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ABSTRACT
Structural identification using physics-based models and subsequent prediction have

much potential to enhance civil infrastructure asset-management decision-making. In-
terpreting monitoring information in the presence of multiple uncertainty sources and
systematic bias using a physics-based model is a computationally expensive task. The
computational cost of this task is exponentially proportional to the number of model
parameters updated using monitoring data. In this paper, a novel model-class selection
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method is proposed to obtain computationally optimal and identifiable model classes.
Unlike traditional sensitivitymethods formodel-class selection, in the proposedmethod,
model responses at sensor locations are clustered to identify underlying trends in model
response datasets. K-means clustering is used to determine relevant clusters in the
data. Cluster indices are then used as labels for classification. Support-vector machine
classification using forward variable selection with sequential search is used to select
model parameters that help classify trends in data. The result of the sequential search is
a trade-off curve comparing classification error with number of parameters in the model
class. This curve helps select a practical and near optimal model class. The model-
class selection method proposed in this paper is compared with linear regression-based
sensitivity analysis using a full-scale bridge. Identification with model classes obtained
using both methods for two sensor configurations suggests that the model-based clus-
tering method helps select an identifiable and computationally efficient model class.
The minimum remaining fatigue life of the bridge predicted using the updated model
classes is 720 years and this represents fatigue-life extension of ten times compared
with design predictions prior to measurements. This approach provides good support
for asset managers when they interpret measurement data.

INTRODUCTION
Structural identification of civil infrastructure involves use of physics-based models

to interpret measurement data. The objective of interpreting measurement data in
the context of structural identification is to improve knowledge of model parameters.
Measurements carried out seldom contain information pertaining to all parameters of
the physics-based model. The task of selecting the right parameters for identification is
important to carry out structural identification in an efficient manner. In this paper, a
novelmethod to select parameters for identification usingmeasurement data is presented.

Structural identification enables better management of existing civil infrastructure
assets. The task of asset management is one of the foremost challenges today. The
construction industry is one of the largest consumers of rawmaterials. With deteriorating
supply of existing infrastructure and increasing demand, a large part of future global
investment will be made towards maintaining existing infrastructure to ensure a safe
and good standard of living (World Economic Forum 2014). Good asset-management
decision-making supports timely inspection and intervention, thus minimizing cost
of unnecessary and ill-informed management actions. Structural identification, using
physics-based models to interpret measurement data, leads to a better understanding
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of real structural behavior. This enables engineers to make informed decisions about
repair, retrofit and replacement of existing civil infrastructure. With the advent of fast
computing technologies (Frangopol and Soliman 2016) and cheap sensing tools (Lynch
and Loh 2006; Taylor et al. 2016), use of structural identification in practice is feasible
in an increasing number of situations.

Structural identification of civil infrastructure is an ill-conditioned inverse problem
due to the presence of large modeling uncertainty from use of justifiably conservative
design models. Due to the nature of the inverse problem, unique solutions of model
parameters cannot be identified. Rigorous evaluation of uncertainties associatedwith the
system can help obtain accurate solutions that are robust in the presence of model bias.
For structural identification, probabilistic methods such as Bayesian model updating
(Beck and Katafygiotis 1998) and error-domain model falsification (EDMF) (Goulet
and Smith 2013) are useful when updating knowledge of structural behavior. Use
of probabilistic methods for data-interpretation is computationally expensive as many
combinations of model parameters have to be evaluated using detailed physics-based
models. Probabilistic methods provide solutions as sets of model parameters, which
provide model responses that are compatible with measurements observed during a load
test.

To obtain solutions using probabilistic methods, a large model-parameter space
has to be explored. The larger the parameter space to be explored, the greater is the
computational cost of solving the inverse problem. Hence, to limit the computational
cost, only a small subset of parameters are chosen from a much larger set of parameters
that define the physics-basedmodel. For a given physics-basedmodel, from a large set of
model parameters, many smaller subsets of parameters can be selected for identification.
Each of these subsets of parameters defines a model class for identification. The task
of selecting an appropriate model class for identification and subsequent predictions
of structural behavior is called as model class selection (or feature selection) (Liu and
Motoda 1998; Bennani and Cakmakov 2002; Guyon and Elisseeff 2006). Selection
of a model-class for identification without utilizing information from measurements is
called as a-priori model class selection and this is the focus of this paper.

Traditionally, selection of a model-class has been carried out using sensitivity anal-
ysis based on linear-regression models (Friedman 1991). Linear-regression models are
developed for model response at sensor locations. Each linear-regression model pro-
vides information about sensitivity of model response to model parameters at a sensor
location. Using these sensitivities as heuristics, parameters are selected based on their
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importance to response at various sensor locations. Matos et al. (2016) suggested using
the coefficient of variation as a metric to determine importance of model parameters to
structural response. Another common approach that has been suggested is analysis of
variance (ANOVA) to determine the model parameters that govern structural response
(Van Buren et al. 2013; Van Buren et al. 2015). These methods do not implicitly con-
tain any penalty for over-fitting and may lead to selection of unimportant parameters for
identification.

Criteria in addition to sensitivity have been developed for parameter selection, such
as Akaike information criterion (AIC) (Akaike 1974), Bayesian information criterion
(BIC) (Schwarz et al. 1978) and Mallows Cp (Mallows 1973). These criteria have been
utilized with forward or backward parameter selection strategies (Draper and Smith
2014; Jain et al. 2000) using adaptive strategies such as greedy heuristics to reduce
computational cost (Caruana and Freitag 1994; Rao et al. 2015). These methods take
into account over-fitting of models to training data. However, the applicability of such
information criteria are limited to when the data are defined by Gaussian distributions.
Such assumptions typically are not valid for responses of civil infrastructure.

Regularization (Tikhonov 1963) methods have also been proposed to select model
parameters that are important to model response. Shrinkage methods reduce the number
of parameters in a model to avoid over-fitting to training data. Using regularization
methods that have been proposed, such as lasso regression (Tibshirani 1996), parameters
that are not important to the response are eliminated. The elimination of parameters is
determined by a shrinkage parameter that has to be tuned to obtain optimal model-class
selection. Tuning of the shrinkage parameter has been shown to be a challenging task
(Fan and Tang 2013).

Moreover, the a-priori methods available in literature based on linear regression
assume linear relationships between model parameters and responses, which is typically
not valid for civil infrastructure. Also, all a-priori methods focus on finding a good
subset of parameters that influence model response at one sensor location. For civil
infrastructure, model response at various sensor locations may not be governed by the
same set of parameters. Typically, the importance of parameters to model responses
have been averaged (Matos et al. 2016) or an intersection of parameters important to
response at all sensor locations (Van Buren et al. 2015) have been assumed to provide
an optimal model class. However, novel sensor placement strategies (Papadopoulou
et al. 2015; Bertola et al. 2017; Argyris et al. 2017) have been developed with the aim
of minimizing the number of sensors and maximizing information from each sensor.
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Ideally, these strategies result in each sensor providing new information about model
parameters. Under such conditions, use of averaged sensitivities is not an appropriate
metric for model-class selection.

In this paper, a model-class selection method is presented to overcome many chal-
lenges related to structural identification of civil infrastructure. The selection of pa-
rameters is not carried out by evaluating the importance of parameters to response at
each sensor location. Instead, a global understanding of structural behavior is evaluated
using clustering. Clustering is a form of unsupervised learning that helps understand
data by grouping together data-points that are similar. Clustering is inherently a subjec-
tive task as grouping of data-points is carried out using user-selected distance metrics
(for example Euclidean distance) (Jain et al. 1999). Data-points grouped together form
clusters, each with its own cluster index or label.

