0O ’ o

where A, Ay, denote the matrix representing the solid and fluid phase, and A,,,, A, are the coupling matrices. S
is the Schur complement matrix, which is defined as S=A,,,, — Awudiag(Auu)‘lAuw.

The quality of this block preconditioner depends substantially on the quality of the sub-preconditioners, which are
used to invert the sub-blocks A>! and A;vlw (S71). In the numerical example in Section 4, the multigrid preconditioner

[15] is chosen as the sub-preconditioner. The multigrid preconditioner is well known to work effectively for elliptic
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problems (i.e. thermal problems, elastic problems). Hence, it is expected that the multigrid preconditioner provides
an appropriate inversion for the solid block A,,,, where it has a much larger contribution to the system matrix as
compared to the pressure block A,,, . For a detailed investigation of the performance of the block preconditioners in
the multiphase problems, the reader is referred to [11]. Figure 7 provides an overview of the simulation software used

for parallel computation.

KRATOS
(Variables, Database, Python interface, . .. )

METISAPPLICATION
(Contact domain
decomposition)

N

STRUCTURALAPPLICATION
(Geometrical linear finite
element, elastic material)

N

EKATEAUXILLIARY
APPLICATION
(Hydraulic jack ele-
ment, elastoplastic
material (CASM))

DISTRIBUTEDBUILDERS APPLICATION
(Parallel assembly)

PETSCSOLVERSAPPLICATION
(Parallel linear algebra,
block preconditioner)

MORTARAPPLICATION
(Contact links, active set strategy)

Fig. 7. Structure of the simulation software.

3.3. Minimising time for forward calculations: Meta models for real-time prediction

In situations where quick decisions need to be made based upon numerical simulations in the design (investigation
of large number of the design alternatives) or in the construction stage (process steering) of a tunnelling project,
numerical predictions have to be provided within a few seconds. This time frame is impossible to achieve by using
direct finite element computations, even if highly efficient parallelisation schemes are employed. Such extremely short
response times can only be achieved by using computationally efficient meta (surrogate) models instead of the original
FE models. Meta models are a compact representation of simulation models able to return the response of complex FE
models for predefined output parameters, e.g. of tunnelling-induced surface settlements, almost instantaneously [37].
To enable real-time predictions, meta models are trained a priori from the process-oriented simulation model generated
from the multi-level TIM using SatBimModeller. Besides settlements, output parameters may include the lining
stresses, pore pressures or damage in existing buildings.

Figure 8 illustrates the use of simulation-based meta models for real-time predictions. Based on different design
alternatives of the tunnel project, characterised by particular design parameters, simulation models are generated and
executed using the SatBimModeller. The simulation results are stored in a format suitable for meta model training.
In SATBIM several algorithms are implemented to train the simulation data set and select an optimal meta model

based on different methods for data training:
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Fig. 8. Workflow of real-time predictions for design optimisation within the Tunnelling Information Model.

* Polynomial Regression (PR),
» Support Vector Regression with Radial Basis Function kernel (SVR-RBF) and Polynomial kernel (SVR-Poly),

¢ Artificial Neural Networks (ANNs).

In all training methods, the parameters x; of the simulation model are taken as input variables for the meta model
training, while the settlements caused by the tunnel advancement or the risk of damage or other parameters relevant for
the design are target parameters y. Meta models are then trained to predict the output for given input values, minimising
the error between the target and output values. For the generation of the meta model, the data set is randomly split into
data set for training, testing and validation. The meta model is trained with the training set, evaluating the training
performance based on testing set, and it prediction capabilities are finally validated with the validation data set.
Considering the different dimensions of different parameters, all input-output pairs are mapped to the interval

(0.1, 0.9) using a data normalization algorithm. For a parameter V, the normalised value V,,,,, is obtained from:

V-Vin o - _
Vaorm = V# (Vmax - Vmin) + Vinin- (8)

max — Vmi n

Vinax and Vi, are the maximal and minimal values of the variable V, and V.« and Vi, are the maximal and minimal

values of the variable V after normalization, defined as 0.1 and 0.9.

