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OPEN COMPUTING INFRASTRUCTURE FOR SHARING DATA ANALYTICS TO 

SUPPORT BUILDING ENERGY SIMULATIONS  

  

Omer T. Karaguzel1; Mohammed Elshambakey2; Yimin Zhu3*; Tianzhen Hong4; William J. Tolone5; 

Sreyasee Das Bhattacharjee6; Isaac Cho7; Wenwen Dou8; Haopeng Wang9; Siliang Lu10; and Yong Tao11 

 

Abstract:  Building energy simulation plays an increasingly important role in building design and 

operation. In this paper, we present an open computing infrastructure, Virtual Information Fabric 

Infrastructure (VIFI), that allows building designers and engineers to enhance their simulations by 

combining empirical data with diagnostic or prognostic models. Based on the idea of dynamic data-driven 

application systems (DDDAS), the VIFI infrastructure complements conventional data-centric sharing 

strategies and addresses key data sharing concerns such as the privacy of building occupants.  To 

demonstrate the potential of the VIFI infrastructure, we simulate an empirically-derived lighting schedule 

in the U.S. Department of Energy’s small office building reference model. We use the case study 

simulation to explore the possibility and potential of integrating data-centric and analytic-centric sharing 

strategies; the method of combining empirical data with simulations; the creation, sharing, and execution 

of analytics using VIFI; and the impact of incorporating empirical data on energy simulations. While the 

case study reveals clear advantages of the VIFI data infrastructure, research questions remain surrounding 

the motivation and benefits for sharing data, the metadata that are required to support the composition of 

analytics, and the performance metrics that could be used in assessing the applications of VIFI.  

 

Keywords: Data sharing; Building energy, Simulation, Data standards, EnergyPlus, Operational 

schedules, Energy simulations.  
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INTRODUCTION 

Buildings account for more than one-third of the primary energy consumption in the world; therefore, 

reducing energy use and greenhouse-gas emissions in the building sector is a key strategy for achieving 

mailto:yiminzhu@lsu.edu
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global energy and environmental goals. Building performance simulation has played an increasingly 

important role in designing, operating, and retrofitting buildings to predict energy efficiency and utility 

costs (Roth 2017). As more energy policies and regulations push new buildings or building retrofits 

towards achieve low- or zero-net energy (ZNE) goals, building energy simulations can be used as tools 

for evaluating and comparing design alternatives that employ integrated building technologies and control 

strategies. ZNE buildings also require on-site renewable energy generation, and balancing demand-side 

building energy efficiency and on-site generation with the supply-side renewable power requires an 

optimization based on various performance metrics, including energy use, energy cost, return on 

investment (ROI), or greenhouse gas (GHG) emissions.  Moreover, energy models developed in the 

building design phase can be adapted for use later in the building operation phase to support performance 

diagnostics and operation improvements, along with guiding building retrofit strategies.  

 Building performance simulations rely on diagnostic and/or prognostic models to understand and 

predict building performance. Often, these models require significant empirical data inputs on building 

operations, physical and environmental conditions, or occupants and their behaviors (D’Oca and Hong 

2015, Kwak et al. 2015). In addition, model calibration with empirical data is critical to the quality of 

building performance simulations (Coakley et al. 2014). However, gaining access to empirical data, 

particularly monthly or time-interval energy data, can be challenging due to the data privacy concerns of 

building owners. Thus, on one hand the incorporation of empirical data into building performance 

simulations improves simulation quality; on the other hand, it presents a data privacy challenge.     

In this paper, we introduce an open computing infrastructure, or virtual information fabric 

infrastructure (VIFI), that integrates predictive models with empirical data to enhance building energy 

simulations. VIFI shares analytics on raw data, complementing conventional data sharing strategies that 

require exposing the raw data directly. The framework is designed based on the concept of dynamic data 

driven application systems (DDDAS) (Darema 2005). In essence, DDDAS include two parts: 

computation and measurement. Computation refers to predictive models or simulations for a particular 

purpose such as building energy simulations, while measurement refers to instrumentation for data 
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collection such as building sensors or data archives. The computation piece takes the advantage of 

measurement data to dynamically calibrate simulations or predictions, and provides feedback to the 

measurement piece to inform future data collection efforts. The feedback loop between computation and 

measurement allows continuous improvement in simulations and predictions.  