K-means clustering (Fisher and Ness 1971; Jain 2010) has been the most commonly
used method for clustering. Other clustering methods that have been developed are
Gaussian-mixture models (Biernacki et al. 2000; Friedman et al. 2001) and hierarchical
clustering (Johnson 1967; Friedman et al. 2001). Akey input required formost clustering
methods is the number of clusters. To estimate the number of clusters in a dataset, many
methods have been developed, such as the Hubert statistic (Halkidi et al. 2002), the
Davies-Bouldin index (Davies and Bouldin 1979), the silhouette index (Kaufmann and
Rousseeuw ), the Dunn index (Dunn 1974) and the score function (Saitta et al. 2007;
Saitta et al. 2008).

The gap method (Tibshirani et al. 2001) is another method that has been developed
to determine the number of clusters. In this method, the number of clusters present in
a given dataset is evaluated in a probabilistic manner. A gap value metric is introduced
in this method, which compares the possibility that the datset contains c clusters with
the hypothesis that the dataset contains no clusters. This gap value is calculated for
various values of c (c ∈ [1, k]). Let K be the real number of clusters in the dataset. For
c = K , the gap vlaue calculated is maximum compared with gap values calculated for
other values of c. Therefore, the value c that maximizes the gap value is estimated as
the optimal number of clusters in the dataset.

Utilizing the appropriate k values obtained using the gapmethod, k-means clustering
helps obtain a global understanding of structural behavior at sensor locations. Further
on, the parameters governing the trends in structural behavior can be ascertained using
classification methods (Cristianini et al. 2000). This reveals the parameters that govern
the structural behavior globally, rather than evaluating response at each sensor location
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individually. The strategy of using clustering for parameter selection is similar tomodel-
based clustering methods (Fraley and Raftery 2002) that have been developed for use
with Gaussian-mixture models. Methods have also been developed to select parameters
that affect model-based clustering (Scrucca and Raftery 2014). Most developments
in parameter selection for model-based clustering methods have been to reduce the
computational complexity (Scrucca 2016; Celeux et al. 2018). However, the extension
of these methods to the context of structural identification have not yet been evaluated.

In Bayesian applications of structural identification, after updating (a-posteriori),
assessment of identifiability (Ljung 2010) of model class has been carried out using
Bayesian model class selection (Muto and Beck 2008; Yuen and Kuok 2015). Similarly,
an a-posteriori methodology has been suggested by Saitta et al. (2009) to assess inclusion
of parameters in a model class for identification for EDMF. However, no research has
so far been conducted to quantify identifiability of model classes utilized for EDMF.
In this paper, a cross-validation based identifiability assessment of identification in the
form of a precision metric is presented. Moreover, the assessment of precision helps
compare identifiability of model classes obtained using model-based clustering and
other model-class selection methods.

A new methodology for model-class selection is explained in detail in the following
section. After this, the application and comparison of this methodology with traditional
sensitivity analysis for structural identification of a full-scale bridge are presented.

METHODOLOGY
In a-priori model-class selection, a subset of parameters, which define a physics-

based model, is selected for identification. The objective of model-class selection
methods is to select parameters that can be identified using measurements available
from a load-test. Generally a-priori model-class selection is conducted using a simulated
dataset, D, similar to one shown in Figure 1.

The dataset, as shown in Figure 1, is simulated using a physics-based model, g(θ).
This model is defined by parameters θ =

[
θ1, ..., θp

]
, where p is the total number

of parameters in the model. Values of these parameters are not known and they are
included in the model as random variables. Using the physics-based model, predictions
of structural response are made at sensor locations to simulate the dataset, D. Let the
number of sensor locations where measurements are recorded during a load-test be m.
Using the physics-basedmodel, n evaluations are performed for various combinations of
model parameters. Thus the dataset for parameter selection is composed of two subsets,

6



Model response at m sensor locationsModel parameter values [θ
1
...θ

p
]

n
 s

im
u
la

ti
o
n
 i

n
st

an
ce

s

θ
1,1

θ
1,2

θ
1,n

θ
2,1

θ
2,2

θ
2,n

θ
p,1

θ
p,2

θ
p,n

g
1,1

(θ)

g
1,2

(θ)

g
1,n

(θ)

g
2,1

(θ)

g
2,2

(θ)

g
2,n

(θ)

g
m,1

(θ)

g
m,2

(θ)

g
m,n

(θ)

Fig. 1. Dataset simulated using a physics-based model, g(θ), of size n ×
(
m + p

)
.

the model response set of size n × m and a set of corresponding model parameters of
size n × p that serves as input into the model class. Thus, the size of the entire dataset
is n ×

(
m + p

)
. These datasets are traditionally used for parameter selection using

linear-regression-based sensitivity methods.
Dataset, D, simulated using the physics-based model, propagates uncertainty from

model parameters to model response (behavior). Uncertainty in model parameters
that govern structural response contribute more significantly to variability in model
response. In typical sensitivity analysis, variability in model response is evaluated at
each sensor location to determine the most important model parameters at individual
sensor locations. However, parameters that are important at a sensor location are not
necessarily important at other locations due to the global structural behavior.

Instead of evaluating the importance ofmodel parameters to responses at each sensor
location independently, clustering is utilized to obtain insight into changes in structural
behavior from changes in parameter values. For example, a simple beam when simply
supported, behaves in a manner different from the same beam under fixed-fixed end
conditions. Comparing the two behaviors would indicate differences in deflection
response predicted at sensor locations (measuring deflection) along the beam span. The
parameters of this beam that are governing this variation in deflection response are
the stiffnesses of the boundary conditions. Similarly, for full-scale structures, varying
parameters in a physics-based model changes the structural behavior, which is reflected
in response at sensor locations. These underlying changes in structural behavior are
inferred from responses at sensor locations using k-means clustering.
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The model response at sensor locations, as shown in Figure 2, is clustered to better
understand structural behavior. A key input for k-means clustering is the number of
clusters in the dataset. This is determined with the help of the gap method (Tibshirani
et al. 2001). Subsequently, the model responses obtained at various sensor locations for
different combinations of parameter values are clustered, according to similar values for
quantities that sensors measure.

Model response at m sensor locations

g
1,1

(θ)

g
1,2

(θ)

g
1,n

(θ)

g
2,1

(θ)

g
2,2

(θ)

g
2,n

(θ)

g
m,1

(θ)

g
m,2

(θ)

g
m,n

(θ)

C
3

C
1

C
7

Cluster labels

n
 s

im
u

la
ti

o
n

 i
n

st
an

ce
s

Fig. 2. Reducing the dimension of the model response dataset using k-means clustering.

In Figure 2, model response at sensor locations for each combination of parameter
values is labeled belonging to a cluster. Each cluster in this dataset represents a different
group of response-value sets of quantities that sensorsmeasure (strains, deflections, etc.).
Changes in values of important parameters leads to different groups of response-value
sets. On the contrary, changes in values of unimportant parameters does not lead to any
changes in the groups of value sets. While these clusters in model response represent
changes in structural behavior they provide no information regarding the parameters
that are governing these changes.

Inspection of parameters that are governing changes to structural behavior and
thereby the clustering is carried out using support-vector machine (SVM) classifica-
tion. Cluster labels, as shown in Figure 2, are utilized to train a SVM classifier and
help determine the parameters that govern the underlying trends in the dataset, D. The
dataset used for classification after clustering is shown in Figure 3 for n sets of pa-
rameter values (p parameters) and seven clusters. In this dataset, the cluster labels are
responses and model parameters are the features to train the SVM classifier. The cluster

8



labels attributed to each set of model parameter value sets are obtained using k-means
clustering. The cluster labels are not ordered, rather they correspond to the set of model
parameter value sets provided as input for simulation using the physics-based model
class.
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Fig. 3. Dataset for forward variable-search using SVM classification.

Let the SVM classifier be hsvm, which is defined by a model classM j , as shown in
Eq. 1.