Polynomial regression. For given a data set {y;, X;1,. .., Xip}, of n inputs and p patterns, a polynomial regression
model is a form of linear regression in which the relationship between the independent variable x and the dependent
variable y is modelled as a nth degree polynomial in x [32]. In its general form, the polynomial regression model can
be formulated as:

Vi = Bo+ Bixi + Boxt 4 BpxM + & (i=1,2, ..., n), 9)
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where the “error variable” g; is an unobserved random variable that adds noise to the relationship between the dependent

variable and the inputs. For the implementation used in this paper, second-order polynomials are used:

vi (B, x) = 0+Zﬂlxl+ZEl,x +ZZB,]X,XJ X'B +¢;. (10)

i=1 j>i

Support Vector Regression. In the SVR method, the support vector determines the approximation function [49]. The
SVR technique searches the multivariate regression function f (x) based on the input data set, i.e., the training set x

to predict the output data:

f(x) = Z (@i —af) K(x, x;) + b, (11)

x; €SV
where K is a kernel, b is an offset parameter of the model (equivalent to &; in regression models), SV is the support
vector set, and @;, @] # 0 are Lagrange multipliers of the primal-dual formulation of the problem solved by quadratic
programming. Polynomials, splines and radial basis functions are examples of kernel functions. The kernel K is, in
general, a non-linear mapping from an input space onto a characteristic space through a dot product of the non-linear

kernel function ¢ (x) as :

K (x,x;) = ¢(x) - ¢ (x;) (12)
The kernel functions ¢ used in this paper are:

« Polynomial: (y{x,x’) + r)?, with d as the polynomial degree and r as an independent coefficient with default

value 0.

 Radial basis function: exp (—y |x — x’|2), where vy is a coefficient which must be greater than 0.

Artificial Neural Networks. In the ANN model, the output y (x, w) is calculated according to Eq. (13), where w;; are
connecting weights from the input to the hidden layer, w;; are connecting weights from the hidden to the output layer,
0; (8;) is a bias and f() is the activation function used to transform the incoming values and transfer them to the next

layer:
yi(x, w)y=f [Z(ij ++6)) f [Z WijX; + 9[] ] : (13)
=1 i=1

The objective in ANN training is to determine the free parameters (w and ) to minimise the objective function which

represents the error E between the output and the target values:

E=) (n-u) (14)
k=1
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Some of the aforementioned machine learning methods are based upon parameters which influence the training
performance. In order to obtain robust meta models, those parameters are optimised with the Particle Swarm

Optimisation (PSO) method [21] as illustrated in Figure 9. The algorithm for robust meta model training is implemented

Machine learning methods

| Polynomial Regression |, —

Data set _>| Support Vector Regression | Swarm
— Optimization

| Artificial Neural Networks |

!

| Optimal meta model |

Fig. 9. Selection of robust meta models by using Particle Swarm Optimisation for selecting optimal training parameters.

in Python, following the main idea described in Figure 9 and applying the machine learning methods described above.
For the implementations, the Python library scikit-learn for supervised learning was used [39]. This toolkit
contains implementation of Regression models, ANNs and SVR, however, for robust learning, in addition PSO was
implemented to optimise training parameters of different machine learning models. The training performance and
hence meta model prediction capabilities are therefore enhanced by i) random data split for training, test and validation;
ii) normalisation of the data, and iii) an optimised hybrid training approach. Moreover, methods for the reading and
preprocessing the data, the selection of the optimal model and forward calculations based on the trained meta models

were implemented.

4. Numerical examples

In all numerical examples presented in this section, the multilevel simulation framework described in Section 3.1
is used for the generation of large tunnel sections on different LoD as described in Section 3.1.4. Based on this
Revit model, a finite element simulation model is generated using SatBimModeller. The time needed for the model
generation is dominated by the time needed to set up the parameters in the Dynamo interface, and the software
runtime (for the generation of the information and the numerical models), which, depending on the size of the problem
can take from seconds to minutes on a personal computer with 256 GB of memory. In the numerical examples
below, the following aspects in regard to efficiency are discussed: i) choosing the optimal LoD of different model
components w.r.t. the analysis scenario, ii) near-instant forward calculations using simulation-based meta models, and

iii) computational efficiency by employing parallelisation strategies.
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4.1. Importance of the LoD w.r.t. the objective of the analysis

In the first example, the importance of the choice of the LoD of certain model components for the accuracy of the
results w.r.t. the objective of the analysis is discussed. In this example, the objective is the prediction of the settlements
trough induced by tunnel construction. To this end, the effect of different LoDs of soil material models and of the
lining model on tunnelling-induced settlements and their effect on the size of the model and computational efficiency
are analysed.