Two aspects of VIFI are particularly significant. First, the VIFI computing infrastructure offers a 

new data sharing alternative in cases where a conventional, data-centric sharing strategy is not applicable. 

For example, advancements in building sensor and control technologies has significantly improved the 

ability of building owners and managers to collect building performance data, potentially offering an 

unprecedented opportunity to improve building energy simulations as they apply to the design of new 

buildings, building retrofits, or operational strategies. Yet, access to these big data by building designers 

and engineers is highly constrained due to data privacy issues.  In particular, building owners or facility 

managers may not feel comfortable sharing the data with others because such raw data often contain 

sensitive occupant information. In addition, the raw data may not be in the correct form for others to use. 

Nevertheless, data owners may support the general idea of collaborating with others to improve the 

quality of building energy simulations. In such scenarios, the VIFI data sharing infrastructure can 

alleviate the data owner’s concerns about privacy and support their ability to collaborate with others 

without exposing their raw data.  

Consequently, the VIFI data sharing infrastructure potentially allows building designers and 

engineers to access a larger pool of building data than would be possible using a conventional direct 

sharing strategy alone, which leads to another significant contribution of the infrastructure: VIFI allows 

building designers and engineers to enhance their simulations by combining high-quality empirical data 

with diagnostic and/or prognostic models for simulations. Energy simulations often have many input 

parameters that are strongly tied to building design or operational conditions. Such relevance significantly 

affects the quality of simulations. Improved relevance can be achieved by offering building designers and 

engineers access to a large set of relevant building data, which the new strategy can offer. Therefore, the 

infrastructure has the potential to change how building performance simulations are done in the future.   
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In the following sections, we discuss existing studies that are relevant to building energy data 

integration and sharing, outline the proposed VIFI infrastructure for building energy simulations, present 

a case study to demonstrate the implementation and use of the infrastructure, and summarize key 

conclusions and areas for future research.    

 

RELATED STUDIES  

The need to incorporate empirical data in building energy simulations has been extensively explored in 

the existing literature. Building energy simulations typically require several input variables, many of 

which are related to human behavior, such as an occupancy or lighting schedule (Crawley et al. 2001). 

Traditionally, building energy simulations are performed in a closed manner with all inputs fixed or 

assumed to be constant during a simulation (e.g., Zhu (2006), Pan et al. (2007)). To improve the accuracy 

of simulations, dynamic approaches that incorporate real-time variable inputs have recently gained 

attention amongst researchers. For example, (Pang et al. 2016) presented a method that integrates real-

time data such as weather, plug load power, lighting power, occupancy, and room temperature settings 

with whole building energy simulation. Similarly, (Kwak et al. 2015) discussed real-time simulation 

through co-simulation to optimize building operations. However, most such applications have a focus on 

building operations, not building design.  

While simulations using real-time data during the design stage are rare, the idea of enhancing 

design-stage simulations through co-simulation with other programs has been previously explored. For 

example, Feng et al. (2015) and later Chen et al. (2018) developed an occupancy simulation software tool 

to work with building energy simulation through co-simulation. Software platforms have also been 

developed for deploying co-simulations, such as the tight-coupling approach using the building controls 

virtual test bed (BCVTB) (Wetter 2011) or the loose-coupling approach based on the occupant behavior 

XML (obXML) (Hong et al. 2016). Additionally, OpenStudio SDK provides an ecosystem of software 

tools that allows a comprehensive suite of modeled variables such as lighting and occupancy to be 

analyzed in whole building energy simulations through an open application programming interface 
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(Guglielmetti et al. 2011). However, the deployment of the OpenStudio SDK requires energy models and 

associated data to be stored on an OpenStudio server for model execution and calibration. Thus, the 

potential of the proposed VIFI strategy, i.e., moving analytics to data and thus alleviating data privacy 

concerns, is not already explored in the OpenStudio SDK.   Clearly, whole building energy simulation 

trends demonstrate the need for simulations that address finer component levels. However, even co-

simulations cannot fully address the issue of a simulation’s relevance to a particular design because the 

parameters of co-simulations may be tuned to data from dissimilar buildings. Thus, connections must be 

established between buildings with high relevance to a particular design and design-stage simulations in 

order to further enhance the robustness of such simulations.  

Dynamic data driven application systems (DDDAS) offer a method to establish the 

aforementioned connections between buildings and simulations. Since their inception, DDDAS have been 

applied in scenarios as diverse as emergency and disaster management (Madey et al. 2007), supply chain 

systems (Celik et al. 2010), and threat management for urban water distribution systems (Wang et al. 