Cr = hsvm,M j
(θ) + ε class,M j

r ∈ [1, k] (1)

In Eq. 1, the classifier, hsvm, is trained to predict the cluster labels, Cr for r ∈ [1, k].
The parameters included in training the classifier are defined by the model class,M j .
In model class,M j , j denotes the size of the model class, i.e., number of parameters in
the model class, which varies from from 1 to p. For example, model classM1 contains
one parameter from p parameters used to define the physics-based model g(θ). The
model class, M j , that provides least classification error, ε class,M j

, is the model class
that best explains underlying trends in the model response. Therefore, this model class
is most suitable for use in structural identification. A key criteria is thus estimation of
the classification error. In this study, the classification error is estimated using k-fold
validation.

In k-fold validation, the dataset D of n simulation instances is separated (or folded)
into r sub-datasets, where r is the number of folds provided by the user, as shown in
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Figure 4. Each sub-dataset obtained from folding contains n/r samples. Each fold
(subset of data) is held out, while the classifier is trained using samples from the other
folds. The fold not included for training is used to validate the classifier. This process is
then repeatedwith leaving out other folds and the average error over all folds is calculated
to train the classifier by tuning the hyper-parameters. Moreover, this classification error
is also used to select features to be used for training while performing forward-variable
selection.
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Fig. 4. Subsets for k-fold cross-validation for classification using dataset D. These
subsets are used for calculating the classification error.

In Figure 4, if r = 3, then the dataset is separated into three sets. Two sets (folds) are
used in training the classifier and the third set is used to validate predictions obtained
using the classifier. This process is iterated with each set being considered as the
validation set while the classifier is trained with the remaining two sets. Few of the
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model parameters, [θ1, ..., θ2], are features used to train the classifier to predict the
labels, Cr , for r ∈ [1, k]. The mean of classification error obtained using the three
iterations is the k-fold loss or classification error. For r folds, the classification error is
calculated as shown in Eq. 2.

ε svm,M j
=

r∑
i=1

Nerr,i

r Ni
(2)

In Eq. 2, ε svm,M j
is the classification error obtained using k-fold validation for

model classM j . For r folds, Ni is the number of instances in the validation fold, i and
Nerr,i is the number of instances in fold i that are mis-classified.

Selection of an optimal model class based on the k-fold classification error is carried
out using forward variable selection. In forward variable search, initially no parameters
are included in the model class. At each iteration of the search a new parameter is
included in the model class in order to reduce the classification error. So in forward
variable selection, the selection starts with amodel class of size 1, i.e.,M1 and concludes
when all parameters are included in the model class, i.e.,Mp. Initially, a model class
with few parameters under-fits the data leading to a large classification error that reduces
gradually as more parameters are included in the model class until an optimal model
class is reached. Subsequent addition of model parameters leads to over-fitting and
increase in classification error.

For p parameters that define the physics-based model, there are many possible
combinations of model parameters that could possibly be used to define the classifier.
To reduce the possible combinations and obtain an optimal model class efficiently, a
sequential search is employed. A heuristic employed to speed-up the search is that
parameters which are individually informative (independent, without information from
other parameters) for classification are more likely to be a part of the optimal solution.
To aid in development of this heuristic, k-fold classification error is used as a metric to
first rank individual parameters on their importance in developing the classifier. Each
parameter is used independently to train a classifier and the classification error for each
classifier is recorded as shown in Eq.3, which is then used to determine the optimal
model class with one parameter.

Cr = hsvm,M1, i (θ) + ε class,M1, i r ∈ [1, k] i ∈ [1, p] (3)

In Eq. 3, Cr are the cluster labels predicted using the classifier hsvm,M1, i (θi), where
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the classifier is trained using only one parameter θi. For the p classifiers developed,
the classification error ε class,M1, i is used as a metric to determine the relevance of the
parameter θi to classify and differentiate between the forms of structural behavior defined
by cluster labels, Cr . Parameters are then ranked based on the k-fold classification error.
An example for such parameter ranking based on k-fold validation error is shown in
Figure 5.
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Fig. 5. The ranking of parameters based on their importance to classify trends in
simulated dataset. The larger the classification error for a parameter, the less information
the parameter contains about the clusters in the model-response data. In the figure,
parameter θ1 has the lowest classification error obtained using k-fold validation and
thus contains the most information about clusters in the model-response data.

In Figure 5, the classification error associated with only using parameter θ1 is the
lowest among the six parameters evaluated. Thus, parameter, θ1, is the most informative
and ranked as 1. Similarly, parameters θ2 to θ7 are ranked based on the classification
error obtained using k-fold validation.

For forward variable selection, the first parameter included in the model class is the
parameter ranked 1, which is θ1. Subsequently, parameters are added to the model class
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to train the classifier, hsvm in an incremental manner. For example, while increasing
model class size from 1 to 2 parameters, the parameter θ1 is retained. One among
parameters θ2 to θ7 is included to minimize the classification error. The order of
evaluation of parameters is determined by their ranking as shown in Figure 5.
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Fig. 6. Schematic representation of a trade-off curve obtained using forward variable
selection for selecting parameters for identification. Based on this curve, the optimal
model class is the one with four parameters. An engineering appropriate choice would
be the model class with three parameters because fewer parameters for identification
leads to lower computational cost with a negligible increase in error. The trade-off curve
as shown provides engineers with guidance in selecting an appropriate model class for
structural identification.

Sequentially adding parameters to the model class and evaluating the classification
error at each iteration leads to a trade-off curve as shown in Figure 6. The variable
selection procedure is continued till all parameters are included in the model class. In
Figure 6, a schematic representation of such a trade-off curve is shown. Using forward-
variable search, effect of parameter compensation is overcome to select all parameters
important for classification. The trade-off curve shows decrease in classification error
as model class size is increased till an optimum is reached (M4). Further addition of
parameters leads to over-fitting and thus increase in classification error (or no change in
certain cases).

It is critical to tune the classifiers developed using the k-fold cross-validationmethod
during the process of forward-variable selection. SVMclassifiers have hyper-parameters
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such as box constraints and kernel scaling. Tuning the hyper-parameters results in
an optimal classifier for each model-class instance while employing forward-variable
search. For the case study, described in the next section, the hyper-parameters have been
tuned using Bayesian optimization (Snoek et al. 2012) involving k-fold cross-validation.

An optimal model class is not necessarily the best choice from an engineering
perspective. While the trade-off curve can be used directly to obtain the optimal model
class, it is important to make a decision based on practical limitations. For example,
in Figure 6, whileM4 is the optimal model class, M3 provides similar classification
error with a smaller model class size. As increase in model class size increases the
computational cost of structural identification, a practical near-optimal choice isM3.
Therefore, the trade-off curve provides the engineer with support to select a model class
considering available computational resources.

The development of themodel class selectionmethod is independent of the structural
identification methodology that is chosen. A key consideration in determining useful
parameters is the prior distribution of model parameters. Appropriate estimations of
prior distributions of model parameters is necessary for successful model-class selection
and subsequent structural identification. This is not only relevant for the proposed
model-class selection methodology, but for all other a-priori model-class selection
and structural identification methodologies available in literature. A methodology for
structural identification of civil infrastructure typically has requirements of accuracy
and ease-of-use. The case-study that is described later in the paper is evaluated using
EDMF for structural identification. In the next section, a brief explanation of this
methodology is provided.
Background - Error-domain model falsification

EDMF is a data-interpretationmethodology that was developed byGoulet and Smith
(2013) for identification tasks where modeling uncertainties are significant. It has been
shown to provide accurate identification compared with Bayesian model updating and
residual minimization due to its robustness to correlation assumptions and explicit
estimation of model bias based on engineering heuristics (Goulet and Smith 2013;
Pasquier and Smith 2015; Reuland et al. 2017a; Pai et al. 2018). It is compatible
with the assertion by Popper (1959) that models cannot be validated by data; they can
only be falsified. Parameter values are provided as input to the physics-based model,
which simulates structural response. Parameter instances that provide responses, g(θ),
incompatiblewithmeasurements, y, are rejected byEDMF. Parameter values that lead to
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model responses that are close to measurements are accepted into a candidate model set
(CMS). Probabilistically-defined thresholds are used to determine closeness between
model responses and measurements. Parameter instances within CMS are further
utilized to make predictions under other load scenarios to assist in asset management.