Figure 10 shows the steps taken for the generation of the simulation model based on the information model using
SatBimModeller. The model is used for investigations of the influence of the selected LoD of structural components
and material models. The soil geometry is modelled on the medium level of detail (LoD 2), and the lining structure
is varied from low to high complexity (LoD 1, LoD 2 and LoD 3). For medium and most detailed representation of
the lining structure, the TBM is modelled on LoD 2, while for the volume loss representation of the lining structure
support, the TBM is modelled on LoD 1. In this demonstration example, 27 lining rings of 2.5 m length and 10 m

excavation radius are excavated under 15 m of soil overburden.

Revit Geometry ACIS Geometry FE Mesh Simulation Results

Fig. 10. Generation of the finite element simulation model based on tunnel information model generated in Revit using SatBimModeller.

The multi-level approach is also applied to the selection of the material model. Three different material models are
considered: a linear elastic model (LE) on LoD 1, the Mohr Coulomb model (MC) on LoD 2, and the CASM model

on LoD 3. The soil material parameters used for this example are summarised in Table 1.

4.1.1. Ring-wise vs. segment-wise installation

Figure 11 shows the induced settlements trough for different lining models. Here, V; = 0.8% is applied for
modelling of the lining on LoD 1. It can be observed that the selected value of soil confinement leads to slightly
larger settlements and a more narrow shape of the settlement trough for the same volume loss as compared to higher
LoDs (rel. error= 9.5 %). The choice between lining on LoD 2 and LoD 3 does not make a significant difference

when calculating tunnelling-induced settlements (rel. error=3.2 %) as shown in Figure 11. Assuming that the most
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Constitutive law LE MC CASM
Young modulus [MPa] 80 80 80
Poisson ratio 025 025 0.25
Density [kg/m> ] 1732 1732 1732
Porosity 0.4 0.4 0.4
Cohesion [kPa] - 200 -
Hardening modulus [MPa] - 58.3 -
Friction angle [°] - 30 -
Dilatancy angle [°] - 30 -
Permeability [m/s] 0.001 0.001 0.001
Slope of the unload/reload curve in the (v — In p’) space « - - 0.001
Slope of the normal compression curve in the (v—In p’) space 4 - - 0.01
Spacing ratio r - - 0.2
Shape parameter of the yield surface n - - 2.0
Slope of the critical state line under triaxial compression M - - 1.08
Initial preconsolidation mean stress for saturated soil Py [kN/m?] - - 10'5

Table 1. Material parameters for LE, MC and CASM material model

detailed model (LoD 3) leads to the highest accuracy in the prediction, the general conclusion is that a high accuracy
in modelling of the lining structure does not contribute significantly to the accuracy of the settlement prediction. In
general, if multiple runs are required for parametric studies, the model with the highest LoD for the lining structure

could be used for the determination of the volume loss parameter, and the subsequent simulation models could be

generated with the lowest LoD (volume loss) to reduce the model size and computational costs.

Settlements for different LoDs of the lining
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Fig. 11. Tunnelling-induced surface settlements trough for tunnel linings with LoD 1, LoD 2 and LoD 3 for the CASM soil model.

However, for detailed lining design assessment in terms of its structural response, detailed modelling of lining
rings is required, and therefore the choice of accuracy level for modelling lining rings makes a significant difference.
In the volume loss method (LoD 1), the lining structure is not explicitly modelled and therefore cannot be assessed. In
Figure 12, the difference in distribution of the total longitudinal, radial and tangential stresses in lining rings for LoD 2

and LoD 3 is shown. The accuracy in modelling is paid for with higher computational costs (see Table 2), which is
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further discussed below.