2014). Potential DDDAS applications to building performance simulations have been identified as well. 

For example, Spitler (2006) discussed the use of model-based control systems as an application of 

DDDAS and the need to explore methods of data-gathering processes under a DDDAS framework. 

Bouktif and Ahmed (2015) discussed the application of DDDAS to the energy consumption of a 

residential system, where the application includes real-time metering and sensor data and incorporates 

human decisions into energy analytics to enhance predictions. In current building performance 

applications, DDDAS fits well for applications such as real-time model-based simulations for optimizing 

building operations (Pang et al. 2016).  

While these previous applications of DDDAS in buildings concern daily operations, applications 

of DDDAS to building designs are not yet reported in the existing literature. Application of DDDAS 

during the design of new buildings or building retrofits is different from its application to operations, in 

particular because the input data for design simulations often cannot be collected in-situ. In addition, 

simulations during the design stage often cannot be calibrated using empirical data from buildings that are 
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exact proxies for the building under design (Lomas et al. 1997). Thus, the best strategy is to offer 

maximum access to building datasets, such that building designers and engineers are more likely to find 

relevant data from existing buildings for model input or calibration.  As discussed, the VIFI infrastructure 

provides such a possibility by offering a complementary approach to the existing data-centric sharing 

strategy, increasing access to shared building performance data.   

In summary, existing studies concerning building energy simulation call for component level co-

simulations to better address the need for different types of simulations. However, these component level 

simulations still rely on data that may not be representative of a particular building under design. 

Consequently, better access to building performance data is needed. The increasing availability of big 

building operation datasets coupled with the DDDAS framework offer the possibility of a new data 

sharing approach that allows building designers and engineers to seek those data that best match a given 

design or operation optimization plan and integrate these data with associated building simulations.  

 

OPEN COMPUTING INFRASTRUCTURE FOR SHARING ANALYTICS 

In this section, we present a high-level conceptual architecture for the VIFI open computing 

infrastructure. As the topics of simulation models and data collection from existing buildings have already 

been discussed extensively and are not the major focus of this work, we focus only on the application of 

VIFI to the integration of simulations with empirical data. 

 

High-Level Conceptual Architecture 

Fig. 1 demonstrates the high-level conceptual architecture of the VIFI infrastructure. There are three key 

components in the infrastructure: predictive models (such as simulations), existing buildings, and the 

VIFI platform. The predictive model component represents any predictive model that may be applied 

during building design process, such as a whole building energy simulation. The existing building 

component represents sources of empirical data. Data may be drawn from real-time sensor readings or 

from other stored logs of building operations, occupant behaviors, indoor or outdoor environmental 
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conditions, and other variables relevant to building research or energy applications. Finally, the VIFI 

platform represents a computing platform that coordinates the feedback loop between the first two 

components.  

This computing infrastructure extends conventional application of DDDAS by inserting a generic 

computing component, the VIFI platform, between computation and instrumentation, the two key 

components of DDDAS. This extension potentially allows a wider adoption of DDDAS and better 

support of data sharing. In the following section, the key components of this VIFI platform are detailed. 

 

Virtual Information Fabric Infrastructure (VIFI) Platform 

VIFI is an open-source platform that can run on any operating system. While the final VIFI version will 

be conveyed on an open-source vault, we use the Amazon Elastic Compute Cloud (Amazon EC2) 

(Amazon Inc. 2018) for the initial implementation, testing, and assessment of the platform. In essence, 

VIFI brings analytics to locations that contain a large amount of data. VIFI allows users to access data 

already claimed by others; thus, users of VIFI have the capacity to perform a variety of analyses – 

integrating data from multiple locations, for example. VIFI permits virtual sharing of various sorts of 

testbeds, such as labs that create trial data, without requiring that raw datasets be moved that may be too 

large or sensitive to share outside the control of the primary data owners. The current implementation of 

VIFI consists of the following main components (Fig. 2 and Fig. 3): 

 Portable Analytic Container (PAC): A PAC is a lightweight virtual machine, called a 

container, that hosts software (e.g., EnergyPlus (EnergyPlus 2018)), libraries (e.g., Eppy 

Python module to communicate with Energyplus (Santosh 2018)), and any other tools or 

operating systems required by end users to analyze data. A PAC can receive and execute end 

user analysis programs if the required programs are not already contained in the PAC. 