The criteria for closeness is determined using the uncertainty associated with the
model and measurements. Let εmod,q be the modeling uncertainty and εmeas,q the
measurement uncertainty, both at a measurement location q. The true response of the
structure, Rq, at a measurement location, q, is given by Eq. 4.

yq + εmeas,q = Rq = gq
(
θ∗

)
+ εmod,q, (4)

In Eq. 4, gq (θ∗) is the model response at a measurement location q for the real
values of the model parameters, θ∗. yq is the measured response of the structure at
measurement location q. Structural response, measured using sensors, yq, may be
affected from environmental and operation conditions as well. When these factors are
not explicitly included in the model, model predictions, gq (θ∗), may be biased from real
structural response. This bias should be included in the modeling uncertainty, εmod,q,
in addition to other sources of modeling uncertainty.

Rearranging the terms in Eq. 4, the residual between model response, gq(θ) and
measurement, yq, is equal to a combination of uncertainties, εmeas,q and εmod,q at
location q, as shown by Eq. 5.

gq
(
θ∗

)
− yq = εmeas,q − εmod,q, (5)

The criteria for compatibility are thresholds, Thigh,q and Tlow,q, which are calculated
using the combined uncertainty. To calculate these thresholds, in line with engineering
practice, first a target reliability of identification, φ, is chosen. Based on this φ, the
thresholds Thigh,q and Tlow,q, are computed using Eq. 6.

φ1/m =

∫ Thigh,q

Tlow,q

fUc,q

(
ε c,q

)
dε c,q. (6)

In Eq. 6, fUc, i

(
ε c,q

)
is the PDF of combined uncertainty at measurement location q

and φ is the target reliability of identification. Thresholds, Thigh,q and Tlow,q, correspond
to the shortest interval providing a probability equal to target reliability, φ. In Eq. 6,
the term 1/m is the Šidák correction (Šidák 1967), which accounts for m independent
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measurements used in identification ofmodel parameters. The Šidák correction controls
the error rate such that the possibility of rejecting the true parameter values is lower
than 1 − φ.

Residuals between model responses, g(θ), and measurements, y, are compared
with the thresholds, Tlow,q and Thigh,q. If this residual between model response and
measurements lies within the thresholds for all measurement locations, then the model
instance is accepted. This criteria for falsification is shown in Eq. 7.

Tlow,q ≤ gq (θ) − yq ≤ Thigh,q q ∈ {1...m} . (7)

If predictions for a model instance, θi, does not satisfy Eq. 7 for any measurement
location, then that model instance is falsified. All candidate model instances are con-
sidered equally likely and thus, assigned a uniform probability density (Goulet 2012;
Pasquier 2015; Goulet and Smith 2013; Pasquier and Smith 2015). EDMF is tradition-
ally carried out using grid sampling. In grid sampling, samples from prior distribution
of model parameters, θ, are drawn. If ns samples are drawn from the prior distribution
of each parameter, then all possible combinations of these samples constitute a grid,
which is called the initial model set (IMS). For ns samples drawn from np parameters,
the total number of model instances in IMS is nnp

s . Therefore, increase in number of pa-
rameters to be identified (np) exponentially increases the computational cost associated
with identification.

Candidate models identified are used for making further predictions using the
physics-based model with reduced parametric uncertainty (Pasquier and Smith 2015).
The EDMF methodology has been applied to more than 20 full-scale systems since
1998 (Smith 2016). Recent applications include: model identification (Pai et al. 2018);
leak detection in water supply (Moser et al. 2015); wind simulation (Vernay et al. 2015);
fatigue life evaluation (Pasquier et al. 2014; Pasquier et al. 2016; Pai and Smith 2017);
measurement-system design (Papadopoulou et al. 2015; Papadopoulou et al. 2016);
post-earthquake assessment (Reuland et al. 2019); damage localization in tensegrity
structures (Sychterz and Smith 2018); and occupant localization (Reuland et al. 2017b;
Drira et al. 2019).

In order to compare structural identification results obtained with different model
classes and data-interpretation methodologies a validation strategy is required. Pai et al.
(2019) suggested the use of leave-one-out cross-validation strategy to assess accuracy
and precision of structural identification. For the purpose of this paper, accuracy
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indicates whether or not solutions obtained using structural identification are correct.
Accuracy of solutions depends upon factors such as the selection of an appropriate
model class for identification, accurate estimation of uncertainties affecting the task of
identification and detection of outlier measurements. While this paper focuses on a
method for selecting an appropriate model class for identification, other aspects such as
estimation of uncertainties (Goulet et al. 2010), outlier detection (Proverbio et al. 2018)
etc. have been studied by other researchers for EDMF applications.

Precision, on the other hand, is a measure of variability (uncertainty) in solutions.
While accuracy is a necessary condition, precision of structural identification depends
upon the model class, the uncertainty associated with the model and measurements and
the information gained from measurements. Therefore, the precision metric is a useful
measure for assessing the identifiability of a model classes after structural identification
using EDMF.

In leave-one-out cross validation, observation from one sensor is omitted and struc-
tural identification is carried out using all remaining measurements. Updated model-
parameter values, θCMS are then used to predict the model response at the omitted
sensor. If the omitted measurement, y j lies within the updated bounds of model predic-
tions, g j (θCMS), then structural identification is deemed to be accurate for that sensor
location. This procedure is repeated by omitting each sensor separately in order to
assess accuracy at all measurement locations. Structural identification carried out is
accurate when the condition shown in Eq. 8 is satisfied.

min
(
g j (θCMS)

)
≤ y j ≤ max

(
g j (θCMS)

)
∀ j ∈ [1, ...,m] (8)

In Eq. 8, min
(
g j (θCMS)

)
and max

(
g j (θCMS)

)
are the bounds of updated model-

predictions. The criteria for accuracy is a check whether the bounds of updated model-
predictions distribution includes the measurement value, y j . While Eq. 8 presents the
condition for accuracy, it does not provide a metric to assess the information gained
from measurements, which is precision.

Precision, using leave-one-out cross-validation, is evaluated by comparing the re-
duction in prediction-error range after identification. Prediction error is the difference
between measurement and the predicted range of model response at a measurement
location. Let j be the measurement omitted during structural identification. Taking
into account the prior variability in model parameters, the range for model-prediction
error at sensor location j is R j . After including information from measurements, the
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model parameter values are updated to reduce their variability. Utilizing these update
parameter values, the range for model-prediction error at sensor location j is R′′ j . Sim-
ilar values of prediction-error ranges before and after identification are calculated by
omitting other measurements. Precision, ϕ, calculated as shown in Eq. 9.

ϕ =

(
µR − µR′′

)
µR

(9)

In Eq. 9, µR and µR′′ are the mean values of prediction-error ranges, before and
after structural identification (R j and R′′ j for j ∈ [1, ...,m]). Precision, ϕ, represents
the proportion of reduction in prediction error after model updating. Precision, ϕ
varies from 0 to 1. Precision, ϕ, equal to zero implies no gain in information from
model updating, while ϕ equal to one implies perfect model updating wherein updated
parameter distributions have zero variability. Therefore, precision is a metric that
helps assess information gained from measurements in identifying a model class, i.e.,
identifiability. In this way, using leave-one-out cross-validation, accuracy and precision
of structural identification can be evaluated to enable comparisons between model
classes and data-interpretationmethodologies. In the next section, model-class selection
and EDMF is evaluated on a full-scale case study.