Total displacements Stresses Oy, Stresses O,

Stresses Ogg
LoD 2 774 oD 3

Fig. 12. Comparison of the numerical models for the lining structure on LoD 2 and LoD 3 in terms of total displacements and total stresses in
longitudinal oy x, radial o, and tangential og¢ direction.

Lining LoD
Soil model : ! 2 3sww)
LE 12 27 178 (41)
MC 22 31 201 (57)
CASM 54 73 240 (79)

Table 2. Time [min] needed for calculation of different LoDs w.r.t. the material model and the representation of the lining

4.1.2. Effect of the LoD w.r.t the material model

Next, the influence of the material model is evaluated. In general, the size of the model is unchanged here, however,
consideration of the non-linear soil behaviour and complexity of the soil constitutive law increases the computation
time. Considering the representation of the lining with LoD 3 and adopting three different material models (LE, MC

and CASM) leads to the settlement trough changes as depicted in Figure 13. Table 2 summarizes the total calculation

Settlements for different soil models
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Fig. 13. Tunnelling-induced surface settlements trough for three different material models for the soil (LE, MC and CASM). The lining is modelled
as a segmented structure with interfaces between segments and segment-wise installation (LoD 3).
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time for all previously mentioned combinations of the lining model and the material model of the soil. The third
column gives the total time of the simulation run for both segment-wise (sw) and ring-wise (rw) installation of the
segmental lining ring. All analyses were executed on a shared memory system with a direct solver (here we employ
the PARDISO solver) using 32 processes on a single computer, employing an Intel Xeon processor with 64 cores, each
core running at 2.67 GHz, and 256 GB of RAM. From this table, it becomes evident, that increasing the accuracy of
geometric or material modelling increases the computational cost. However, the optimal setup of the computational
model depends on the objective of the analysis. As shown in Figure 11 for the analysis of the surface settlements, the

model with the highest complexity is not always necessary.

4.2. Real-time prediction

SATBIM is further applied for the generation of meta models for real-time predictions of tunnelling-induced
settlements of a building. The tunnel is passing in the vicinity of an existing building as illustrated in Figure 14.
The design and model parameters investigated in this study are the building LoDs 1, 2 and 3, the building distance
from the tunnel in Y direction (0, 10, 20, 30,40, 50,60 m) and the depth of the tunnel crown w.r.t. the foundation
of the existing building (5, 10, 15,20,25m) as shown in Figure 15. For the remaining components, the levels of
representation adopted for this model are: Soil model on LoD 2, lining model on LoD 1 and the TBM model on
LoD 1. The tunnel diameter D in this example is 10 m, and the construction of 27 rings (steps) of 2.5 m length is
analysed. In this example, the Mohr Coulomb model is used as the constitutive relation for the soil. This elasto-plastic
constitutive model is assumed associative with linear hardening. The SATBIM platform described in Section 3.1 is
used for the generation of 105 tunnelling information models resulting from the combination of those three parameters
(see Figure 14 (top)). Based on each of these Revit models, a simulation model is generated using SatBimModeller.
The tunnelling-induced displacements for the corresponding information models are shown in Figure 14 (bottom).
The generation of the design model in Revit and the corresponding FE simulation model took in average 16 seconds
and 42 seconds, respectively.

In this numerical experiment, which contains 105 simulations for the construction of 25 tunnel rings with a
combination of three parameters (building LoD, overburden and distance), the selected monitoring quantities are the
vertical displacements of the building top. This resulted in data sets of 2554 monitoring samples. This data set is
used for the generation of a meta model for the prediction of building settlement w.r.t building LoD, overburden and
distance. In the next step, this meta model is used for real-time predictions and forward calculations for sensitivity

analyses.
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Fig. 14. Top: BIM model for investigation of building LoD sensitivity; bottom: simulation models for the respective BIM models.
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Fig. 15. Parameters for generation of the meta model: a) design alternatives in terms of distance of the tunnel alignment from a building; b)
overburden of tunnel w.r.t. foundation of the existing building.

