
UNCERTAINTY QUANTIFICATION OF LOCALLY NONLINEAR
DYNAMICAL SYSTEMS USING NEURAL NETWORKS

A PREPRINT

Subhayan De
Aerospace Engieering Sciences

University of Colorado
Boulder, CO 80309

Subhayan.De@colorado.edu

August 12, 2020

ABSTRACT

Models are often given in terms of differential equations to represent physical systems. In the
presence of uncertainty, accurate prediction of the behavior of these systems using the models
requires understanding the effect of uncertainty in the response. In uncertainty quantification,
statistics such as mean and variance of the response of these physical systems are sought. To estimate
these statistics sampling-based methods like Monte Carlo often require many evaluations of the
models’ governing differential equations for multiple realizations of the uncertainty. However, for
large complex engineering systems, these methods become computationally burdensome as the
solution of the models’ governing differential equations for such systems is expensive. In structural
engineering, often an otherwise linear structure contains spatially local nonlinearities with uncertainty
present in them. A standard nonlinear solver for them with sampling-based methods for uncertainty
quantification incurs significant computational cost for estimating the statistics of the response. To
ease this computational burden of uncertainty quantification of large-scale locally nonlinear dynamical
systems, a method is proposed herein, which decomposes the response into two parts — response of a
nominal linear system and a corrective term. This corrective term is the response from a pseudoforce
that contains the nonlinearity and uncertainty information. In this paper, neural network, a recently
popular tool for universal function approximation in the scientific machine learning community due
to the advancement of computational capability as well as the availability of open-sourced packages
like PyTorch and TensorFlow is used to estimate the pseudoforce. Since only the nonlinear and
uncertain pseudoforce is modeled using the neural networks the same network can be used to predict
a different response of the system and hence no new network is required to train if the statistic of a
different response is sought. Three numerical examples are used to show that the proposed method
inexpensively produces accurate statistics of the response in the presence of uncertainty.

Keywords Uncertainty quantification · nonlinear dynamical systems · neural networks

1 Introduction

Models often given by a set of differential equations are used to characterize and express the behavior of a physical
system. In these models, the sources of uncertainty can be large, e.g., in material properties, geometry, and loading
conditions [1, 2, 3]. An accurate and robust prediction of the behavior of the physical system using these models
requires proper understanding of the effects of these multiple sources of uncertainty. Uncertainty quantification using the
standard Monte Carlo approach uses many evaluations of the physical system for different realizations of the uncertainty.
However, for large and complex structures, this approach soon becomes computationally expensive. Approaches using
polynomial chaos expansion [4, 5] and stochastic collocation [6, 7] develop polynomial approximations to reduce the
computational burden. However, with increasing dimension of the uncertain variables, the number of terms retained
in the expansion increases significantly. Similarly, Gaussian process regression [8] can be used to develop surrogate
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models [9] but its training cost increases cubically with the number of data points. The response surface approximations
[10, 11] build surrogate models utilizing random samples from the uncertainty but can lead to pitfalls in the presence
of a small training sample size [11]. Intelligent sampling techniques (e.g., Latin hypercube sampling [12], stratified
sampling [13]) can also be implemented for uncertainty quantification of the response of the physical system for a
relatively smaller number of realizations of the uncertainty variables. However, the use of surrogate models with
these sampling techniques is straightforward and will provide similar reduction in computational cost for all surrogate
modeling techniques.

In structural engineering, an otherwise linear structure often contains spatially local nonlinearities. For example, a
building superstructure or a bridge, which behaves linearly under most earthquake or wind excitation, may have a
nonlinear base isolation layer [14, 15, 16] or nonlinear tuned-mass damper attached to it [17]. Similarly, spacecrafts
often have nonlinear joints [18, 19, 20]. Another example of the presence of local nonlinearity in an otherwise
linear structure is contact friction in linear elastic structures [20, 21, 22, 23]. For such large-scale locally nonlinear
structures, unless an approximate linearization technique is used the computational cost of using a nonlinear solver for
uncertainty quantification becomes unbearable [17]. [24] used an approach for uncertainty quantification of locally
nonlinear dynamical systems that solves a nonlinear Volterra integral equation for multiple realizations of the uncertainty.
[25, 26, 17, 16] used this approach for Bayesian model selection and design under uncertainty of nonlinear structural
systems.

With the availability of highly optimized open-sourced codes like PyTorch [27] and TensorFlow [28] neural networks
have found recent popularity in the scientific community [29]. In these Scientific Machine Learning (SciML) applica-
tions, neural networks are used for modeling large complex systems for which response prediction is computationally
expensive. In [30, 31, 32, 33, 34], the neural networks are trained using a loss function that specifically incorporates the
error in the governing differential equations. Using this strategy, the trained networks match the prediction from the
governing equations while reducing the computational cost of solving them using methods like finite element. [35] used
time-depended recurrent neural networks to learn turbulence. Generative adversarial networks [36] are used in [37] to
generate high-resolution meteorological data from low-resolution images. Neural networks are also used for reduced
order modeling in [38, 39]. [40, 41] used neural networks for modeling turbulence by augmenting Reynolds Averaged
Navier-Stokes (RANS) models. [42] used neural networks for modeling flow near the wall in Large Eddy Simulation
(LES). For estimating structural response, [43, 44] used convolutional and recurrent neural networks. Multifidelity
datasets for response of physical systems are used for training neural networks in [45, 46, 47, 48]. Neural networks have
also been used for uncertainty quantification of physical systems. For example, [49] and [50] used dropout strategy [51]
for quantifying model as well as parametric uncertainty with neural networks, where some of the connections in the
networks are ignored with some probability. [52] used convolutional neural networks for developing surrogate models
for uncertainty propagation through random field. [53] used neural networks to reduce the uncertainty associated with
RANS models. [45] used different transfer learning techniques for uncertainty quantification of physical systems, when
training data from an inaccurate coarse model is abundant compared to training data from an accurate fine model.
Recently, [54] used this approach of training neural networks for reliability estimation.

In this paper, to reduce the computational burden associated with a nonlinear solver for a locally nonlinear dynamical
system under uncertainty the response is decomposed into two parts — a nominal linear response and response from a
pseudoforce that takes into account the nonlinearity and any uncertainty. The solution for the pseudoforce, however,
leads to a nonlinear Voletrra equation of the second kind written in nonstandard form [24]. Hence, to obtain the
response for these systems with nonlinearities encountered in structural engineering requires an iterative solver. In this
paper, instead, a neural network is trained to accurately predict the pseudoforce. The nominal linear response of the
dynamical system is then combined with the pseudoforce response to get an accurate estimate of the total response
of the system. Hence, this approach is different than the training method of using physics-informed loss function to
satisfy the governing equations. Instead, only a part of the response is modeled in this proposed approach keeping
the physics solution for rest of the structure. Further, the same trained network can be used even if the statistics of a
different response is sought as these networks model the pseudoforce and not the response directly. Three numerical
examples with increasing degrees of freedom (DOF) are used to illustrate the proposed approach. The first example
considers uncertainty in a two DOF spring-mass-damper model. The second example uses a 11-story 2-bay 100 DOF
building resting on a hysteretic base isolation layer with uncertain properties and subjected to a historic earthquake
excitation. A three-dimensional 1623 DOF building with three uncertain tuned mass dampers (TMDs) on its roof is
used in the third example. These three numerical examples show that once trained the neural networks used in the
proposed approach provide accurate prediction along with large computational gains in uncertainty quantification.
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2 Background

A brief background on uncertainty quantification using surrogate models is discussed in this section followed by a
description of the three different architectures for neural networks used in the numerical examples of this paper. The
training of these networks using generated datasets is discussed next.

2.1 Uncertainty Quantification

Dynamical systems are often represented by models given by differential equations. In the presence of uncertainty,
the system’s response Y(t; ξ) ∈ Rny depends on the external force w(t) ∈ Rnw as well as on the random variables
ξ ∈ Rnξ and can be given by

Y(t; ξ) =M(w(t), ξ), (1)
whereM : Rnw × Rnξ → Rny is the model of the dynamical system. As a result, Y(t; ξ) is also an uncertain quantity.
In this paper, the random variables ξ are described using known probability distributions. In uncertainty quantification,
statistics of the random variables Y(t; ξ) are sought. The most commonly used approach for estimating such statistics is
the Monte Carlo method [55]. For example, the mean and variance of Y(t; ξ) can be approximated using N realizations
of ξ as follows

Eξ[Y(t; ξ)] ≈ 1

N

N∑

i=1

Y(t; ξi);

Varξ[Yj(t; ξ)] ≈ 1

N − 1

N∑

i=1

(
Yj(t; ξi)−

1

N

N∑

k=1

Yj(t; ξk)

)2

; j = 1, . . . , ny,

(2)

where the modelM may need to be evaluated for {ξi}Ni=1 for a large N increasing the computational cost. Surrogate
models can be developed in such cases [56], which are computationally inexpensive and can be used in (2). In this
paper, neural networks are used to replace some parts of the modelM while satisfying the governing equations. Note
that an intelligent sampling technique can be used instead of (2). However, the focus of this paper is to develop a
computationally advantageous strategy for the calculation of Y(t; ξ). Same strategy can be applied in conjunction with
any other sampling techniques. Hence, the study of different intelligent sampling methods is beyond the scope of this
work.

2.2 Neural Networks

An artificial neural network, or simply a neural network is widely used for approximating functional relationship such
as (1). With recent advancement in the computing power large neural networks are possible to train that can learn the
behavior of complex systems. Among many available architectures for the networks the feed-forward, residual, and
convolutional neural networks are used in this paper. They are briefly described next.