CASE STUDY: POWDER MILL BRIDGE
Structure description

The model-based clustering methodology explained earlier is compared with tradi-
tional sensitivity analysis for structural identification using EDMF. The case-study used
for comparison is the Powder Mill Bridge (PMB) in USA. The PMB, shown in Figure
7, is a steel-concrete bridge located over Ware river near the Powder Mill pond in Barre,
Massachusetts, USA. The bridge was built in 2009 and connects the state highway 122
with a depot road that services mainly truck traffic for a waste management site. Using
the PMB case-study, the model-class selection methodology described in this paper
is compared with traditional sensitivity analysis for structural identification using two
sensor configurations.

PMB, shown in Figure 7, is a three-span continuous steel-girder bridge in composite
action with a reinforced concrete deck. A schematic drawing of this bridge is shown in
Figure 8. The bridge has a total span of 47m. The reinforced concrete deck is supported
by six I-section steel girders.
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(a) Truck over PMB (b) Side view of PMB

Fig. 7. Powder Mill Bridge (PMB) located in Massachusetts, USA.

The bridge has been instrumented to better understand its behavior and subsequently
assess its remaining fatigue life (RFL). Prediction of RFL requires estimates of future
traffic on the bridge related to loading and frequency. Damage incurred at a critical detail
on the bridge for each cycle of loading can be evaluated with physics-based modeling.
Cumulating this damage over possible future loads leads to prediction of the RFL. As
knowledge of traffic on bridges is not typically available, AASHTO (2016) provides
design loads and frequencies of traffic for fatigue life assessments.

Interpreting monitoring data using EDMF helps improve understanding of structural
behavior of the bridge through updating a physics-based model of the bridge. This
physics-based model can then used to predict response of the bridge to design loads as
specified in AASHTO (2016) for fatigue assessments. Using the response of the bridge,
the fatigue damage incurred by the bridge at the critical detail is assessed and used to
predict the RFL of the bridge.
Load test and monitoring

The bridge response to truck loading is measured with strain gauges during a load
test. The sensors used are wired foil strain gauges, type KFG-5-120-C1-11L3M3R from
the manufacturer Omega (Omega ). The position of the load on the bridge, transversally,
is shown in Figure 8 (b). The strain gauges on the bridge are located on the bottom
flange of the steel girders. Location of all strain gauges is shown in Figure 9 (a). In
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Strain gauge locations
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Fig. 8. Schematic drawing of Powder Mill Bridge. All dimensions are in millimeters
(mm).

total, 20 strain gauges record structural response during the load test. This sensor
configuration with 20 measurements is referred to as sensor configuration one (SC-I).
To evaluate the utility of model-based clustering for model-class selection, a second
sensor configuration, SC-II, which is a subset of SC-I, see Figure 9 (a), is utilized for
structural identification. This sensor configuration is shown in 9 (b).

During the load test, a truck weighing 33 tonnes is driven across the bridge slowly
(1.5 km/hr to 3 km/hr) to avoid dynamic amplification effects. Data recorded in the
sensors is stored in data loggers installed on the bridge, which are shown in the inset of
Figure 7 (b). Strain from all gauges recorded when the truck position leads to maximum
strain in sensor SG13 (see Figure 9) is utilized for identification.
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Fig. 9. Sensor configurations, (a) Sensor configuration SC-I (20 sensors), (b) Sensor
configuration SC-II (5 sensors)

Model development
The strain measurements are interpreted using a finite element (FE) model devel-

oped in ANSYS (ANSYS 2012). In the FE model, the concrete deck is modeled as
homogeneous using SHELL182 elements. The sidewalk on the bridge and the railings
contribute to bridge structural behavior (Sanayei et al. 2011). However, stiffness of the
connection between the concrete deck and railings is not known. Thus, the deck slab
thickness and thickness of the deck and railing at the edge of the bridge are parame-
terized in the FE model. The steel girders are modeled using SHELL182 elements.
The composite action between the steel girders and concrete deck (in transversal and
longitudinal directions) are modeled using zero-length spring elements (COMBIN14).
The end supports of the bridge (abutments A and D) and intermediate supports (piers
support B and C) are modeled with zero-length spring elements (COMBIN14) with
parameterized stiffness in longitudinal and vertical directions. Springs of different sup-
ports are attributed different stiffness values. Table 1 shows the parameters included
in the FE model and the prior distributions assumed for these parameters based on
engineering heuristics.

Not all parameters shown inTable 1 have significant impact on the structural response
at sensor locations. Only parameters that govern structural response at sensor locations
can be identified using measurements. In the next few sections, traditional sensitivity
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Table 1. Parametric sources of uncertainty in the model and their range

Index Parameter Variable Range
1 Modulus of elasticity of concrete (GPa) Ec 20-55
2 Modulus of elasticity of steel (GPa) Es 195-210
3 Thickness of deck slab (mm) Hd 200-210
4 Height of concrete slab, sidewalk and railing (mm) Hr 300-500
5 Deck-girder connection stiffness, transversal (log N/mm) Kdg,x 2-6
6 Deck-girder connection stiffness, longitudinal (log N/mm) Kdg,z 4-10
7 Vertical stiffness of abutment A (log N/mm) K1,y 4-7
8 Horizontal stiffness of abutment A (log N/mm) K1,z 2-5
9 Vertical stiffness of pier B (log N/mm) K2,y 4-7
10 Horizontal stiffness pier B (log N/mm) K2,z 2-5
11 Vertical stiffness of pier C (log N/mm) K3,y 4-7
12 Horizontal stiffness of pier C (log N/mm) K3,z 2-5
13 Vertical stiffness of abutment D (log N/mm) K4,y 4-7
14 Horizontal stiffness of abutment D (log N/mm) K4,z 2-5

analysis and model-based clustering are used to select a subset of parameters listed in
Table 1 for structural identification using EDMF.
Model-class selection using sensitivity analysis

Traditionally, sensitivity analysis is conducted using linear regression. Dataset,
D, is simulated using the FE model of the bridge, while accounting for variability in
model parameter values as listed in Table 1. Using Latin-Hypercube sampling, 300
combinations of model-parameter values are generated to provide as input to the FE
model of the bridge. Simulations using the FE model result in responses at the sensor
locations corresponding to configurations, SC-I and SC-II. These simulations include
uncertainty only from model parameters. The linear-regression model developed for
each sensor location provides the sensitivity of model response to various model-
parameter combinations. Sets of parameters that govern response may differ between
sensor locations. The sensitivities obtained are generally averaged over all sensor
locations. An arbitrary cut-off for the average relative importance, for instance 5%, is
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then used to select parameters to be included in the model class for identification.
The averaged importance of model parameters over all sensor locations in sensor

configuration, SC-I, is shown in Figure 10 (a). A cut-off of 5% is utilized and parameters
whose importance is greater than 5% are included in the model class for identification.
The parameters included in the model class for identification based on traditional sen-
sitivity analysis for sensor configuration, SC-I, are Ec, Es, Hr , Kdg,z, K2,y and K3,y (see
Table 1). Similarly, the parameters to be included in the model class for identification
for sensor configuration, SC-II, are Ec, Es, Hr , Kdg,z, K2,y and K3,y, as shown in Figure
10 (b). A change in sensor configuration, passing from 20 to 5 sensors, does not change
the model class and has little impact on the sensitivities of model responses to model
parameters. This implies that the six unknown parameters may be identified using 5
measurements from sensor configuration SC-II.
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(a) Sensor configuration SCI (b) Sensor configuration SCII

Fig. 10. Traditional sensitivity analysis using linear regression. (a) For sensor con-
figuration, SC I (see Figure 9 (a)). The sensitivities have been averaged over the 20
sensors. (b) For sensor configuration, SC II (see Figure 9 (b)). The sensitivities have
been averaged over the 5 sensors.