Meta model training for the prediction of building settlements. The procedure and the algorithm described in Figure 9
is applied for the training of the meta model based on the data set of 2554 samples. Here, the data set is randomly
divided into portions of 80%, 15% and 5% of the samples for training, testing and validation, respectively. Figure 16a
shows the relative Root Main Square Error (FRMSE) for different machine learning techniques applied for the data

training. YRMSE is defined as

1 Pn Ve — t 2
FRMSE = 4| — S (2% (15)
Pn Z ( Tk )

where yy is an output of the meta model and f; is the target value for this output. From Figure 16a, it can be
seen that the optimised ANN shows the best performance for the data set training. The Particle Swarm Optimisation
algorithm is used to determine the optimum number of neurons in the hidden layers. The optimal solution is reached

within less than 20 iterations.
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Figure 16b shows the comparison between the data set and meta model predictions for the training, testing and
validation set for the best meta model. From this figure, it can be concluded that the optimised ANN meta model has

excellent prediction capabilities with an error for both the test and the validation set of less than 3%.

a) b)
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. 0.8[ test: 2.79 %
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Fig. 16. a) Performance of the training of the meta model using different machine learning techniques; b) comparison between vertical displacements

of the building obtained from the FE simulation and the predictions of the trained meta model for the training, test and validation sets for the ANN
meta model .

Meta models for real-time design assessment. Having established a robust meta model, we can now apply it for fast
predictions of the effect of design variants directly within Revit. In order to do that, we developed a Dynamo node to
calculate the forward pass of the meta model based on model parameters that are set in Dynamo. The trained meta
model is imported as a text file, while parameters are set using value boxes or sliders as shown in Figure 17a. The
comparison of the settlements predicted using simulation-trained meta models and the results obtained from numerical
simulations for arbitrarily selected parameters shows excellent agreement (see Figure 17b). The meta model prediction
is obtained almost instantaneously (in less than 1 second for the prediction and 5-20 seconds for the regeneration of
the model based on new design parameters and visualisation in Revit), while one finite element simulation in this
example takes ~ 3 h (on the hardware described above). Therefore, the application of meta models for prediction of

tunnelling-induced effects is an alternative to provide an efficient forward model.

Application of meta models for sensitivity analysis. In order to assess the importance and need for adopting a certain
LoD of the component for the analysis of the soil-structure interaction problem, sensitivity analysis can be conducted.
Here, we can use already created meta models for near-instant forward calculation of the tunnelling-induced effects
on the building to evaluate the sensitivity between the input parameters and the output, and to estimate its importance.
A variance-based global sensitivity analysis [33] has been conducted in order to measure the sensitivity of the model
output (settlements at the building top) w.r.t. the aforementioned input parameters. In this methodology, the importance

of the input parameter is quantified through the absolute mean y* of the elementary effect EE; (16), representing the
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Fig. 17. a) Real-time assessment of soil-structure interaction w.r.t. tunnel alignment, overburden and building LoD in BIM tool Revit; b) comparison
of the temporal building settlements predicted by the FE simulation and the trained meta model.

total sensitivity index and a measure of the overall effect of a factor on the output. The elementary effect £ E]’ of the jth
parameter X; in the ith repetition is calculated using Equation 16, where Y (X;) is an output and A is a predetermined

multiple of 1/(p — 1), with p denoting the number of intervals of X; and X; < 1 — A [33].

Y (X],Xz, vy Xj + A, e Xk) -Y (Xl,Xz, . € Xk)
A

. 1 & .
i _ * i
EE} = , and  uj = - El ’EE]‘ (16)

i=

For the forward calculation of the elementary effect EE; of a certain parameter variation on the output, the previously
trained meta model is applied. This offers significant advantages, since the calculation of the elementary effect requires
a large number of forward calculations to ensure the uniqueness of the solution [31]. Figure 18 shows the sensitivity
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Fig. 18. Sensitivity of the building LoD expressed in terms of the absolute mean of the elementary effect £ E; in regard to a) assumptions regarding
the distance of the alignment to the building for a tunnel overburden of 10 m; b) different levels of tunnel overburden for a building distance of O m.