2.2.1 Feed-forward Neural Network (FNN)

The feed-forward neural network (FNN) or multilayer perceptron (MLP) [57], which consists of an input layer, one or
more hidden layers, and an output layer, is commonly used in scientific machine learning applications [29]. Figure 1
shows a schematic of such network, where the network has NH number of hidden layers. Each of these hidden layers
has m number of neurons. However, in general, the number of neurons in each layer can be different. Inside each
neuron, an affine transformation followed by a nonlinear activation function is applied to the input. Hence, given an
input v a neural network approximates the output z by

z ≈MNN

(
v; {Wi}NH

i=0, {bi}NH
i=0

)

= WT
0 σNH

(. . . (σ1(WT
1 x + b1)) . . . ) + b0,

(3)

where NH is the number of hidden layers; the weights Wi and the biases bi for i = 1, . . . , NH are the parameters for
the ith hidden layer that needs to be tuned using the training dataset; W0 and b0 are the parameters for the output layer;
and σi(·) is a nonlinear activation function for the ith hidden layer. There are many choices available for the activation
function. For example, the output from a hyperbolic tangent and sigmoid activation functions are, respectively, given by

σ
tanh

(z) = tanh (z);

σ
sigm

(z) =
1

1 + e−z
.

(4)
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The output from two other popular activation functions, namely, Rectified Linear Unit (ReLU) and Exponential Linear
Unit (ELU) are given by

σ
ReLU

(z) = max(0, z);

σELU(z) =

{
z for z > 0,

α(ez − 1) for z ≤ 0,

(5)

where α is a positive parameter. In this paper, the activation functions are chosen from preliminary runs to produce the
smallest validation errors defined in Section 3.2. Figure 2 compares the outputs of these activation functions.
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Figure 2: Feed-forward neural network architecture with NH hidden layers. Each of these hidden layers contains m
neurons.
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Figure 3: A schematic of the residual neural network with residual connections shown using curved arrows. The
network shown here has NH number of hidden layers, where each of these layers has m neurons.
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Figure 1: Feed-forward Neural Network (FNN) architecture with NH hidden layers. Each of these hidden layers
contains m neurons.
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The output from two other popular activation functions, namely, Rectified Linear Unit (ReLU) and Exponential Linear
Unit (ELU) are given by

�
ReLU

(z) = max(0, z);

�
ELU

(z) =

⇢
z for z > 0,

↵(ez � 1) for z  0,

(5)

where ↵ is a positive parameter. In this paper, the activation functions are chosen from preliminary runs to produce the
smallest validation errors defined in Section 3.2. Figure 2 compares the outputs of these activation functions.
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Another popular neural network architecture is tried herein, where the ith hidden layer models the residual error in the
output from the previous layer as shown in Figure 3 with curved arrows. This architecture is known as the residual
neural network or ResNet. Hence, the output of a hidden layer that is used to model the residual after (i� 1)th layer is
given by [55]

zi = �i(W
T
i zi�1 + bi) + zi�1. (6)

A short-cut mapping [55] must be used if the dimensions of zi and zi�1 are different.
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Figure 2: Four different activation functions tested in this paper.

Another popular neural network architecture is tried herein, where the ith hidden layer models the residual error in the
output from the previous layer as shown in Figure 3 with curved arrows. This architecture is known as the residual
neural network or ResNet. Hence, the output of a hidden layer that is used to model the residual after (i− 1)th layer is
given by [58]

zi = σi(W
T
i zi−1 + bi) + zi−1. (6)

A short-cut mapping [58] must be used if the dimensions of zi and zi−1 are different.
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Figure 3: A schematic of the residual neural network with residual connections shown using curved arrows. The
network shown here has NH number of hidden layers, where each of these layers has m neurons.
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Figure 3: A schematic of the Residual Neural Network (ResNet) with residual connections shown using curved arrows.
The network here has NH number of hidden layers, where each of these layers has m neurons.
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Figure 4: A schematic of the convolutional neural network (CNN), where multiple convolutional layers are followed
by few fully-connected layers to produce the output z given the input v.

Figures/CNN_1layer.png

Figure 5: A single layer of CNN.

is used as the cost function for the optimization problem. A regularization term is sometimes added to obtain sparsely
connected network or satisfy some physics-driven governing equations. Stochastic gradient descent (SGD) and its
variants are commonly used to update the parameters during the optimization at kth step as folows

✓(k+1)  ✓(k) � ⌘k
@J

@✓(k)
, (12)

where ⌘k is the step size, also known as the learning rate, at kth iteration and back propagation is used to estimate
the derivatives @J

@p(k) [19, 47]. In this paper, a modified version of this standard SGD, namely, the Adaptive Moment
(Adam) [48–50] is used. In this algorithm historical information of the gradients is used to retard large movements in
the direction of large historical gradients. A brief description of the Adam algorithm is provided in Appendix A.

Remark: The universal approximation theorem [51–53, 28] guarantees that MLP with at least one hidden layer and
enough hidden units with differentiable activation functions is able to approximate any continuous function up to
a given accuracy level. In practice, the limitations are two fold — (i) the training algorithm used to optimize the
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Figure 6: A schematic of the convolution procedure implemented in CNN.
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Figure 4: A schematic of the convolution procedure implemented in CNN (see (8)).

2.2.2 Convolutional Neural Network (CNN)

The convolutional neural network (CNN) has been developed with inspiration from the vision system at the primary
visual cortex of human brain [57]. In CNN, the convolution operation is performed for a two-dimensional input v and a
kernel Ψ as follows

sij =
∑

q

∑

r

vi−q,j−rΨqr, (7)

where s is the two-dimensional output from a convolutional layer. During training of the CNN, the kernel Ψ is learned.
Note that, zero-padding is required if the output s and input v are of the same length. Pytorch [27], which is used for
the numerical examples herein, however, performs the cross-correlation instead of the convolution given by

sij =
∑

q

∑

r

vi+q,j+rΨqr (8)

for a two-dimensional input v, which uses a mirror image of the kernel in (7). Figure 4 illustrates the working of this
procedure, where blue shaded elements of v are multiplied by Ψ to get the red shaded element in s. A maxpooling
operation often follows a convolution operation in which the output from the convolution layer is downsampled using
a max function over a window. However, in time histories if the length of both input and output remains same the
maxpooling has limited use [43] and can be omitted. These steps inside a single convolutional layer are shown in Figure
5. Note that a kernel with size smaller than the size of the input produces sparse connectivity in the network. This
creates a sharing of the parameters and helps in avoiding over-fitting. A typical implementation of the CNN often uses a
few convolutional layers followed by feed-forward layers as shown in Figure 6. Note that for N input of images to the
CNN the input has a size N × C ×H ×W , where C is the number of channels (e.g., R-G-B); H is the height; and W
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Figure 5: A typical single layer of CNN includes the convolution (see (7)) or cross-correlation operation (see (8))
followed by the activation function and a maxpooling operation.

5. Note that a kernel with size smaller than the size of the input produces sparse connectivity in the network. This
creates a sharing of the parameters and helps in avoiding over-fitting. A typical implementation of the CNN often uses a
few convolutional layers followed by FNN layers as shown in Figure 6. Note that for N input of images to the CNN
the input has a size N ⇥ C ⇥H ⇥W , where C is the number of channels; H is the height; and W is the width of the
images. For N input of time-histories, which is used here, the input has a size N ⇥ C ⇥ L, where L is the length of
time-histories. Here, the response and the uncertain parameters are used as different channels in the input.

z. . .
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H(1) H(2) H(NC)

FNN layers

Figure 6: A schematic of the convolutional neural network (CNN), where N (NC) convolutional layers are followed by
a few FNN layers to produce the output z given the input v.

2.2.3 Training of a neural network

The parameters of a neural network ✓, which can contain the weights and biases
n

{Wi}NH
i=0, {bi}NH

i=0

o
and the set of

kernels
n

{ i}N(C)

i=1

o
, are learned from the data by minimizing the mismatch between the prediction from the network

and the training dataset. In this paper, the Mean Squared Error (MSE) given by

J =
1

Ntr

NtrX

i=1

⇣
zi �MNN(vi;✓)

⌘2

(9)

is used as the cost function for the optimization problem. A regularization term can also be added to obtain sparsely
connected network. Stochastic Gradient Descent (SGD) is commonly used to update the parameters during the
optimization as follows

✓k+1  ✓k � ⌘k
@J

@✓k
, (10)

where ⌘k is the step size at the kth iteration, also known as the learning rate and back propagation is used to estimate
the derivatives @J

@✓(k) [54, 57]. In this paper, a modified version of this standard SGD, namely, the Adaptive Moment
(Adam) [58–60] is used. In this algorithm, historical information of the gradients is used to retard large movements in
the direction of large historical gradients. A brief description of the Adam algorithm is provided in Appendix A.
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followed by the activation function and a maxpooling operation.

is the width of the images. For N input of time-histories, which is used here, the input has a size N × C × L, where L
is the length of time-histories. Here, the response and the uncertain parameters are used as different channels in the
input. Further, the number of neurons in the feed-forward layers are assumed to be same as L in this paper.
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Figure 6: A schematic of the convolutional neural network (CNN), where NC convolutional layers are followed by a
few feed-forward layers to produce the output z given the input v.
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connected network. Stochastic Gradient Descent (SGD) is commonly used to update the parameters during the
optimization as follows

✓k+1  ✓k � ⌘k
@J

@✓k
, (10)

where ⌘k is the step size at the kth iteration, also known as the learning rate and back propagation is used to estimate
the derivatives @J

@✓(k) [57, 59]. In this paper, a modified version of this standard SGD, namely, the Adaptive Moment
(Adam) [60–62] is used. In this algorithm, historical information of the gradients is used to retard movements in the
direction of large historical gradients. A brief description of the Adam algorithm is provided in Appendix A.