Model-class selection using the model-based clustering method
Instead of evaluating the importance of model parameters to model response at

each sensor location, in model-based clustering method, an understanding of structural
behavior is obtained with k-means clustering. The number of clusters in the dataset is
evaluated using the gap method. In the gap method, the number of clusters is evaluated
by comparing the probability that there are r clusters in the dataset compared with no

23



clusters in the dataset. The value of r is varied for the case study from 1 to 20 for
model-class selection using both sensor configurations shown in Figure 9. For sensor
configuration, SC-I, the optimal number of clusters is determined based on gap method
to be 17, while for sensor configuration, SC-II, the optimal number clusters is estimated
to be 10. These clusters represent significant changes in response of the model due to
changes in input parameter values. In the next step of model-class selection, parameters
that are important and cause these changes in model response are evaluated using
classification.

Parameters that help distinguish between clusters that represent variations in struc-
tural behavior are evaluated using forward variable search with SVM classification as
described in the previous section. For this case study, the SVM classifier is trained using
a linear kernel after comparing classification error performance with other kernel types
such as Gaussian and polynomial kernels. The hyper-parameters related to this kernel
have been tuned using Bayesian optimization with a maximum of 30 iterations. The loss
value (error) utilized for optimization is calculated with k-fold cross-validation. For this
case study, 5 folds have been used to calculate the error. Tuning of the hyper-parameters
leads to an optimal SVM model at each iteration within forward-variable selection.
Subsequently, parameters are added to the SVM model to obtain a trade-off curve that
shows the relationship between classification error and parameters within the model
class. The trade-off curves obtained to assist in parameter selection for identification
for sensor configurations, SC-I and SC-II, are shown in Figure 11.
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In Figure 11 (a), the trade-off curve obtained for model-class selection using re-
sponses at sensor locations in SC-I is shown. The trade-off curve suggests the optimal
model class includes 8 parameters, which is a computationally expensive model class. It
can be observed that the gain in increasing model class size from 5 to 8 is not significant
(less than 5% reduction in classification error). Therefore, an engineering near-optimal
choice of model class for structural identification is the one with five parameters, namely
Ec, Hr , Kdg,z, K2,y and K3,y (see Table 1). Similarly, for sensor configuration SC-II,
a trade-off curve is obtained that helps select an engineering optimal model class with
four parameters. These four parameters are Ec, Kdg,z, K2,y and K3,y (see Table 1).

For each of the two sensor configurations, SC-I and SC-II, two model classes, one
from traditional sensitivity analysis and another from model-based clustering method
are determined for identification using EDMF. These model classes are listed in Table
2.

Table 2. Model classes selected using linear regression and model-based clustering for
sensor configurations, SC I and SC II (see Figure 9). Each model class represents a new
case for structural identification using EDMF.

Case SC Method Parameters included
C1 I Linear regression Ec, Es, Hr , Kdg,z, K2,y, K3,y
C2 I Model-based clustering Ec, Hr , Kdg,z, K2,y, K3,y
C3 II Linear regression Ec, Es, Hr , Kdg,z, K2,y, K3,y
C4 II Model-based clustering Ec, Kdg,z, K2,y, K3,y

Structural Identification
In Table 2, four cases of identification for PMB are shown. Utilizing a FE model to

make the comparison between these cases, while feasible, is computationally expensive.
Therefore, surrogate models are developed to replace the FE model, for the purpose of
reducing computational cost in comparing precision of identification using the model
classes shown in Table 2. Surrogate models, in this context, are regression models
trained to simulate behavior of complex physics-based models. Good surrogate models
replicate behavior of physics-based models within the domain of training data and
quickly provide simulation results.
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The surrogate-modeling strategy adopted for the PMB is Gaussian-process regres-
sion (Worden and Cross 2018) with an exponential kernel. Using the FE model,
Gaussian-process regression models are developed to emulate structural responses at
sensor locations. For each model class, as described in Table 2, a training dataset and
validation dataset are simulated using the FE model. In the datasets, samples of param-
eters in the model class are drawn based on the prior parameter ranges. These samples
are provided as inputs to the FE model to predict response at sensor locations. With the
structural response as output and the parameters as input, Gaussian-process regression
models are trained for each sensor location for all model classes. The error between the
surrogate models and FE model response is quantified with the help of the validation
dataset. The error obtained from validation is reported in Table 3. The choice of using
Gaussian-process regression with an exponential kernel to develop the surrogate mod-
els was made after comparing the surrogate-modeling error with those obtained using
other surrogate-modeling strategies such as support-vector regression (Chou and Pham
2017), neural networks (Chang et al. 2000) and linear regression (Friedman 1991).

The uncertainties associated with identification are shown in Table 3. Measurement
uncertainty is estimated based on knowledge of sensors. Also, during the load-test, two
strain gauges were placed close to one-another at all sensor locations shown in Figure 9
(a). Ideally, pairs of strain gauges should record the same reading due to their proximity.
However, due to sensor noise and imperfections in sensor placement, the recordings are
not necessarily the same. Accounting for this variability helps estimate the uncertainty
associated with measurements. As two sensors in close proximity provide correlated
and redundant information of structural behavior, only one of the two sensors is used
for identification.

Load uncertainty includes uncertainty from magnitude of the truck load and un-
certainty in its position on the bridge. This uncertainty has been estimated as uniform
probability distribution whose bounds are calculated by propagating variability in load-
ing conditions to uncertainty structural response at sensor locations. Model bias from
simplifications is estimated to be larger close to supports than at mid-span of the bridge
as assumptions made in modeling the supports and deck affect the sensors close to them
to a larger magnitude. Sanayei et al. (2011) found that the deck close to supports may
have hairline cracks in concrete in the negative bending moment zone, thus changing
the moment of inertia close to the supports, which has not been included in the model
developed for PMB in this paper. This is further justification for increasing modeling
uncertainty at supports. Due to lack of knowledge of distributions related to modeling
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uncertainty and bias, this uncertainty is represented as uniform probability distributions.
Surrogate modeling uncertainty is calculated using hold-out cross-validation, i.e., by
comparing predictions of Gaussian process regression models with predictions obtained
using the FE model of the bridge for input data used during training.

Table 3. Uncertainty sources and their distribution (%). Uncertainty from sources other
than measurement are quantified as uniform probability distributions.

Source Distribution
Measurement N (0, 5)
Load U (-5, 5)
Model bias (at sensors near supports) U (-15, 5)
Model bias (at sensor near mid-span) U (-7, 5)
Surrogate model uncertainty U(-1,1)

Apart from the uncertainties mentioned in Table 3, parameters not included in the
model class for identification contribute to the combined uncertainty. This uncertainty
is called as the secondary-parameter uncertainty. This uncertainty is quantified as a
uniform random variable. Bounds of this uniform distribution are calculated by eval-
uating variability in structural response at sensor locations when secondary-parameter
values are varied. The secondary-parameter uncertainty associated with each model
class is shown in Table 4. Uncertainties in Table 3 and Table 4 are quantified as uniform
due to lack of complete knowledge of their distributions. As bounds of the distribution
can be estimated, based on the principle of maximum entropy (Jaynes 1957), uniform
distributions are appropriate for quantification. Uncertainty from all sources mentioned
in Table 3 and 4 are combined together to determine falsification thresholds using Eq.
6.

Uncertainty from multiple sources (see Table 3 and Table 4) are combined using
Monte Carlo sampling to obtain the combined uncertainty PDF. Using this combined
uncertainty PDF, the falsification thresholds are determined using Eq. 6. The target
reliability of identification used for EDMF in this paper is 0.95. As uncertainty is not
the same for the four model classes (see Table 2 and Table 4), the falsification thresholds
change as well. For each case of identification, an initial population of model instances
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Table 4. Secondary-parameter uncertainty (µε) for the four model classes shown in
Table 2. Uncertainty from secondary parameters is estimated to be uniform (U), whose
bounds are provided in the table.