Leveraging container technology (e.g., Docker (Miell and Sayers 2016)), a PAC is portable 

and can migrate and execute on heterogeneous host platforms. A PAC facilitates reusability 

by hosting and utilizing different analytical libraries and programs pulled from shared 
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repositories (e.g., Docker hub (DockerHub 2018)). Container technology enables the 

movement of analytics rather than the movement of data, thus alleviating problems related to 

the transfer of big data – e.g., download times and/or security requirements. Each PAC is a 

lightweight virtual machine implemented as a Docker image (DockerHub 2018) and 

containing the required libraries and support programs that are required to execute the desired 

analysis. PACs offer a number of affordances for distributed analytics: i) they can be easily 

transmitted over the network due to their limited size; and ii) they simplify analytics 

development for inexperienced clients. The VIFI infrastructure, as explained by Elshambakey 

et al. (2018), is also scalable, i.e., enabling the integration of various VIFI nodes (e.g., a BIM 

server). The ability for VIFI workflows to access fixed VIFI nodes allows VIFI to cooperate 

with non-open-source resources, assuming that a VIFI user has the proper credentials. 

 Registry Service: Distinctive PACs are stored, searched, utilized and shared through a 

Registry Service. In the current usage, a Docker hub (DockerHub 2018) is utilized to 

implement the Registry Service. Future VIFI upgrades will incorporate expansions of 

appropriated registry repositories to advance download and transfer time of PACs. 

 Orchestrator: The Orchestrator provides automatic correspondence between distinctive 

workflow segments and the coordination of infrastructure at various locales. Every segment 

can be as basic as a solitary procedure running on a host, or the host itself. In the current VIFI 

implementation, NIFI (The APACHE software foundation 2018) functions as the 

orchestrator, coordinating the execution of workflow segments across the VIFI infrastructure. 

NIFI is an open-source tool for automating and managing the flow of information between 

systems. Workflow segments can dwell on the same host or distributed hosts through NIFI 

site-to-site communication (The APACHE software foundation 2018). The VIFI orchestrator 

includes loosely coupled NIFI interaction and coordination between destinations that 

empower fault-tolerance and scalability with an increasing number of data-stores as well as 

end-users. 



10 
 

 User Node: The User Node is the passageway for a client to interface with the VIFI 

framework. The User Node provides a user interface (UI), communication, and basic 

computation capacities. The current VIFI implementation uses NIFI at every User Node to 

empower correspondence with other workflow parts, as well as workflow inception. Clients 

can plan, alter, and submit systematic contents as well as other required sources of info to 

VIFI through a NIFI web interface. 

 Data Site: Data Sites are locations in the VIFI infrastructure that have varying types of 

heterogeneous information from different sources and models. Each VIFI-empowered 

information site uses NIFI and Docker Swarm (Vohra 2017). While NIFI empowers 

appropriated coordination and correspondence between every data site and other parts of the 

workflow, Docker Swarm executes clients' contents utilizing determined PACs as Docker 

orchestrators. Consequently, Docker Swarm conveys a group of services at every data site for 

parallel investigation execution without expecting clients to have any previous knowledge of 

the framework, stages or situations at every datum site. 

 Metadata Server: The Metadata Server stores and lists gathered data and comments about 

datasets and records, which can be created by utilizing a set of enlisted extractors or 

physically included by clients and information proprietors. For movability, extractors are 

containerized as PACs.  A Metadata Server supports dataset search and discovery across 

different sites as shown in Fig. 3.  

 Crawler: The Crawler provides data crawling through extractors that send extracted data to 

the Metadata Server. 

 Watchdog: The Watchdog updates the Metadata Server for any modifications of the 

registered distributed data sets. 

Fig. 2 outlines the current VIFI implementation (Fig. 2(A)) and compares this implementation 

against conventional data-centric sharing approaches (Fig. 2(B)). Under conventional data-centric sharing 

approaches (Fig. 2(A)), users must first download data locally and then run required analytics. Under the 
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VIFI implementation (Fig.2(B)), users submit required analytics (including a Docker image and scripts) 

to data locations and then retrieve post-processed results. The example in Fig. 2 shows the execution of 

multiple requests simultaneously in both cases. 