Remark: The universal approximation theorem [63–65, 38] guarantees that MLP with at least one hidden layer and
enough hidden neurons with differentiable activation functions is able to approximate any continuous function up
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Figure 6: A schematic of the convolutional neural network (CNN), where NC convolutional layers are followed by a
few feed-forward layers to produce the output z given the input v.

2.2.3 Training of a neural network

The parameters θ of a neural network, which can contain the weights and biases
{
{Wi}NH

i=0, {bi}NH
i=0

}
and the set of

kernels
{
{Ψi}N

(C)

i=1

}
, are learned from the data by minimizing the mismatch between the prediction from the network

and the training dataset. In this paper, the Mean Squared Error (MSE) given by

J =
1

Ntr

Ntr∑

i=1

(
zi −MNN(vi;θ)

)2
(9)

is used as the cost function for the optimization problem. A regularization term can also be added to obtain sparsely
connected network. Stochastic Gradient Descent (SGD) is commonly used to update the parameters during the
optimization as follows

θk+1 ← θk − ηk
∂J

∂θk
, (10)

where ηk is the step size at the kth iteration, also known as the learning rate and back propagation is used to estimate
the derivatives ∂J

∂θ(k) [57, 59]. In this paper, a modified version of this standard SGD, namely, the Adaptive Moment
(Adam) [60, 61, 62] is used. In this algorithm, historical information of the gradients is used to retard movements in the
direction of large historical gradients. A brief description of the Adam algorithm is provided in Appendix A.

Remark: The universal approximation theorem [63, 64, 65, 38] guarantees that MLP with at least one hidden layer
and enough hidden neurons with differentiable activation functions is able to approximate any continuous function up
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to a given accuracy level. In practice, the limitations are two-fold — (i) the training algorithm used to optimize the
parameters of the network might be unable to find the optimal values; and (ii) required number of neurons in the hidden
layer may be quite large. Hence, multiple hidden layers are used in practical applications.

3 Proposed Methodology

In this section, the proposed approach for the response calculation of an uncertain locally nonlinear dynamical system
using neural networks is discussed first. Then, the datasets used in training and validation for the numerical examples
are described.

3.1 Response Calculation of Locally Nonlinear Uncertain Dynamical System

Consider a locally nonlinear dynamical system with governing differential equation in state-space form given by
Ẋ(t; ξ) = AX(t; ξ) + Bw(t) + Lg

(
X(t; ξ); ξ

)
, X(0) = x0;

Y(t; ξ) = CX(t; ξ) + Dw(t) + Eg
(
X(t; ξ); ξ

)
,

(11)

where X(t; ξ) ∈ Rn×1 is the state vector; A ∈ Rn×n is the state matrix; w(t) ∈ Rnw×1 is the external force vector;
B ∈ Rn×nw is the influence matrix for w(t); g(·; ·) ∈ Rn×ng is a nonlinear function of a subset of the state, (i.e.,
X(t; ξ) = GX(t; ξ) with G ∈ Rng×n and ng � n) and the uncertain variable ξ with known probability distribution;
L ∈ Rn×ng is the influence matrix for the nonlinear function g(·, ·); and x0 is the initial state vector. The output is
denoted as Y(t; ξ) ∈ Rny×1. The output influence matrices are C ∈ Rny×n, D ∈ Rny×nw , and E ∈ Rny×ng for the
state vector X(t; ξ), external force w(t), and the uncertain and possibly nonlinear function g(·; ·), respectively. For
example, consider a multi-degree of freedom nonlinear mass-spring-damper system with governing equation

Msü(t; ξ) + Csu̇(t; ξ) + Ksu(t; ξ) + Lsgs (u(t; ξ), u̇(t; ξ); ξ) = w(t), (12)
where u(t; ξ) is the displacement vector; Ms ∈ Rm×m is the mass matrix; Cs ∈ Rm×m is the damping matrix;
Ks ∈ Rm×m is the stiffness matrix; Ls ∈ Rm×ngs is the influence matrix of the nonlinear and uncertain vector
gs(·, ·; ·) ∈ Rngs×1. The state-space matrices for this system are as follows

X(t; ξ) =

{
u(t; ξ)
u̇(t; ξ)

}
, A =

[
0 I

−M−1
s Ks −M−1

s Cs

]
, B =

{
0

M−1
s 1

}
, L =

{
0

−M−1
s Ls

}
,

(13)
where I is the identity matrix; 0 is a matrix with all entries as zeros; and 1 is a matrix with all entries as ones. A
deterministic nominal linear dynamical system corresponding to this uncertain nonlinear dynamical system can be
given by

ẋ(t) = Ax(t) + Bw(t), x(0) = x0;

y(t) = Cx(t) + Dw(t),
(14)

where x(t) and y(t) are state and output of the nominal dynamical system, respectively.

The response of the original uncertain locally nonlinear dynamical system is expressed, next, as summation of the
response of the nominal linear system x(t) from (14) and a correction term xcorr(t; ξ) due to the nonlinearity and
uncertainty present in the system, i.e.,

X(t; ξ) = x(t) + xcorr(t; ξ). (15)
The response of the nominal linear system can be estimated using

x(t) = exp(At)x0 +

∫ t

0

HB(t− τ)w(τ)dτ ;

y(t) = C exp(At)x0 +

∫ t

0

CHB(t− τ)w(τ)dτ + Dw(t),

(16)

where the impulse response function HB(t) = exp(At)B. Note that the convolution integral can be efficiently
evaluated using the Fast Fourier Transform (FFT). However, the most challenging part is to estimate xcorr(t), which
can be similarly written as

xcorr(t; ξ) =

∫ t

0

HL(t− τ)g
(
X(τ ; ξ); ξ

)
dτ ;

Y(t; ξ) = y(t) +

∫ t

0

CHL(t− τ)g
(
X(τ ; ξ); ξ

)
dτ + Eg

(
X(τ ; ξ); ξ

)

︸ ︷︷ ︸
=ycorr(t;ξ)

,
(17)

7
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where the impulse response function HL(t) = exp(At)L is due to the nonlinear function g(·, ·) and ycorr(t; ξ) is the
contribution to the output from g(·, ·). Here, xcorr(t; ξ) implicitly depends on X(t; ξ) as can be seen in the solution
of (17). An iterative and complex approach to solve (17) using FFT and Newton’s method was proposed in [24] but
requires ∂g/∂x and an efficient breakup of the convolution sum to achieve a computational speedup. In this paper,
instead, neural networks are employed to model a pseudoforce defined as

p(t; ξ) ≈ g
(
X(t; ξ); ξ

)
. (18)

Figure 7 shows the proposed approach with one-time calculation to estimate the nominal response x(t) and repeated
calculation using the neural network to estimate the response xcorr(t; ξ), where x(t) = Gx(t) is also used as the input
for the neural network. Note that, p(t; ξ) is also the solution of a nonlinear Volterra integral equation of the second
kind written in a non-standard form given by

p(t; ξ)− g

(
x(t) +

∫ t

0

HL(t− τ)p (τ ; ξ) dτ ; ξ

)
= 0. (19)

The solution of (19), however, requires an iterative strategy due to the nonlinearity [24, 16, 17].
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where the impulse response function HL(t) = exp(At)L is due to the nonlinear function g(·, ·) and ycorr(t; ⇠) is the
contribution to the output from g(·, ·). Here, xcorr(t; ⇠) implicitly depends on X(t; ⇠) the solution of (17). A complex
approach to solve (17) using FFT and Newton’s method was proposed in [24] but requires @g/@x and an efficient
breakup of the convolution sum to achieve a significant computational speedup. In this paper, instead, neural networks
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�
X(t; ⇠); ⇠
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+ Note that, p(t; ⇠) is also the solution of a nonlinear Volterra integral equation of the second kind written in a
non-standard form given by
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✓
x(t) +

Z t

0

HL(t� ⌧)p (⌧ ; ⇠) d⌧ ; ⇠

◆
= 0. (19)

The solution of (19), however, requires an iterative strategy due to the nonlinearity [24, 16, 17].
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⇠

xcorr(t; ⇠) =
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0

HL(t� s)p(s; ⇠)ds

+
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xcorr(t; ⇠)
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HL(t)

x(t)

Figure 7: Implementation of the proposed approach for efficient uncertainty quantification showing one time calculation
and repeated calculation components.

3.2 Datasets used in Training of the Neural Networks

To train these neural networks, two datasets, namely, the training dataset Dtr =

(n
p
⇣
ti; ⇠

(tr)
j

⌘ont

i=1
, ⇠

(tr)
j

)Ntr

j=1

and

the validation dataset Dval =

(n
p
⇣
ti; ⇠

(val)
j

⌘ont

i=1
, ⇠j

)Nval

j=1

are generated by solving (19) at time instances {ti}nt
i=1

for random Ntr and Nval realizations of ⇠, respectively, where {⇠j}Ntr
j=1 and {⇠j}Nval

j=1 do not overlap. For neural
networks, ⇠ and x(t) are used for input v in (3) and p(t; ⇠) is used as the output z. The training dataset Dtr is used
to estimate the gradients and the validation dataset Dval is used to monitor the validation Root Mean Squared Error
(RMSE) defined as

RMSE =

PNval
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t; ⇠

(val)
j

⌘���
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Figure 7: Implementation of the proposed approach for efficient uncertainty quantification showing one time calculation
and repeated calculation components.