measure u* for the selected LoD of the building w.r.t. the vertical displacements for different assumptions regarding
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the distance of the alignment to the building and for different levels of the overburden. From the plots, we can conclude
that global sensitivity of the LoD, indicated by u*, drops with increasing distance of the building and overburden of
the tunnel. It is, for instance, obvious that when the distance of the building from the tunnel is approximately 4D, the
selected building LoD becomes irrelevant. This allows to conclude that for buildings located at a distance of more
than 4D from the tunnel alignment, the lowest LoD is fully sufficient to reduce computational costs and efforts for

model generation.

4.3. Parallelisation of a large model

In this numerical example, the SATBIM framework is used for the efficient generation of a large tunnel section
combining components on different LoDs. The simulation efficiency in this example is further increased by employing
a parallelisation strategy to perform large-scale simulations of the advancement process in mechanised tunnelling.
Finally, the knowledge about the optimal building LoD, for the scenario of shield tunnelling in vicinity of existing
infrastructure from the previous example (see Figure 18), is applied to further optimise the size of the model, preserving
the accuracy of the solution. In a first simulation all buildings included in the BIM model of the investigated tunnel
section are modelled with the highest LoD (see Figure 19a), while in a second numerical analysis, only buildings
having a high sensitivity w.r.t. the LoD are modelled with high accuracy, while the rest is modelled with LoD 2, which
significantly reduces the size of the problem (see Figure 19b).

In both models, LoD 2 is selected for the representation of the tunnel lining structure and the TBM. This model
accounts for the shield as a deformable body moving through the soil and interacting with the soil through surface-to-
surface contact. The tunnel advance is modelled by means of de-activation of soil elements and installation of the lining
rings and grouting elements. Tunnelling-induced deformations are controlled by applying the face support pressure
and the grouting pressure at the tunnel face and in the steering gap, respectively. The elasto-plastic Mohr Coulomb
model with associative flow rule is used as the constitutive relation between effective stresses and the strains in the
fully saturated soil. The groundwater level is assumed at the surface. Selecting the optimal LoD for the buildings, the
model size has been reduced by 17% in terms of number of d.o.f, while keeping the accuracy of the numerical solution,
as shown in Figure 19a and b. Therefore, for further improvement of the efficiency by means of parallelisation of the

simulation model, only the model with the optimised building LoDs is considered.

Type of simulation Average solution time (s)  Average number of iterations
GMRES (8 processes) 900.25 398.3
GMRES (16 processes) 652.08 385
GMRES (32 processes) 576.51 378.5
GMRES (64 processes) 277.31 377.5

Table 3. Performance of parallel solver in terms of average solution time per advancement step and average number of linear solver iterations.
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Fig. 19. Revit model of a more than 200 m long tunnel section used for generation of a large-scale simulation model and visualisation of the settlement
trough obtained from the numerical simulation generated using SatBimModeller for a) highest LoD for representation of the infrastructure and b)
optimised LoD for representation of the infrastructure.

In the spatial discretisation of the tunnel section, the buildings are discretised by means of 27-node hexahedral
elements. For the soil Taylor-Hood tetrahedral elements (i.e. 10-node elements for the displacements and 4-node
elements for the fluid pressure) are used. This amounts to 9410 elements for the buildings and 194,186 elements for
the soil. The maximum number of d.o.fs during advancement is 1,130,169. The results of the computation, in terms
of speed-up and number of average iterations of the parallel solver, are presented in Table 3 and Figure 20.
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Fig. 20. Left: Decomposition of the model using 64 partitions; Right: Speed-up of parallel solver using 8 to 64 processors.