Model class Distribution
C1 U(-17, 20)
C2 U(-25, 10)
C3 U(-17, 20)
C4 U(-25, 10)

is generated. 5 equidistant samples are drawn from the prior distribution of each model
parameter to generate the initial grid of model instances. Thus, the number of model
instances in the initial grid for identification cases C1 to C4 are 15625 (6 parameters,
56 model instances), 3125 (5 parameters, 55 model instances), 15625 (6 parameters, 56
model instances) and 625 (4 parameters, 54 model instances).

The population of initial model instances are evaluated with EDMF using falsifica-
tion thresholds determined for each identification case. Candidate model instances are
used for further predictions, such as RFL. The bounds of model parameters obtained
with EDMF are shown in Table 5. Prior model-parameter ranges are also listed for
comparison.

Table 5. Range of updated model parameters for the four cases (see Table 2)

Case Ec Es Hr Kdg,z K2,y K3,y
(GPa) (GPa) (mm) (log N/mm) (log N/mm) (log N/mm)

Prior 20-55 195-210 300-500 4-10 4-7 4-7
C1 46.25-55 195-210 350-500 5.5-10 4.75-7 4.75-7
C2 46.25-55 300-500 5.5-10 4.75-7 4-7
C3 20-55 195-210 300-500 4-10 4-7 4-7
C4 20-55 5.5-10 4-7 4-7
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In Table 5, the updated parameter ranges are similar to the prior distribution of
model parameters. With EDMF, the bounds do not adequately represent the updated
information acquired. Many model instances within these bounds are falsified as shown
in Figure 12. This figure shows the candidate and falsified model instances obtained for
identification case C4. In the parallel axes plot, the first four vertical axes correspond
to the model parameters and the next five correspond to the predictions at the five
sensor locations utilized in identification. Each value on the first four vertical axis
represent possible model parameter values. Thus, a line connecting values on the
first four parallel axes represents a model parameter instance, which is provided as an
input to surrogate models. The predictions obtained from the surrogate models for
that model-parameter instance correspond to values on the next five vertical axes, one
for each sensor. Therefore, a model instance and its predictions at sensor locations is
represented by a line connecting values on vertical axis 1 to 9.

Min

Mean

Max

Ec kdg,z k2,y k3,y εS1 εS6 εS11 εS16 εS5

Candidate model instances

Falsified model instances

Fig. 12. Parallel-axes plot showing candidate and falsified model instances obtained by
model falsification for case C4 (see Table 2).
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Before employing the candidate models obtained using EDMF for further predic-
tions, leave-one-out cross-validation is conducted to assess accuracy and precision of
identification. As an example, the estimation of accuracy for case C4 is shown in Figure
13.
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Fig. 13. Leave one out cross-validation prediction for case C4 (see Table 2).

In Figure 13, updated prediction bounds include the measured strain response for all
five sensor locations, which suggests identification using EDMF is accurate. Precision
of identification is estimated using Eq. 9. Accuracy of structural identification is
determined using the condition shown in Eq. 8. Results of leave-one-out cross-
validation obtained for all cases of identification for PMB are summarised in Table 6.
In Table 6, a checkmark for accuracy indicates that structural identification was deemed
to be accurate at all sensor locations using Eq. 8.

In Table 6, precision of identification for C1 is higher than for C2. Thus, the
model class obtained using traditional sensitivity analysis provides more precise model
updating than the model class obtained using model-based clustering. However, this
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Table 6. Accuracy and precision of structural identification for the four cases of PMB
(see Table 2).

Case Accuracy Precision Computational cost
( relative to case C4)

Comments

C1 D 0.54 25 Optimal
C2 D 0.43 5 Engineering choice
C3 D 0.29 25 Inefficient
C4 D 0.29 1 Fastest

improvement in precision is obtained with a more complex model class that requires
four times more computation time. Using the model-based clustering approach, as
shown in Figure 11 (a), an "engineering" near-optimal model class, C2, is chosen to
reduce computational cost. Thus, themodel class obtained usingmodel-based clustering
method, while less precise, is more computationally efficient.

For sensor configuration SC-II, which is an irregular configuration of sensors, model
class obtained with model-based clustering method, C4, performs as well as the model
class obtained using traditional sensitivity analysis, C3. In case C4, identification
involves four parameters instead of six, thus reducing computational cost by 96%
compared with case C3.

Utilizing trade-off curves as shown in Figure 6 to select engineering near-optimal
model classes significantly reduces computational cost, with little to no loss in precision
of identification. Moreover, the use of leave-one–out cross validation helps assess
accuracy of structural identification. As shown in Table 6, structural identification using
EDMF is accurate with all four model classes. A comparison of precision of structural
identification provides an a-posteriori estimate of the utility of chosen model-class for
structural identification.
Remaining fatigue life prediction

Using the CMS obtained for the four cases of structural identification, reserve
capacity of PMB is predicted with respect to its RFL. The critical detail evaluated for
fatigue is a welded connection located on girder G2, close to north pier (near sensor S10,
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see Figure 9), shown in Figure 8 (a). The category of this detail is ’C’, which has a detail
constant, A, of 44 ksi3. This detail has also been evaluated by Saberi et al. (2016). The
vehicular traffic on this bridge is mostly comprised of trucks, as the bridge connects the
highway to a depot for waste management. Initial design for this bridge did not account
for such heavy-load traffic and thus the fatigue life of this bridge has been investigated
with in-service measurements as well. Based on in-service measurements carried out
on the bridge, the average daily truck traffic (ADTT) is 255 vehicles/day. The RFL of
PMB is predicted using the updated knowledge of structural behavior using the equation
provided by AASHTO LFRD reference manual (AASHTO 2016), as shown in Eq. 10.

RFL =
log

[
RR ·A

365·n·ADTT ·[∆σ]3 · g(1 + g)a−1 + 1
]

log(1 + g)
(10)

In Eq. 10, RR is the resistance factor, which is equal to 1, A is the detail constant
and n is the number of cycles per truck passage, equal to 2. In the equation, g is the
annual growth of traffic in percentage, which is assumed to be 1% and a is the present
age of the bridge, which during measurements was 11 years. ∆σ in the equation is
the effective stress range. The effective stress range for PMB is computed using the
FE model with the fatigue load as specified by the design code. Based on Eq. 10, the
predictions of RFL are shown in Table 7. The reserve capacity in Table 7 is calculated
as the percentage of RFL above design value, which is 64 years.

Table 7. Remaining fatigue life prediction. Design value of RFL is 64 years. All
cases predict a reserve capacity of around 900%. Case C4, with information from
only 5 measurements, is able to provide this reserve capacity assessment with least
computational cost compared with other model classes utilized for identification.

Case RFL prediction
using EDMF (years) Reserve capacity (%) Computational cost

( relative to case C4)
C1 750-940 1070 25
C2 750-1050 950 5
C3 700-1000 915 25
C4 730-980 960 1
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The RFL calculated for PMB is at least 900 % above the design prediction. The
results obtained are comparable with observationsmade using in-servicemeasurements.
Saberi et al. (2016) predicted the RFL of PMB bridge without accounting for growth
in traffic as 1621 years. The in-service RFL prediction obtained is greater than the
predictions obtained using the FE model. This is due to the fact that the sensor used
to evaluate stress-ranges during in-service measurements is at a location further away
from the critical detail. At this location, the stress-ranges obtained are lower than at
the critical detail. Moreover, the RFL prediction with the FE model carried out for the
PMB uses the design truck for fatigue evaluation, while in-service strain measurements
take into account variability in truck weight, that may be lower than the design load.

The presence of significant RFL over design calculations is due to the conservative
nature of modeling during the design phase followed by conservative construction
practices. Over-design of civil infrastructure for safety is a common observation that
has been made. Moreover, the activity of construction as well as processing of raw
materials accounts for significant embodied energy in these over-designed structures.
Better decisions can be made regarding existing structures once the reserve capacity due
to over-design is quantified. Moreover, in the future, due to sustainability considerations
and lack of availability of raw materials, better design guidelines may be necessary to
minimize wastage of raw materials and reduce energy consumption. Model-based
data-interpretation improves knowledge of behavior of existing structures and provides
support in developing future design guidelines.