3.2 Datasets used in Training of the Neural Networks

To train these neural networks, two datasets, namely, the training dataset Dtr =

{{
p
(
ti; ξ

(tr)
j

)}nt

i=1
, ξ

(tr)
j

}Ntr

j=1

and

the validation dataset Dval =

{{
p
(
ti; ξ

(val)
j

)}nt

i=1
, ξj

}Nval

j=1

are generated by solving (19) at time instances {ti}nt
i=1

for random Ntr and Nval realizations of ξ, respectively, where {ξj}Ntr
j=1 and {ξj}Nval

j=1 do not overlap. For neural
networks, ξ and x(t) are used for input v and p(t; ξ) is used as the output z (see (3), (6), and Figure 6). The training
dataset Dtr is used to estimate the gradients and the validation dataset Dval is used to monitor the validation Root Mean
Squared Error (RMSE) defined as

RMSE =

∑Nval

i=1

∥∥∥p
(
t; ξ

(val)
j

)
− p

NN

(
t; ξ

(val)
j

)∥∥∥
2∑Nval

i=1

∥∥∥p
(
t; ξ

(val)
j

)∥∥∥
2

, (20)

where p
(
t; ξ

(val)
j

)
is the prediction using the neural network and ‖·‖2 is the Euclidean norm. For FNN and ResNet

architectures, an iterative procedure is followed to select the number of hidden layers NH and the number of neurons
per hidden layer m [45], where m is increased gradually up to a maximum while a validation error is monitored. The
number of hidden layers NH is increased by one if a pre-chosen maximum neurons per layer is reached. The final

8
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configuration is chosen that corresponds to the smallest validation error. For CNN, a similar procedure with the number
of convolution layers is followed. The training of these neural networks require a few hours on a modern desktop. Once
trained these networks produce inexpensive but accurate prediction of the response of the locally nonlinear dynamical
system under uncertainty as the next three numerical examples show. The same trained network can be used even when
the quantity of interest depends on different responses. Further, they can be also used for other applications such as
design under uncertainty, sensitivity analysis, and so on.

4 Numerical Examples

Three numerical examples utilizing structures with increasing number of DOF are used in this section to illustrate
the proposed approach. PyTorch [27] is used to implement the neural networks for the examples. For brevity, the
dependence of the quantities on t and ξ are omitted in this section. In the examples, the accuracy of the estimates is
measured using the Root Mean Squared Error (RMSE) given by ‖ŷ−y‖2‖y‖2 , where ŷ is the estimated quantity and y is the
true response.

4.1 Example I: Two Degree-of-freedom Nonlinear Spring-Mass-Damper Model

A two DOF spring-mass-damper model with nonlinear damping is used in this example (see Figure 8). The equations
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architectures, an iterative procedure is followed to select the number of hidden layers NH and the number of neurons
per hidden layer m [45], where m is increased gradually up to a maximum while a validation error is monitored.
The number of hidden layers NH is increased by one if a pre-chosen maximum neurons per layer is reached. The
final configuration is chosen that corresponds to the smallest validation error. For CNN, a similar procedure with the
number of convolution layers is followed. The training of these neural networks require few hours on a modern desktop.
Once trained these networks produce inexpensive but accurate predictions of the response of the locally nonlinear
dynamical system under uncertainty as the next three numerical examples show. Further, they can be also used for other
applications such as design under uncertainty, sensitivity analysis, and so on.

4 Numerical Examples

Three numerical examples utilizing structures with increasing number of DOF are used in this section to illustrate
the proposed approach. PyTorch [56] is used to implement the neural networks for the examples. For brevity, the
dependence of the quantities on t and ⇠ are omitted in this section. In the examples, the accuracy of the estimates
is measured using the root mean squared error given by kby�yk2

kyk2
, where by is the estimated quantity and y is the true

response.

4.1 Example I: Two Degree-of-freedom Nonlinear Spring-Mass-Damper Model

A two DOF spring-mass-damper model with nonlinear damping is used in this example (see Figure 8). The equations

m2m2m2

üg

k2

c2

c⇠

u2

m1m1m1

k1

c1

u1

k⇠

Figure 8: Two DOF spring-mass-damper model with uncertain stiffness k⇠ and nonlinear damping c⇠ used in Example
I.

of motion for this model is given by

m1ü1 + c1(u̇1 � u̇2) + k1(u1 � u2) = �m1üg;

m2ü2 + c1(u̇2 � u̇1) + c2u̇2 + c⇠(u̇2)
3 + k1(u2 � u1) + (k2 + k⇠)u2 = �m2üg,

(21)

where the state vector is X = [u1 u2 u̇1 u̇2]
T and üg is the ground acceleration. To generate the training and

validation datasets, the following specifications are used: m1 = 29, 485 kg, m2 = 6, 800 kg, k1 = 11, 912 kN/m,
k2 = 250 kN/m, c1 = 23.71 kN·s/m, and c2 = 4 kN·s/m. The uncertainty is assumed in the stiffness k⇠ and damping
coefficient c⇠ . The probability distributions for these two parameters are shown in Table 1. The base excitation used is a
stationary filtered white noise from a Kanai-Tajimi filter [64] that has a spectral density

Sügüg
(!) =

S0(4⇣
2
g!

2
g!

2 + !4
g)

(!2 � !2
g)2 + 4⇣2

g!
2
g!

2
, (22)

where !g = 17 rad/s and ⇣g = 0.3 are chosen from [65]. The spectral intensity S0 is given by

S0 = �2
w

0.03⇣g

⇡!g(4⇣2
g + 1)

g2, (23)

where g is the gravitational acceleration and �w = 2 is selected to have a pronounced nonlinearity in the system response.
In the state-space form of (11), L = [0 0 0 � 1/m2]

T and g(X) = k⇠u2 + c⇠(u̇2)
3, where X = [u2 u̇2]

T .
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Figure 8: Two DOF spring-mass-damper model with uncertain stiffness kξ and nonlinear damping cξ used in Example
I.

of motion for this model are given by

m1ü1 + c1(u̇1 − u̇2) + k1(u1 − u2) = −m1üg;

m2ü2 + c1(u̇2 − u̇1) + c2u̇2 + cξ(u̇2)3 + k1(u2 − u1) + (k2 + kξ)u2 = −m2üg,
(21)

where the state vector is X = [u1 u2 u̇1 u̇2]T and üg is the ground acceleration. To generate the training and
validation datasets, the following specifications are used: m1 = 29, 485 kg, m2 = 6, 800 kg, k1 = 11, 912 kN/m,
k2 = 250 kN/m, c1 = 23.71 kN·s/m, and c2 = 4 kN·s/m, where the parameters are selected from [66]. The uncertainty
is assumed in the stiffness kξ and damping coefficient cξ. The probability distributions for these two parameters are
shown in Table 1. The base excitation used is a stationary filtered white noise from a Kanai-Tajimi filter [67] that has a
spectral density

Sügüg (ω) =
S0(4ζ2gω

2
gω

2 + ω4
g)

(ω2 − ω2
g)2 + 4ζ2gω

2
gω

2
, (22)

where ωg = 17 rad/s and ζg = 0.3 are chosen from [66]. The spectral intensity S0 is given by

S0 = σ2
w

0.03ζg
πωg(4ζ2g + 1)

g2, (23)

where g is the gravitational acceleration and σw = 2 is selected to have a pronounced nonlinearity in the system response.
In the state-space form of (11), L = [0 0 0 − 1/m2]T and g(X) = kξu2 + cξ(u̇2)3, where X = [u2 u̇2]T .

9
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Table 1: Probability distribution of the uncertain parameters in Example I.

Parameter Distribution Mean Std. Dev.

kξ Truncated Gaussian∗ 40 kN/m 10 kN/m
cξ Lognormal 75 kN·(s/m)1/3 20 kN·(s/m)1/3

∗
Truncated below at zero.
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Figure 9: Base excitation generated using a Kanai-Tajimi filter in (22) and used in Example I.

4.1.1 Results

The neural networks are used to model the uncertain nonlinear term p(t; ξ) = g(X) = kξu2 + cξ(u̇
3
2). The training

dataset Dtr =

{{
p
(
ti; ξ

(tr)
j

)}nt

i=1
, ξ

(tr)
j

}Ntr

j=1

is generated using Ntr = 250 random samples of the uncertain

parameters drawn from their respective probability distributions given in Table 1 and with a 20 Hz temporal sampling

rate. For validation dataset Dval =

{{
p
(
ti; ξ

(val)
j

)}nt

i=1
, ξ

(val)
j

}Nval

j=1

, separate Nval = 50 random samples are used.