Using the parallel solver described in Subsection 3.2.2, in particular, the Block Gauss-Seidel preconditioner
coupled with the multigrid preconditioner for the solid block and a direct solver to invert the pressure block, the
simulation is performed with eight processes first. Subsequently, the speed-up from the computations using a larger
number of processes is measured relative to the simulation using eight processes. The simulation of the considered
project section takes approximately 15 min for a linear solving step. This reduces to 4.5 min using 64 processors in
parallel, which corresponds to a speed-up of approximately 3.3. The fact that the measured speed-up is considerably
below the theoretical level (which is 8) is attributed to the overhead for synchronisation of data across processes and

the cost for the preconditioner. This can be improved by choosing a better approximation for the Schur complement
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matrix [47, 51], or using an efficient block preconditioning strategy accounting for contact and non-conforming mesh
tying [16]. Nevertheless, this improvement factor represents an essential ingredient for the increase of the overall

efficiency of the integrated BIM-supported simulation strategy proposed in this paper.

5. Conclusions

In current engineering practice of tunnel design assessment, significant manual, time-consuming preparation and
analysis as well as a significant amount of computing resources are required. To ensure a seamless workflow during
the design and the analysis, and to enable efficient investigations of design alternatives and their numerical assessment,
a BIM-based multi-level numerical simulation concept was proposed. It enables choosing different levels of detail in
regard to the representation of the involved components. The model described in this paper is tightly coupled with
a parallelised process-oriented simulation model (EKATE) to enable large-scale simulations using standard hardware
resources, which take all construction stages and relevant components, including the existing infrastructure in urban
tunnelling, into account. In case of simulation-based prognoses required during construction, the framework enables
near-instant predictions by means of simulation-based meta models used for forward analysis. The efficiency of the
generation of the training set and the actual training of the meta models is increased by applying the BIM-based
numerical modelling and training algorithms implemented within the framework SATBIM.

The proposed approach enables efficient numerical assessment of different design alternatives reducing both user

and computational workload. The user workload is reduced by different aspects of the SATBIM framework, including:

 User-friendly design of the software, where the user assigns the design parameters in the visual environment
of Revit/Dynamo, while the rest of the workflow is automated. The complete model is parametrised and
dependencies between different parameters are already incorporated in the model, avoiding spatial conflicts.
Therefore, the time needed to learn how to use software is minimised.

* The software structure is highly modular, and therefore flexible for adaptation or extensions. For example, an
additional component or an additional LoD of an existing component can be added without affecting the existing
parts of the software.

* By adopting BIM-based numerical modelling, the geometry and semantics describing the problem can be
directly imported from the design tools. Therefore, the user does not need to create and maintain separate design
and numerical models. Changes in the design models are directly transferred to numerical models.

e SatBimModeller enables the automatic generation of numerical models based on BIM, as well as the execution
of simulations and storing the results of the analysis in a form suitable for further processing. The SATBIM

approach significantly reduces the user workload for the generation of the model. This is particularly important
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if different design alternatives have to be investigated, or a large number of models has to be generated for

parametric studies.

In some cases, the simulation of large tunnel sections is required, for example, for the determination of the general
tunnel routing of a project or in case of urban tunnelling, where the existing infrastructure needs to be considered. This
consequently leads to large numerical models. The SATBIM framework offers three measures which can be applied

to minimise the computational workload:

* Adopting the multi-level approach and enabling the selection of optimal LoDs of different components based
on the objective of the analysis. This reduces the model size, and consequently the computational costs.

* Applying parallelisation strategies to perform large-scale simulations to decrease the computation time. The
parallelisation strategy used in this paper obtains good speed-up and small memory requirements as compared
to conventional parallel direct solvers, and exhibits strong scalability characteristic.

* Applying simulation-based meta models for forward analyses if real-time predictions are required. This provides
a tool for instant prediction of tunnelling-induced effects within a state-of-the-art design environment, which

can be used to support design, collaboration and decision making in the planning and construction phase.

The SATBIM framework offers a number of solutions for reducing the total user and computer workload for the
assessment of tunnel design. However, there is room for extensions of this prototype concept. The efficiency of this
framework could be further improved by integrating re-meshing tools directly into the BIM design environment, and
implementing a direct interface between the design tool and the simulation software EKATE, avoiding the need for GID
as a separate step.

The SATBIM toolkit will be made available as open source software together with tutorials, a complete manual,
and a number of benchmark examples.

The project’s Github repository (not yet public) can be found at https://github.com/satbim
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