DISCUSSION
In this paper, a methodology for selecting parameters for structural identification

has been presented. In this methodology, forward-variable selection is used to select
parameters that are important to discriminate (classify) between forms of structural
behavior estimated with the help of clustering This procedure for parameter selection
for structural identification has been explained in detail in the methodology section of
the paper.

The objective of clustering is to determine changes in model behavior as model-
parameter values are varied. The data utilized for clustering is the model response
at sensor locations obtained using either static or dynamics simulations, depending
upon type of monitoring carried out. The model response is the same quantity that is
being measured at each sensor location. This quantity could be strains, displacements,
accelerations, mode shapes and natural frequencies. While clustering in this paper has
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been carried out using the gap method (Tibshirani et al. 2001), other methods such
as Hubert statistic (Halkidi et al. 2002), the Davis-Bouldin index (Davies and Bouldin
1979), score function index (Saitta et al. 2008) etc. may also be used.

Subsequent to clustering, in this paper, the parameters governing structural behavior
are determined using forward-variable selection. Each cluster determined using k-
means clustering is a different form of structural behavior. SVM classifiers are trained
to discriminate between these clusters of structural behavior. Parameters (or features)
that are most important in training this classifier are determined using forward-variable
search. There are other classifier methods such as neural networks, k-nearest neighbors,
logistic regression etc. that may also be employed to determine parameters governing
structural behavior. Depending upon the case study, some methodologies may be more
suitable than others. However, for parameter selection, the relative improvement in
classification accuracy betweenmodel classes is a more important criteria than selecting
the most appropriate strategy for classification. While making comparisons between
model classes, the classifier used must be trained appropriately including any hyper-
parameters and validated using either k-fold or hold-out validation methods. While
using these validation methods, the sensitivity of results to data chosen for validation
(such as number of folds in k-fold validation) should be evaluated. This is future work.

Also, the use of forward-variable selection to search for parameters that govern
structural behavior makes it important to train the SVM classifier. However, forward-
variable selection using classification error (Weston et al. 2001; Noori et al. 2011) is not
the only method available. Variable selection has also been carried out using parameter
weights (Guyon et al. 2002; Chang and Lin 2008) and backward searches (Balakrishnan
et al. 2008).Other methods such as AIC (Akaike 1974), BIC (Schwarz et al. 1978) and
regularization (Tikhonov 1963) may also be used for feature selection. Any of the
aforementioned methods and other sensitivity-based methods may be used for selecting
features of the classifier. The objective is to select select parameters that govern changes
in structural behavior and therefore may be identifiable using measurements.

In this paper, forward-variable selection has been employed for feature selection
because using this method a trade-off curve as shown in Figure 6 can be obtained.
Rather than providing a single model class as a solution, a trade-off curve that is
obtained using forward-variable selection provides engineers with support and options
in selecting an appropriate model class for structural identification. This ensures that
model-class selection is not carried out in an opaque manner, for example, using a
black-box. In this paper, for forward-variable selection, the parameters are chosen
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based on cross-validation error. Sensitivity-based methods could also be utilized to
provide necessary heuristics to guide the search during forward-variable selection.

An aspect of this methodology that has not been addressed is its suitability for
selecting an appropriate model class when measurements from multiple load-tests are
available. Further research to extend this model-class selection methodology for struc-
tural identification using multiple load-tests is needed. One solution is to carry out
feature selection for training the classifier with load tests as a feature that is already
included. A set of features is thus selected that are identifiable using data from all
load-tests.

Selection of model classes and subsequent structural identification are dependent
upon the choice of prior distribution of model parameters. Quantifying uncertainties
related to the model parameters requires prior understanding of the identification based
on physical principles (Papaioannou and Straub 2015) and in-service conditions of the
structure (Pasquier and Smith 2016). This is crucial for structural identification of civil
infrastructure as each structure is unique in its form, function and utility. Moreover,
using EDMF for structural identification efficiently falsifies wrong model classes when
prior distributions estimates are inaccurate (Pasquier and Smith 2016). Therefore,
any structural identification task has to be carried out in a transparent manner, taking
into account the engineering knowledge that is available of the particular structure.
Moreover, the task of structural identification should not be treated as a black box.

Use of data to enhance decision making helps ensure sustainable engineering. How-
ever, interpreting data in the presence of uncertainties is a complex and challenging task.
Assessing accuracy of solutions obtained using structural identification is critical to en-
sure that decisions are made based on correct predictions. In this paper, a leave-one-out
cross-validation method has been employed to assess accuracy of structural identifi-
cation. Assessment of accuracy using leave-one-out cross-validation is necessary but
not sufficient. More comprehensive strategies involving hold-out cross-validation are
necessary to assess accuracy of structural identification. Moreover, to implement these
strategies, measurement systems need to be designed so that the need for validation is
part of the criteria.

In this paper, a model-class selection methodology has been developed and used to
select an appropriate model class for structure identification of the Powder Mill Bridge.
This novel methodology, compared with traditional sensitivity analysis, helps select
identifiable and efficient model classes. Validation of structural identification results
obtained using EDMF has been carried out using leave-one-out cross-validation. Using
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leave-one-out cross-validation, the precision metric may also be calculated (see Eq. 9).
The precision metric enables a-posteriori assessment of model classes for structural
identification using EDMF.

After structural identification, using updated knowledge of structural behavior, the
minimum remaining fatigue life of a critical detail on the PMB is estimated to be 700
years. This remaining fatigue-life is at least 900 % greater than the life estimated at
the design stage. This shows that the bridge possesses significant reserve capacity
compared with design calculations. This adds to the growing body of evidence that
most structures are safe and possess significant reserve capacity above safety factors
(Pasquier et al. 2014; Pasquier et al. 2016; Pasquier 2015; Pai et al. 2018; Pai et al. 2019;
Brühwiler 2012) that may be utilized to enhance management actions when quantified
(Smith 2016). Appropriate selection of model-classes for structural identification, as
outlined in this paper, supports interpretation of monitoring data to improve knowledge
of structural behavior and enhance decision making.

In the future, the model-class selection methodology described in this paper may be
comparedwith other feature selectionmethodologies and other options for classification,
clustering and model-class search. Also, the methodology may be extended to account
for parameters important to predict the reserve capacity. Also, combining the task of
model-class selection with sensor placement in an iterative framework improves the
value of monitoring to support asset-management decision making.

CONCLUSION
In this paper, a new model-based clustering method for selecting parameters for

structural identification is presented along with its comparison with traditional sensi-
tivity analysis. The comparison has been made with application of both methods for
parameter selection to a full-scale case study. Conclusions are as follows:

• Themodel-based clusteringmethod helps select a computationallymore efficient
and identifiable model class compared with those obtained using traditional
sensitivity analysis. Utilizing the trade-off curve to select an engineering optimal
model class significantly reduces computational cost of two cases by 82% to
96%, with little to no loss in precision of identification.

• Use of leave-one-out cross-validation helps assess the accuracy of structural
identification and enables a-posteriori assessment of information gain based on
the precision metric. This helps compare the identifiability of model classes
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determined using traditional sensitivity analysis and model-based clustering
method.

• Subsequent to accurate structural identification, the reserve capacity of the bridge
with respect to its minimum remaining-fatigue life is at least 900 % beyond
design requirements. This result contributes to a growing body of evidence
that bridge structures are over-designed with respect to code prescriptions for
critical limit states. Model-based data interpretation helps quantify this over-
design (reserve capacity), thereby enabling engineers to make better decisions
regarding repair, retrofit and replacement actions.
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