To select the number of neurons per layer m and total number of hidden layers NH a procedure described in Section
3.2 is followed. Figure 10 shows 4 layers and 200 neurons per layer produces the smallest validation error with
FNN architecture. The activation function is chosen as the sigmoid function σsigm(·) (see (4)) as it gives the smallest
validation RMSE. ResNet uses a similar configuration with a residual connection between the first and third layer. For
CNN, a similar procedure is followed and NC = 3 one-dimensional convolution layers with kernels of length three
followed by two feed-forward layers with nt neurons each are used. The activation function for the convolution layers
are chosen as the sigmoid function σsigm(·), whereas the feed-forward layers use the ELU activation σELU(·) (see (5)).
Adam algorithm briefly described in Appendix A is used to train these networks with a learning rate of 10−3, which
is gradually halved every 2000 iterations for training of FNN and ResNet but halved every 500 iterations for training
of CNN subjected to a maximum iteration of 10000. This schedule of learning rate produces converged result from
the optimization. The training of FNN and ResNet architectures took approximately 4 hrs. whereas the training of
CNN took approximately 6 hrs. Note that these trainings are performed on CPU (central processing unit). However, by
performing them on GPU (graphics processing unit) the training time can be significantly reduced. At the conclusion of
training, the trained network is chosen as the network that produces the smallest validation RMSE. This is equivalent to
an early stopping criterion [68] commonly used in machine learning applications with infinite patience and subject to
a maximum iteration count. Table 2 shows the validation RMSE using each of the three architectures, where CNN
produces the smallest error as it implements a sharing of the network parameters. Figure 11 shows the estimated p(t; ξ)
using these architectures for one realization of the uncertain parameters in the validation dataset Dval.

10
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Figure 10: The validation RMSE decreases as more neurons are added to four hidden layers in FNN in Example I.
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(a) Prediction of p(t) using FNN
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(b) Prediction of p(t) using ResNet
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(c) Prediction of p(t) using CNN

Figure 11: Comparison of predictions from three different neural network architectures for a realization of the uncertainty
in the validation dataset Dval in Example I. The true solution is obtained by solving (19).

Next, the mean and standard deviation of the displacement u2 of the base mass m2 are estimated using the proposed
approach with N = 105 random samples. Figure 12 shows the result and compares to the mean displacement obtained

11
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Table 2: Validation RMSE for g(X) using three different architectures for the neural networks in Example I.

NN architecture Validation RMSE

FNN 1.9506× 10−3

ResNet 3.2809× 10−3

CNN 1.2765× 10−3

Table 3: RMSE of mean and standard deviation of the base displacement u2 using three different architectures for the
neural networks in Example I.

NN architecture RMSE of mean RMSE of std dev

FNN 1.1369× 10−3 8.5926× 10−3

ResNet 1.2870× 10−3 8.7527× 10−3

CNN 1.0753× 10−3 8.1803× 10−3

from solving Table 3 reports the RMSE of the mean and standard deviation of the response u2, which shows that the
CNN architecture slightly outperforms the others. Also, the validation RMSE for the prediction of standard deviation is
larger as it is more difficult to estimate this statistic. Once trained the FNN takes a total 3.94 min. in for predicting
responses for 105 different realizations of the uncertainty. ResNet and CNN take 4.19 min. and 1.82 min., respectively,
in total for 105 evaluations. On the other hand, to solve (19) using a computationally efficient method [16] takes 1.27
hrs. in total for these evaluations. Note that MATLAB’s ode45, a standard nonlinear solver, which does not have any
associated one-time cost, however, takes 6.37 s for one evaluation and hence it would take approximately 7 days for 105

evaluations if this solver is used. The difference in computational cost is even more pronounced for complex structures
as shown in the next two examples. Note that a desktop with octa-core Intel i9− 9900k @3.60 GHz processor and 64
GB of RAM and running Wondows 10 is used to estimate the computation time.

4.2 Example II: 11 Story Base Isolated Building

In the second example, a 11-story 2-bay structural model with a hysteretic base isolation layer as shown in Figure 13a is
used. The base layer is assumed rigid in-plane and moving horizontally. The beams are modeled using consistent mass
matrix and weights of the columns are neglected. The governing equations of this structure are given by

Msüs + Csu̇s + Ksus = −Msrüg + Csru̇b + Ksrub;

mbüb +
(
cb + rTCsr

)
u̇b +

(
kb + rTKsr

)
ub + fb = −mbüb + rTCsru̇s + rTKsrus,

(24)

where Ms is the mass matrix, Cs is the damping matrix, and Ks is the stiffness matrix of the superstructure; u is the
displacement of the superstructure relative to the ground; üg is the ground acceleration; and the influence vector for the
ground acceleration is r = [1, 0, 0, . . . , 1, 0, 0]T , where the ones correspond to the horizontal displacement DOF. Note
that the column weights are neglected but for the beams consistent mass matrix is used. The superstructure uses 33
nodes and three DOF per node. Hence, the combined structure with another DOF for the base layer has a total 100 DOF.
The above equation can be converted to the state-space formulation in (11) using X = [uTs ub u̇Ts u̇b]T . Rayleigh
damping with 3% damping ratios for the 1st and 10th superstructure modes is assumed. A record of the 1940 El Centro
earthquake measured at the N-S Imperial Valley Irrigation District substation with peak ground acceleration 0.348g is
used as the ground acceleration üg.

The nonlinearity is assumed in the restoring force of the hysteretic base layer described using the Bouc-Wen model (see
Figure 13b) [69], which gives the sum of the base layer restoring and damping forces as

g(ub, u̇b) = fb = cbu̇b + kpostub + αzhyst, (25)

where cb is the base layer damping coefficient; kpre and kpost are pre- and post-yield stiffness, respectively; α =
Qy(1 − rk) is the peak of the nonelastic force; Qy is the yield force of the hysteretic layer; rk = kpost/kpre is the
hardening ratio; and zhyst is an auxiliary variable that describes the evolution of the hysteretic loop. The evolution of
zhyst is given by

żhyst = Au̇b − βu̇b|zhyst| − γzhyst|u̇b|, (26)
where A = 2β = 2γ = kpre/Qy produces identical loading and unloading curves [66, 70] with zhyst in [−1, 1]. Four
parameters, namely, cb, kpost, Qy, and rk are assumed uncertain. The assumed probability distributions of these
parameters are given in Table 4.
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(a) Prediction of mean and standard deviation of u2 using FNN

0 5 10 15 20 25 30
Time [s]

-0.2

-0.1

0

0.1

0.2

D
isp

la
ce

m
en

t [
m

]

0 5 10 15 20 25 30
Time [s]

-2

-1

0

1

2

0 5 10 15 20 25 30
Time [s]

-2

-1

0

1

2 ResNet mean
True mean

0 5 10 15 20 25 30
 

-2

-1

0

1

2

0 5 10 15 20 25 30
Time [s]

-2

-1

0

1

2 CNN mean
True mean

(b) Prediction of mean and standard deviation of u2 using ResNet

Table 4: Probability distribution of the uncertain parameters in
Example II.

Parameter Distribution Mean Std. Dev.

kpost Lognormal 250 kN/m 20 kN/m
cb Truncated Gaussian⇤ 3.5 kN·s/m 0.25 kN·s/m

Qy (%)† Uniform 5.0 0.5774
rk Uniform 0.1875 0.0361

⇤
Truncated below at zero.

†
in % of the total weight of the structure.

4.2.1 Results

In this example, the neural networks are used to model the uncertain nonlinear restoring force in the base layer as
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Table 4: Probability distribution of the uncertain parameters in
Example II.

Parameter Distribution Mean Std. Dev.

kpost Lognormal 250 kN/m 20 kN/m
cb Truncated Gaussian⇤ 3.5 kN·s/m 0.25 kN·s/m

Qy (%)† Uniform 5.0 0.5774
rk Uniform 0.1875 0.0361

⇤
Truncated below at zero.

†
in % of the total weight of the structure.
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(c) Prediction of mean and standard deviation of u2 using CNN

Figure 12: Prediction of the mean and standard deviations of u2 from three different neural network architectures using
105 realizations of the uncertainty in Example I. The mean responses from the neural networks are compared with mean
estimated from solving (19) for 105 realizations of the uncertainty. The shaded regions show combinations of mean µ
and standard deviation � of the response.
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(a) A 100 degree-of-freedom structure with a hysteretic base
isolation layer.
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equations of motion for this model is given by

MẌ + CẊ + KX + Lg(x̄; ⇠) = �M1ẍg, (23)

where the displacements of the masses with respect to the support are X = [x1 x2 x3]
T ; the mass matrix M =�

m1 0 0
0 m2 0
0 0 m3

�
; the stiffness matrix K =

�
k1 + k2 �k2 0
�k2 k2 + k3 �k3

0 �k3 k3

�
; the nonlinear function g(x̄3) depends

on x̄ = x3 and the uncertain parameters ⇠; the nonlinear influence matrix L =

�
0
�1
1

�
; 1 is a column vector of ones;

and ẍg is the support acceleration. The uncertainty is assumed in the nonlinear stiffness coefficient k̄3.

4.2 Example II: 100 Degree-of-freedom Base Isolated Structure

The second example uses a 11-story 2-bay structural model with a hysteretic base isolation layer. The base layer is
assumed rigid in-plane moving horizontally. The beams and columns are modeled as

Msüs + Csu̇s + Ksus = �Msrüg + Csru̇b + Ksrub;

mbüb +
�
cb + rT Csr

�
u̇b +

�
kb + rT Ksr

�
ub + fb = �mbüb + rT Csru̇s + rT Ksrus,

(24)

where Ms is the mass matrix of the superstructure; Cs is the damping matrix of the superstructure; Ks is the stiff-
ness matrix of the superstructure; u is the displacement of the superstructure relative to the ground; üg is the ground
acceleration; and the influence vector for the ground acceleration is r = [1, 0, 0, . . . , 1, 0, 0]T , where the ones corre-
spond to the horizontal displacement DOF. The above equation can be converted to the state-space formulation in (13)
using X = [uT

s ub u̇T
s u̇b]T . Rayleigh damping with 3% damping is assumed for the 1st and 10th superstruc-

ture modes. A 30-s record of the 1940 El Centro earthquake recorded at the N-S Imperial Valley Irrigation District
substation with peak ground acceleration 0.348g is used as the ground acceleration.