This paper focuses on the data privacy benefits of VIFI more than the benefits of VIFI in 

handling large datasets; nevertheless, it is noted that VIFI was previously evaluated for an earth science 

application where observational (≅ 11 GB) data and model data (≅ 21 GB) were analyzed and compared 

to evaluate the fitness of the model (Elshambakey et al. 2017). In this setting, it was observed that VIFI 

consumed far less processing time than a conventional data-centric approach. This is because under VIFI, 

Docker images need be downloaded only once and then again as updates are available. The data update 

rate at each data-site under the conventional approach is expected to be much higher than the update rate 

for Docker images; accordingly, conventional users must download updated data far more often than they 

would need to update Docker images under VIFI approach. An illustration of the comparative time 

savings from VIFI execution is found in Elshambakey et al. (2017). 

 

CASE STUDY 

We use a case study to demonstrate the application of VIFI for integration of empirical data with whole 

building energy simulation in the early building design phase. The case study generates dynamic lighting 

schedules using data processing algorithms within a Portable Analytic Container (PAC). Algorithms 

extract the necessary information from empirical building data, collected from the Intelligent Workspace 

at Carnegie Mellon University. The Intelligent Workplace at Carnegie Mellon University is a living and 

lived-in research laboratory dedicated to prototyping and testing of integrative high-performance building 

technologies such as shading integrated solar photovoltaics, automated operable windows, automated 

adjustable external shading devices, and daylight controlled dimmable electric lights. Building data 

(including occupancy presence) are collected from these systems through an extensive wired and wireless 

sensor network and data acquisition systems.  



12 
 

Measured building operation data from the Intelligent Workspace are utilized remotely by a 

building energy simulation tool, EnergyPlus, via the VIFI platform. The VIFI platform facilitates the 

operation of an analysis procedure that converts the collected empirical data into hourly building lighting 

schedules. Without moving any raw empirical data from its original location, VIFI executes analytics that 

transform the raw data collected by sensors in the Intelligent Workspace every five minutes into an hourly 

lighting schedule in a specific format that is readable by the remote EnergyPlus simulation engine. VIFI 

supports the integration of this empirically-derived lighting schedule with EnergyPlus as well as the 

execution of annual energy performance simulations that reflect the schedule. 

 

Description of the Building Energy Model 

We use the small-sized commercial reference office building provided by the U.S. Department of Energy 

Building Technologies Office (Deru et al. 2011) for our case study simulations. This model has been 

developed in the format of EnergyPlus version 8.7, which has been extensively utilized for computational 

evaluations of integrated building energy performance, mechanical and electrical systems, and thermal 

interactions of building spaces with increased spatial and temporal granularity (Field et al. 2010). The 

specific small-sized office model is selected from a comprehensive database containing 16 different 

hypothetical reference building definitions, which represent about 70% of the new commercial building 

stock in the U.S. (DOE-EERE 2018). 

The DOE small office reference model is a single-story commercial office with a total 

conditioned and usable floor area of 511m2. The building has a rectangular shape and an aspect ratio of 

1.5, with its long axis on a north-south orientation (Fig. 4). Punched windows are used to represent 

vertical fenestration configurations, which are uniformly distributed to each cardinal orientation with a 

window-to-wall ratio (WWR) of 21.2% (the total window area is 59.6 m2). Thermal zone layouts are 

formed using the perimeter-core zoning approach, resulting in five thermal zones and an unconditioned 

and unoccupied attic space. The building envelope is composed of thermally massive and insulated 

construction assemblies that comply with the minimum requirements imposed by 
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ANSI/ASHRAE/IESNA Energy Standard 90.1 for non-residential building types (ASHRAE 2004). The 

thermo-physical properties of the main building envelope assemblies are listed in Table 1. The model is 

equipped with a double-pane glazing system defined in a simplified manner with U-values, solar heat gain 

coefficient (SHGC), and VT inputs of 3.241, 0.385, 0.305, respectively (including the thermal and optical 

effects of frames and dividers). Internal loading conditions pertaining to artificial lights, electrical 

appliances, and occupancy are shown in Table 2 together with outdoor ventilation rates, infiltration rates, 

and thermostatic control limits for indoors. 