Figures/100DOF.pdf

(a) A 100 degree-of-freedom structure with a hysteretic
base isolation layer.

Base
drift

Restoring force

kpre

kpost

(b) Bouc-Wen model for hysteresis.

Figure 8: An 11-story 2-bay 100 degree-of-freedom structure with a hysteretic base isolation layer described using the
Bouc-Wen hysteresis model is used in Example II.

The nonlinearity is assumed in the restoring force of the hysteretic base layer described using the Bouc-Wen model
[54], which gives the sum of the base layer restoring and damping forces as

fb = cbẋb + kpostxb + ↵z, (25)

where cb is the base layer damping coefficient; kpre and kpost are pre- and post-yield stiffness, respectively; ↵ =
Qy(1 � rk) is the peak of the nonelastic force; Qy is the yield force of the hysteretic layer; rk = kpost/kpre is the
hardening ratio; and z is an auxiliary variable that describes the evolution of the hysteretic loop. The evolution of z is
given by

ż = Aẋb � �ẋb|z| � �z|ẋb|, (26)

9

(b) Bouc-Wen model for hysteresis.

Figure 13: An 11-story 2-bay 100 degree-of-freedom structure with a hysteretic base isolation layer described using the
Bouc-Wen hysteresis model is used in Example II.

samples of the uncertain parameters drawn from their respective probability distributions given in Table 4 and with a

20 Hz temporal sampling rate. For validation dataset Dval =

(n
p
⇣
ti; ⇠

(val)
j

⌘ont

i=1
, ⇠

(val)
j

)Nval

j=1

, separate Nval = 50

random samples are used. A similar procedure to the previous example is followed here to select the number of neurons
per layer m = 100 and total number of hidden layers NH = 4 in the FNN network. The activation function is chosen
as the hyperbolic tangent function �tanh(·) (see (4)) as it gives the smallest validation RMSE. ResNet uses a similar
configuration with a residual connection between the first and third layer. For CNN, a similar procedure is followed and
three one-dimensional convolution layers with kernels of length three followed by two FNN layers with nt neurons in
each of these layers are used. The activation function for the convolution layers are chosen as the hyperbolic tangent
function �tanh(·), whereas the feed-forward layers use the ELU activation �

ELU
(·). These networks are trained using

the Adam algorithm (see Appendix A) with a learning rate of 10�3, which is gradually halved every 2000 iterations for

14

(c) Prediction of mean and standard deviation of u2 using CNN

Figure 12: Prediction of the mean and standard deviations of u2 from three different neural network architectures using
105 realizations of the uncertainty in Example I. The mean responses from the neural networks are compared with mean
estimated from solving (19) for 105 realizations of the uncertainty. The shaded regions show combinations of mean µ
and standard deviation σ of the response.

Table 4: Probability distribution of the uncertain parameters in
Example II.

Parameter Distribution Mean Std. Dev.

kpost Lognormal 250 kN/m 20 kN/m
cb Truncated Gaussian∗ 3.5 kN·s/m 0.25 kN·s/m

Qy (%)† Uniform 5.0 0.5774
rk Uniform 0.1875 0.0361

∗
Truncated below at zero.

†
in % of the total weight of the structure.
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equations of motion for this model is given by

MẌ + CẊ + KX + Lg(x̄; ⇠) = �M1ẍg, (23)

where the displacements of the masses with respect to the support are X = [x1 x2 x3]
T ; the mass matrix M ="

m1 0 0
0 m2 0
0 0 m3

#
; the stiffness matrix K =

"
k1 + k2 �k2 0
�k2 k2 + k3 �k3

0 �k3 k3

#
; the nonlinear function g(x̄3) depends

on x̄ = x3 and the uncertain parameters ⇠; the nonlinear influence matrix L =

"
0
�1
1

#
; 1 is a column vector of ones;

and ẍg is the support acceleration. The uncertainty is assumed in the nonlinear stiffness coefficient k̄3.

4.2 Example II: 100 Degree-of-freedom Base Isolated Structure

The second example uses a 11-story 2-bay structural model with a hysteretic base isolation layer. The base layer is
assumed rigid in-plane moving horizontally. The beams and columns are modeled as

Msüs + Csu̇s + Ksus = �Msrüg + Csru̇b + Ksrub;

mbüb +
�
cb + rT Csr

�
u̇b +

�
kb + rT Ksr

�
ub + fb = �mbüb + rT Csru̇s + rT Ksrus,

(24)

where Ms is the mass matrix of the superstructure; Cs is the damping matrix of the superstructure; Ks is the stiff-
ness matrix of the superstructure; u is the displacement of the superstructure relative to the ground; üg is the ground
acceleration; and the influence vector for the ground acceleration is r = [1, 0, 0, . . . , 1, 0, 0]T , where the ones corre-
spond to the horizontal displacement DOF. The above equation can be converted to the state-space formulation in (13)
using X = [uT

s ub u̇T
s u̇b]T . Rayleigh damping with 3% damping is assumed for the 1st and 10th superstruc-

ture modes. A 30-s record of the 1940 El Centro earthquake recorded at the N-S Imperial Valley Irrigation District
substation with peak ground acceleration 0.348g is used as the ground acceleration.
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(b) Bouc-Wen model for hysteresis.

Figure 8: An 11-story 2-bay 100 degree-of-freedom structure with a hysteretic base isolation layer described using the
Bouc-Wen hysteresis model is used in Example II.

The nonlinearity is assumed in the restoring force of the hysteretic base layer described using the Bouc-Wen model
[54], which gives the sum of the base layer restoring and damping forces as

fb = cbẋb + kpostxb + ↵z, (25)

where cb is the base layer damping coefficient; kpre and kpost are pre- and post-yield stiffness, respectively; ↵ =
Qy(1 � rk) is the peak of the nonelastic force; Qy is the yield force of the hysteretic layer; rk = kpost/kpre is the
hardening ratio; and z is an auxiliary variable that describes the evolution of the hysteretic loop. The evolution of z is
given by

ż = Aẋb � �ẋb|z| � �z|ẋb|, (26)

9

(b) Bouc-Wen model for hysteresis.

Figure 13: An 11-story 2-bay 100 degree-of-freedom structure with a hysteretic base isolation layer described using the
Bouc-Wen hysteresis model is used in Example II.

4.2.1 Results

In this example, the neural networks are used to model the uncertain nonlinear restoring force in the base layer as

p(t; ξ) = fb. The training dataset Dtr =

{{
p
(
ti; ξ

(tr)
j

)}nt

i=1
, ξ

(tr)
j

}Ntr

j=1

is generated using Ntr = 450 random

samples of the uncertain parameters drawn from their respective probability distributions given in Table 4 and with a

20 Hz temporal sampling rate. For validation dataset Dval =

{{
p
(
ti; ξ

(val)
j

)}nt

i=1
, ξ

(val)
j

}Nval

j=1

, separate Nval = 50

random samples are used. A similar procedure to the previous example is followed here to select the number of
neurons per layer as m = 100 and total number of hidden layers as NH = 4 in the FNN network. The activation
function is chosen as the hyperbolic tangent function σtanh(·) (see (4)) as it gives the smallest validation RMSE. ResNet
uses a similar configuration with a residual connection between the first and third layer as this residual connection
gives the smallest error among other residual connections. For CNN, a similar procedure is followed and NC = 3
one-dimensional convolution layers with kernels of length three followed by two feed-forward layers with nt neurons
in each of these layers are used. The activation function for the convolution layers are chosen as the hyperbolic tangent
function σtanh(·), whereas the feed-forward layers use the ELU activation σ

ELU
(·). A learning rate of 10−3 that is

gradually halved every 2000 iterations for training of FNN and ResNet and halved every 500 iterations for training
of CNN subjected to a maximum iteration of 10000 is used to train these networks using the Adam algorithm (see
Appendix A). The training of FNN and ResNet networks takes approximately 3.5 hours, whereas the training of CNN
network takes approximately 6 hours. The network parameters that produces the smallest validation RMSE is selected as
the trained network at the end of training, which is equivalent to an early stopping criterion [68]. The validation RMSE
using these three architectures are given in Table 5, which shows that the CNN provides the smallest validation RMSE.
Figure 14 shows the estimated p(t; ξ) = fb using these architectures for one realization of the uncertain parameters in
the validation dataset Dval.

Figure 15 compares the mean of the horizontal roof acceleration ü97 for N = 105 random samples of the uncertain
parameters in Table 4 obtained from the proposed use of the neural networks with the mean estimated from solving (19).
The figure also shows the estimated standard deviation of the response. Table 6 shows the RMSEs in the mean and
standard deviation estimates. Similar to the previous example CNN produces the smallest error as it avoids overfitting
by parameter sharing as described in Section 2.2.2. On the other hand, ResNet gives validation RMSE one order
of magnitude larger than CNN showing that modeling the residual does not provide any advantage in this approach.
The same trained CNN is further used to estimate the mean and standard deviation of the roof displacement u97 with
N = 105 realizations of the uncertain parameters (see Figure 16). Once trained the FNN, ResNet, and CNN take a total
1.13 hrs., 1.13 hrs., and 1.12 hrs., respectively, for predicting responses for 105 different realizations of the uncertainty.
On the other hand, in this example solving (19) using a computationally efficient method [16] takes 15.33 hrs. in total

14
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Figure 14: Comparison of predictions from three different neural network architectures for a realization of the uncertainty
in the validation dataset Dval in Example II. The true solution is obtained by solving (19).

for these 105 evaluations. A standard nonlinear solver, MATLAB’s ode45, however, takes 12.98 s for one evaluation
and hence it would take approximately 15 days for 105 evaluations if this solver is used.

Table 5: Validation RMSE for the isolator force fb using three different architectures for the neural networks in Example
II.

NN architecture Validation RMSE

FNN 2.8954× 10−3

ResNet 1.2112× 10−2

CNN 1.4874× 10−3

4.3 Example III: 1623 Degree-of-freedom Three-Dimensional Wind-Excited Structure

The third example uses a 20-story moment-resisting building frame with 1623 DOF adapted from [71], where three
nonlinear Tuned Mass Dampers (TMDs) are attached to its roof. The dimensions of the building are shown in Figure
17. Its bottom five stories have 5× 3 bay. However, next five stories are reduced to 3× 2 bay and the last ten stories
to 2× 2 bay. The building has cross braces to provide extra stiffness against lateral bending and torsion. The beams
and columns in the building are modeled using the Euler-Bernoulli beam theory and the beam-column joints as rigid.

15
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(a) Prediction of mean and standard deviation of the horizontal roof acceleration using FNN
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(b) Prediction of mean and standard deviation of the horizontal roof acceleration using ResNet

Figure 15: Prediction of the mean and standard deviations of the horizontal roof acceleration ü97 from three different
neural network architectures using 105 realizations of the uncertainty in Example II. The mean responses from the
neural networks are compared with mean estimated from solving (19) for 105 realizations of the uncertainty. The
shaded regions show combinations of mean µ and standard deviation � of the response.
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(b) Prediction of mean and standard deviation of the horizontal roof acceleration using ResNet

Figure 15: Prediction of the mean and standard deviations of the horizontal roof acceleration ü97 from three different
neural network architectures using 105 realizations of the uncertainty in Example II. The mean responses from the
neural networks are compared with mean estimated from solving (19) for 105 realizations of the uncertainty. The
shaded regions show combinations of mean µ and standard deviation � of the response.
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(c) Prediction of mean and standard deviation of the horizontal roof acceleration using CNN

Figure 15: Prediction of the mean and standard deviations of the horizontal roof acceleration ü97 from three different
neural network architectures using 105 realizations of the uncertainty in Example II. The mean responses from the
neural networks are compared with mean estimated from solving (19) for 105 realizations of the uncertainty. The
shaded regions show combinations of mean µ and standard deviation � of the response.
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Figure 16: Prediction of the mean and standard deviations of horizontal roof displacement u97 from three different
neural network architectures using 105 realizations of the uncertainty in Example I. The mean responses from the neural
networks are compared with mean estimated from solving (19) for 105 realizations of the uncertainty. The shaded
regions show combinations of mean µ and standard deviation � of the response.
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(c) Prediction of mean and standard deviation of the horizontal roof acceleration using CNN

Figure 15: Prediction of the mean and standard deviations of the horizontal roof acceleration ü97 from three different
neural network architectures using 105 realizations of the uncertainty in Example II with response in [4.5, 12] s zoomed
in. The mean responses from the neural networks are compared with mean estimated from solving (19) for 105

realizations of the uncertainty. The shaded regions show combinations of mean µ and standard deviation σ of the
response. 16
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(c) Prediction of mean and standard deviation of the horizontal roof acceleration using CNN

Figure 15: Prediction of the mean and standard deviations of the horizontal roof acceleration ü97 from three different
neural network architectures using 105 realizations of the uncertainty in Example II. The mean responses from the
neural networks are compared with mean estimated from solving (19) for 105 realizations of the uncertainty. The
shaded regions show combinations of mean µ and standard deviation � of the response.
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Figure 16: Prediction of the mean and standard deviations of horizontal roof displacement u97 from three different
neural network architectures using 105 realizations of the uncertainty in Example I. The mean responses from the neural
networks are compared with mean estimated from solving (19) for 105 realizations of the uncertainty. The shaded
regions show combinations of mean µ and standard deviation � of the response.
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Figure 16: Prediction of the mean and standard deviations of horizontal roof displacement u97 from three different
neural network architectures using 105 realizations of the uncertainty in Example I. The mean responses from the neural
networks are compared with mean estimated from solving (19) for 105 realizations of the uncertainty. The shaded
regions show combinations of mean µ and standard deviation σ of the response.

Table 6: RMSE of mean and standard deviation of the horizontal roof acceleration ü97 using three different architectures
for the neural networks in Example II.

NN architecture RMSE of mean RMSE of std dev

FNN 1.1369× 10−3 8.5926× 10−3

ResNet 1.2870× 10−3 8.7527× 10−3

CNN 1.0753× 10−3 8.1803× 10−3

The building has 1620 DOF without the TMDs and its first six natural frequencies are summarized in Table 7. The

Table 7: First six natural frequencies of the 1623 DOF building used in Example III.

Mode No. Mode type Frequency (Hz)

1st y-direction 0.5718
2nd x-direction 0.5893
3rd torsional 0.9363
4th y-direction 1.3632
5th x-direction 1.5346
6th torsional 2.0292

building is subjected to a wind excitation from the northeast direction at an angle of 30◦ from east, which is modeled
as a narrowband filtered Gaussian white noise filtered through a 16th order band-pass Butterworth filter with cutoff
frequencies set at 1.2 times smaller and larger than the fundamental natural frequency. This choice of wind load excites
the fundamental modes in the x- and y-directions, and in torsion. The wind excitation is shaped according to a power
law model that is proportional to its height to the power 0.3 [72]. The damping forces in the three TMDs are assumed to
follow a power law model given by

g(u̇) = fTMD = c1u̇+ c2|u̇|βsgn(u̇), (27)

where u is the displacement of the TMD relative to the roof; and the damping coefficients c1, c2, and the exponent β
are assumed uncertain with their distributions shown in Table 8.
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Figure 17: A 20-story building model with three tuned mass dampers at its roof used in Example III.

Table 8: Probability distribution of the uncertain parameters in Example III.

Parameter Distribution x TMD y TMDs
Mean Std. Dev. Mean Std. Dev.

c1 [kN·s/m] Gaussian 225 150 120 80
c2 [kN·(s/m)β] Lognormal 27.5 12.5 20.0 10.0
β Lognormal 0.85 0.20 0.85 0.20

4.3.1 Results

In this example, the neural networks are used to model the uncertain nonlinear forces in the TMDs on the roof as

p(t; ξ) = fTMD. The training dataset Dtr =

{{
p
(
ti; ξ

(tr)
j

)}nt

i=1
, ξ

(tr)
j

}Ntr

j=1

is generated using Ntr = 250 random

samples of the uncertain parameters drawn from their respective probability distributions given in Table 8 and with a

20 Hz temporal sampling rate. For validation dataset Dval =

{{
p
(
ti; ξ

(val)
j

)}nt

i=1
, ξ

(val)
j

}Nval

j=1

, separate Nval = 50

random samples are used. A similar procedure to the previous example is followed here to select the number of neurons
per layer m = 200 and total number of hidden layers NH = 4 in the FNN network. The activation function is chosen
as the hyperbolic tangent function σtanh(·) (see (4)) as it gives the smallest validation RMSE. ResNet uses a similar
configuration with a residual connection between the first and third layer as other residual connections do not provide
smaller validation RMSE. For CNN, a similar procedure is followed and NC = 3 one-dimensional convolution layers
with kernels of length three followed by two feed-forward layers with nt neurons in each of these layers are used. The
activation function for the convolution layers are chosen as the hyperbolic tangent function σtanh(·), whereas the feed-
forward layers use the ELU activation σELU(·). These networks are trained using the Adam algorithm (see Appendix A)
with a learning rate of 10−3, which is gradually halved every 2000 iterations for training of FNN and ResNet but halved
every 500 iterations for training of CNN subjected to a maximum iteration of 10000. The training of FNN and ResNet
networks takes approximately 4 hours each, whereas the training of CNN networks takes approximately 6 hours each.
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The network parameters that produces the smallest validation RMSE is selected as the trained network at the end of
training, which is equivalent to an early stopping criterion [68]. The validation RMSE using these three architectures
are given in Table 9, which shows that the CNN provides the smallest validation RMSE as it prevents overfitting by
parameter sharing. Figure 18 shows that the estimated force px(t; ξ) = fxTMD in the x-direction TMD using these
architectures for one realization of the uncertain parameters in the validation dataset Dval matches the true values.

Table 9: Validation RMSE for the TMD forces using three different architectures for the neural networks in Example III.

TMD NN architecture Validation RMSE

x-direction TMD
FNN 6.3901× 10−4

ResNet 3.0472× 10−3

CNN 2.0155× 10−4

y-direction TMD#1
FNN 8.2597× 10−4

ResNet 2.9137× 10−3

CNN 4.3792× 10−4

y-direction TMD#2
FNN 1.2655× 10−3

ResNet 1.8165× 10−3

CNN 6.4929× 10−4

Table 10: RMSE of mean and standard deviation of the roof accelerations in x- and y-directions using three different
architectures for the neural networks in Example III.