The HVAC system type modeled for the building is a group of packaged single zone air 

conditioners (PSZ-AC) with single-speed direct expansion (DX) coils and compact gas furnaces for 

heating defined for each of the five thermal zones. There is no central air conditioning unit (AHU) and no 

economizers in this configuration. System fans are of the constant volume type without variable speed 

drivers (Table 3). The reference office model is simulated under the environmental boundary conditions 

for the location of Pittsburgh, PA, USA. A detailed statistical climate summary is shown in Table 4. 

 

VIFI Implementation of the Case Study  

Fig. 5 shows the VIFI implementation of the case study. Although the case study was implemented on the 

Amazon EC2, the authors emulated a distributed environment as in actual applications, including a 

building information model (BIM) server, a user node, a data server, and an energy server. The BIM 

server contains the BIM of the case building. The user node represents the location where building 

designers and engineers work. The data server represents the access point to empirical data, where raw 

lighting schedule data are stored in this case. The energy server is where EnergyPlus is located.  

The current capability of VIFI can be extended by incorporating fixed VIFI nodes (e.g., the BIM 

server and the EnergyPlus server) where analytics do not have to run inside containers (Elshambakey et 

al. 2017). The ability of VIFI workflows to access fixed VIFI nodes allows VIFI to cooperate with non-

open-source resources given that a VIFI user has the proper credentials. The services provided by the 

BIM server, the data server(s), and the energy server are registered with VIFI so that a user can determine 
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what operations or analytics are available for their applications. In the case study, the following 

operations and analytics are registered with VIFI first in the PAC registry (Fig. 5): 

1. the BIM server (fixed VIFI node):  accepts requests to create an input data file (IDF) based on 

the BIM model for energy simulations and returns an IDF;  

2. the data server: creates and returns hourly lighting schedules based on the raw data; and   

3. the energy server (fixed VIFI node): accepts an IDF and returns energy simulation results. 

     The following is the workflow of the VIFI implementation of the case study: 

1. Steps 1 and 2: a building designer or engineer contacts the BIM server (i.e., Step 1) to get an 

EnergyPlus Input Data File (IDF) (i.e., Step 2), which contains default schedule settings. At 

this point, some or all parts of the IDF need to be updated based on proper data analysis (e.g., 

lighting schedule or occupancy schedule). In this case study, the BIM server was accessed 

directly to simplify the implementation. In future implementations, the BIM server can be 

implemented as a fixed VIFI node that does not require a PAC to access. Sharing a BIM 

directly with all partners is a conventional data-centric strategy; therefore, the building 

designer or engineer can access BIM on a shared network. The integration of BIM with VIFI 

represents an extension to the conventional data sharing strategy. The new strategy (i.e., 

sharing analytics) and the conventional strategy (i.e., sharing data directly) are 

complementary to each other and can work hand-in-hand to solve practical problems.    

2. Steps 3, 4, and 5:  These steps create an IDF that better reflects design or operation 

conditions. In Step 3, the building designer or engineer searches for lighting schedules that 

best match the design or operation conditions that he or she expects. The metadata server of 

VIFI (Fig. 3) helps identify relevant data sources that are accessible through VIFI. In the case 

study, the authors assume that the collected data source from the Intelligent Workspace 

represents the best match.  

Once the data source or sources are identified, the building designer or engineer sends a 

request to the data source(s) to generate the required schedule in Step 4. In the case of energy 
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simulations, the operations needed to develop better schedules are implemented as standard 

analytics in VIFI. The analytics are small-sized applications that run inside Docker containers 

(Miell and Sayers 2016) using Docker Swarm (Vohra 2017). Docker containers are produced 

using Docker images hosted at different VIFI registries (e.g., Docker hub (DockerHub 

2018)). Docker images contain all required libraries/dependencies to run the user’s analytics. 

Thus, end users such as a building designer or engineer do not have to worry about 

configuration of the required analytics.  

The analytics are executed on data at the data source(s). In the case study, the raw data are 

collected by sensors every five minutes continuously over multiple years at the Intelligent 

Workspace.  The raw data cannot be used by others directly for different reasons: 1) the 

occupancy or lighting schedule requires hourly data but the raw data are collected every five 

minutes; 2) the data may be in different format and schemas (e.g., csv, gbXML 

(GreenBuildingXML 2018), obXML (Hong et al. 2015a; Hong et al. 2015b)) from what is 

needed for creating the IDF; 3) the raw data  may contain data that are irrelevant to the 

analysis; and 4) the data are too sensitive to share in their raw format as they may 

compromise occupant privacy.  Thus, instead of downloading data from the Intelligent 

Workspace to the building designer’s or engineer’s local site, the data owner (Carnegie 

Mellon University (CMU) in this case) can publish the analytics that are allowed to operate 

on its data sources to VIFI and the building designer or engineer can find the analytics at the 

PAC registry.   The building designer or engineer then uses the analytics to access data and 

obtain the desired schedule updates. Importantly, this approach does not require a user to 

have significant knowledge about programming, so the person can stay focused on the main 

simulation tasks.   