Roof acceleration NN architecture RMSE of mean RMSE of std dev

x-direction
FNN 2.6617× 10−4 4.9477× 10−3

ResNet 7.4273× 10−4 2.1737× 10−2

CNN 2.6451× 10−4 3.6935× 10−3

y-direction
FNN 2.2522× 10−4 1.2896× 10−2

ResNet 3.1833× 10−3 2.0854× 10−2

CNN 5.3049× 10−4 1.1705× 10−2

Figure 19 and 20 compare the mean of the roof acceleration in the x- and y-directions, respectively, for N = 105

random samples of the uncertain parameters in Table 8 obtained from the proposed use of neural networks with mean
estimated from solving (19). The figures also show the estimated standard deviation of the responses. Table 10 shows
the RMSEs in the mean and standard deviation estimates of the roof accelerations in both x- and y-directions. Similar
to the previous example, CNN produces the smallest error as it avoids overfitting by parameter sharing as described
in Section 2.2.2. On the other hand, ResNet gives validation RMSE much larger than CNN showing that modeling
the residual does not provide any advantage in this method. The RMSE in standard deviation is also higher as it is
a difficult statistic to estimate compared to the mean. Note that the same trained networks are used to estimate the
mean and standard deviation of accelerations in both x- and y-directions. Once trained the FNN, ResNet, and CNN
take a total 2.96 hrs., 2.97 hrs., and 2.92 hrs., respectively, for predicting responses from 105 different realizations of
the uncertainty. On the other hand, in this example solving (19) using a computationally efficient method [16] takes
30.23 hrs. for these evaluations. A standard nonlinear solver, MATLAB’s ode45, however, takes 14.20 min. for one
evaluation and hence it would take approximately 2.74 yrs. (projected) for 105 evaluations if this solver is used, which
is impractical. Note that the same desktop as in the previous examples is used to compute the computational timings.

5 Conclusions

In structural engineering, local nonlinearities often exist in structures like buildings, bridges, or spacecrafts. For
these dynamical systems, the computational cost of uncertainty quantification can be significantly large if a nonlinear
solver is used. In this paper, the response of a locally nonlinear dynamcial system is divided into response of
a nominal linear system and response from a pseudoforce that arises from the uncertainty and local nonlinearity.
Recently, neural networks have become popular for representing a functional relationship due to their high level of
expressiveness. Further, with the availability of advanced computational resources and open-sourced packages like
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Figure 18: Comparison of predictions of the x-direction TMD force from three different neural network architectures
for a realization of the uncertainty in the validation dataset Dval in Example III. The true solution is obtained by solving
(19).

PyTorch and TensorFlow the training of neural networks have become possible on a desktop. In this paper, three
different architectures of these neural networks are investigated to predict the pseudoforce in the second part of the
response from the nonlinearity and uncertainty present in the system. Three numerical examples with DOF ranging from
two to 1623 are used to illustrate the efficacy of the proposed approach. These examples show that the neural networks
can accurately model the pseudoforces and the total response of the system. Once trained these neural networks are
efficiently used for estimating statistics of the response under uncertainty. The computational efficiency will be further
pronounced for more complex engineering systems, which will be investigated in future.

A Adam Algorithm [60]

In the Adam algorithm, historical gradient information is used to retard the descent along large gradients [60, 61]. This
information is stored in m̂ and v̂ as

mk = bmmk−1 + (1− bm)
∂J

∂θk
; m̂k =

m(k)

1− bkm
;

vk = bvvk−1 + (1− bv)
[
∂J

∂θk

]2
; v̂k =

v(k)

1− bkv
,

(28)
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(a) Prediction of mean and standard deviation of the roof acceleration in x-direction using FNN
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(b) Prediction of mean and standard deviation of the roof acceleration in x-direction using ResNet

Figure 19: Prediction of the mean and standard deviations of the x-direction acceleration of the center of the roof
from three different neural network architectures using 105 realizations of the uncertainty in Example III. The mean
responses from the neural networks are compared with mean estimated from solving (19) for 5⇥ 104 realizations of the
uncertainty. The shaded regions show combinations of mean µ and standard deviation � of the response.
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(b) Prediction of mean and standard deviation of the roof acceleration in x-direction using ResNet

Figure 19: Prediction of the mean and standard deviations of the x-direction acceleration of the center of the roof
from three different neural network architectures using 105 realizations of the uncertainty in Example III. The mean
responses from the neural networks are compared with mean estimated from solving (19) for 5⇥ 104 realizations of the
uncertainty. The shaded regions show combinations of mean µ and standard deviation � of the response.
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(c) Prediction of mean and standard deviation of the roof acceleration in x-direction using CNN

Figure 19: Prediction of the mean and standard deviations of the x-direction acceleration at the center of the roof from
three different neural network architectures using 105 realizations of the uncertainty in Example III with response in
[12.5, 30] s zoomed in. The mean responses from the neural networks are compared with mean estimated from solving
(19) for 105 realizations of the uncertainty. The shaded regions show combinations of mean µ and standard deviation �
of the response.

where
h

@J
@✓k

i2
is performed element-wise; and bm and bv are parameters of the Adam algorithm with default values 0.9

and 0.999, respectively. The gradient descent step is applied next as follows

✓k+1 = ✓k � ⌘
bmkp
bvk + ✏

, (29)

where the above update is performed element-wise and ✏ is a very small number to avoid division by zero. We use this
algorithm to train the neural networks in this paper. An illustration of the steps of this algorithm is shown in Algorithm
1.
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(b) Prediction of mean and standard deviation of the roof acceleration in y-direction using ResNet

Figure 20: Prediction of the mean and standard deviations of the x-direction acceleration of the center of the roof
from three different neural network architectures using 105 realizations of the uncertainty in Example III. The mean
responses from the neural networks are compared with mean estimated from solving (19) for 5⇥ 104 realizations of the
uncertainty. The shaded regions show combinations of mean µ and standard deviation � of the response.
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Figure 20: Prediction of the mean and standard deviations of the x-direction acceleration of the center of the roof
from three different neural network architectures using 105 realizations of the uncertainty in Example III. The mean
responses from the neural networks are compared with mean estimated from solving (19) for 5⇥ 104 realizations of the
uncertainty. The shaded regions show combinations of mean µ and standard deviation � of the response.
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(c) Prediction of mean and standard deviation of the roof acceleration in y-direction using CNN

Figure 20: Prediction of the mean and standard deviations of the y-direction acceleration at the center of the roof from
three different neural network architectures using 105 realizations of the uncertainty in Example III with response in
[12.5, 30] s zoomed in. The mean responses from the neural networks are compared with mean estimated from solving
(19) for 105 realizations of the uncertainty. The shaded regions show combinations of mean µ and standard deviation �
of the response.

Algorithm 1 Adam [60]
Network: MNN(·;✓0)
Given: ⌘, bm, bv , and ✏.
procedure ADAM

Initialize ✓1 = ✓0.
Initialize m0 = 0.
Initialize v0 = 0.
for k = 1, 2, . . . , Nmax do

Compute @J
@✓k

.
Set mk  bmmk�1 + (1� bm) @J

@✓k
.

Set vk  bvvk�1 + (1� bv)
h

@J
@✓k

i2
(element-wise).

Set bmk  mk/(1� bk
m).

Set bvk  vk/(1� bk
v).

Set ✓k+1  ✓k � ⌘ bmkp
bvk+✏

(element-wise).
end for

end procedure
Trained network: MNN(·;✓

Nmax
).

[9] Alexander IJ Forrester, András Sóbester, and Andy J Keane. Multi-fidelity optimization via surrogate modelling.
Proceedings of the royal society a: mathematical, physical and engineering sciences, 463(2088):3251–3269,
2007.

[10] VJ Romero, LP Swiler, and AA Giunta. Construction of response surfaces based on progressive-lattice-sampling
experimental designs with application to uncertainty propagation. Structural Safety, 26(2):201–219, 2004.

[11] AA Giunta, JM McFarland, LP Swiler, and MS Eldred. The promise and peril of uncertainty quantification using
response surface approximations. Structures and Infrastructure Engineering, 2(3-4):175–189, 2006.
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Figure 20: Prediction of the mean and standard deviations of the y-direction acceleration at the center of the roof from
three different neural network architectures using 105 realizations of the uncertainty in Example III with response in
[12.5, 30] s zoomed in. The mean responses from the neural networks are compared with mean estimated from solving
(19) for 105 realizations of the uncertainty. The shaded regions show combinations of mean µ and standard deviation σ
of the response. 22
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where
[
∂J
∂θk

]2
is performed element-wise; and bm and bv are parameters of the Adam algorithm with default values 0.9

and 0.999, respectively. The gradient descent step is applied next as follows

θk+1 = θk − η
m̂k√
v̂k + ε

, (29)

where the above update is performed element-wise and ε is a very small number to avoid division by zero. We use this
algorithm to train the neural networks in this paper. An illustration of the steps of this algorithm is shown in Algorithm
1.

Algorithm 1 Adam [60]
Network:MNN(·;θ0)
Given: η, bm, bv , and ε.
procedure ADAM

Initialize θ1 = θ0.
Initialize m0 = 0.
Initialize v0 = 0.
for k = 1, 2, . . . , Nmax do

Compute ∂J
∂θk

.
Set mk ← bmmk−1 + (1− bm) ∂J∂θk

.

Set vk ← bvvk−1 + (1− bv)
[
∂J
∂θk

]2
(element-wise).

Set m̂k ←mk/(1− bkm).
Set v̂k ← vk/(1− bkv).
Set θk+1 ← θk − η m̂k√

v̂k+ε
(element-wise).

end for
end procedure
Trained network:MNN(·;θ

Nmax
).
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