Once the building designer or engineer receives the updated hourly lighting schedule, the 

original IDF is updated with this new information in Step 5.  
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3. Steps 6 and 7: Finally, the updated IDF file is used to run energy simulations using the 

EnergyPlus server (Cao et al. 2011) in Step 6. In Step 7, the building designer or engineer 

receives simulation results.  

Creating, Sharing, and Executing Analytics 

Currently VIFI supports two mechanisms for creating, sharing, and executing analyses. The first 

mechanism uses Docker containers to encapsulate the analytics. This mechanism supports the reusability 

of different analysis applications and building new analytics from existing ones. The second mechanism 

uses a fixed point VIFI node to host a specific software such as a BIM or the EnergyPlus server. Fixed 

point VIFI nodes are useful in cases where VIFI must interact with software that is difficult to 

containerize (e.g., proprietary software without available Docker images).  

Fig. 6 shows the sample application of the first mechanism to create a lighting schedule for 

energy simulation. The authors used lighting schedules as an example in the case study to demonstrate 

creating, sharing, and executing analytics - lighting schedules are one of many input schedules to 

EnergyPlus. Analytics take the form of a dedicated Python script that generates a lighting schedule in IDF 

(Input Definition File) format using the empirical data collected at CMU. The input to this analytics script 

is a file in CSV format with two columns: the first column contains timestamps, and the second column 

indicates the artificial light status, either on or off as recorded by sensors. The output is a whole year 

Schedule:Compact IDF object. Between the input and the output, the analytics perform data parsing and 

extraction using the Python Pandas library. The script is generic and can thus be shared among different 

application cases to create improved lighting schedules. 

 The implementation of the second mechanism is straightforward. The Eppy Python module 

(Santosh 2018) was used to integrate non-open-source software such as EnergyPlus with VIFI. In the case 

study, the Linux-based EnergyPlus Server, version 8.7.0 (EnergyPlus 2018) is used. The EnergyPlus 

Server runs the energy simulation based on the updated IDF file and returns the energy use of the sample 

building. 
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Simulations and Results  

To demonstrate the usefulness of VIFI platform in improving building energy simulations from the point 

of occupancy representativeness, the authors performed a series of simulation runs using comparable 

models. A baseline simulation model representing common energy modeling practices uses a standard 

lighting schedule provided by the Building Technologies Office of the U.S. Department of Energy. Other 

simulation models use empirically-derived lighting schedules derived based on three occupancy profiles, 

i.e., a professor, a graduate student, and a postdoctoral researcher. The standard lighting schedule lacks 

relevance to actual design or operational conditions, while empirically-derived schedules hold certain 

relevance to specific design or operation conditions.  The main objective of this demonstration and 

subsequent comparative analyses is to reveal the impact of using empirically-derived schedules on the 

predictive capability of whole-building energy models. In turn, the impact shows the importance of using 

VIFI to improve building energy simulations. 

Fig. 7 clearly indicates that empirically-derived electric lighting schedules pertaining to different 

occupancy types do not match well with standardized schedules (shown in dashed lines), which lack 

dynamism within a typical weekday. The results also signify the need to use design-specific or building 

case-specific operational schedules to enhance the predictive capability of building energy models. 

Meanwhile, empirically-derived lighting schedules also show some degree of variations among 

themselves, which is due to highly varied space use styles for the selected occupant types. Compared to 

the graduate student (with 1,633 hrs of occupancy), the user types of professor and post-doctoral 

researcher spend much more time in their offices with occupied hours of 3,094 hrs and 2,676 hrs, 

respectively. However, all occupancy time is shorter than the assumption of standard schedules, 5,097 hrs 

in a typical year.  

Given fractional hourly schedules, which are drawn from the outputs from EnergyPlus’ annual 

energy simulation runs, the authors calculated the cumulative power fraction (CPF) for electric lighting 

systems, defined as the sum of the number of hours in a year when systems are operating in full power, 

and conducted the comparisons shown in Table 5. The CPF metric together with its derivative of Full 
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Power Equivalent (FPE = CPF/8,760) metric revealed that while occupancy types of professor (Type I) 

and postdoc (Type III) had very close CPFs compared to the standardized schedule, there existed a 

considerable deviation for the graduate student (Type II) with a 45% change from the standard CPF, i.e., 

2,863. This is due to the fact that Type I and Type III have similar peak power levels to those of the 

standard schedule while Type II shows variations in peak power, its frequency, and event timing. 

It is clear that with similar CPF and FPE metrics, the annual lighting energy consumption of Type 

I (professor) is very close to the model alternative using a standard schedule (only -0.7% deviation 

observed between the two). Type III (post-doc) occupancy type has an CPF and FPE of 2,437 and 0.28 

respectively for lights, which results in about 14.9% decrease in annual lighting energy consumption 

compared to the standardized schedule model. Simulation results for Type II (grad student) show 

significant departures from the standard schedule model with deviations of up to -45.7% for lighting 

energy consumption.  

To demonstrate the dynamic effects of alternative hourly lighting schedules on cumulative energy 

performance, we performed annual energy simulations facilitated by the VIFI platform. Annual site 

energy consumption levels for the end uses of space heating, cooling and electric lighting (kWh) are 

extracted from annual EnergyPlus simulation runs for comparison purposes (Fig. 8).  It should be noted 

that since the lights in a building energy model contribute to internal heat gains, deviations in the 

predictions of the energy models are also found in space heating and cooling energy consumptions. For 

example, results in Fig 8 indicate that due to reduced usage of lights in the Type II (grad student) model, 

annual space heating energy was increased by 16%, while annual space cooling energy was reduced by 

17% compared to the standard schedule model. While such increments and decrements appear to balance 

each other out in the particular climate zone (Pittsburgh, PA), where heating dominates, such effects 

would have important implications for cooling energy savings estimates in cooling-dominated climates. 

 

Discussion 
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Our case study demonstrates three key attributes of the VIFI computing infrastructure. First, the case 

study shows the technical feasibility and application potentials of integrating data-centric and analytic-

centric sharing strategies. In the building industry, data-centric sharing has been the norm and 

technologies such building information models are vehicles allowing stakeholders to directly share data 

created by others. The case study shows that VIFI complements the conventional approaches by utilizing 

both data and analytics for sharing purposes. This capability may allow building designers and engineers 

to access more data than what conventional methods such as building information models can provide. 

Second, the case study shows the VIFI platform enables the use of empirically-driven operational 

building schedules for energy performance simulations instead of relying on pre-determined and generic 

schedules, which have no apparent contextual and occupational relevance to building design and 

operation characteristics. Such an approach can significantly affect the predictive ability and 

representativeness of energy performance models and can be a critical element of model calibration and 

validation procedures. Third, the case study has demonstrated the technical feasibility of the creation, 

sharing, and execution of analytics that can be executed across distributed sites (e.g., the BIM server, the 

data server, and the energy server). This capability is at the core of the VIFI platform and its proposed 

computing infrastructure.   

Furthermore, the case study demonstrates that the VIFI platform can be instrumental to the 

automation of specific labor-intensive energy modeling tasks (e.g., repeated development of annual 

hourly schedules for different building spaces with list lengths as high as 8,760 elements). Such 

automation not only reduces human errors but also speeds up the process of model development and 

interpretation of results. Additionally, the VIFI computing infrastructure can be instrumental to model-

based building control applications, which carry building energy models from the design stage through to 

the operational stage in order to perform predictions across a specific time horizon, allowing optimal 

control of building mechanical and electrical systems for increased energy efficiency and occupant 

comfort. 
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CONCLUSIONS AND FUTURE RESEARCH 

This study has demonstrated the potential of the VIFI open computing infrastructure to offer a novel, 

analytics-based data sharing strategy that complements conventional data-centric strategies. By sharing 

analytics on data, the new strategy points towards a future where empirical data from existing building 

operations are closely connected with decision-making processes that drive building design and operation 

through additional cyberinfrastructure. The study has demonstrated many possibilities for using this novel 

infrastructure to enhance building performance simulations. For example, the study shows the potential 

for the VIFI platform to support both data and analytic-centric sharing. This new strategy bears significant 

implications for the building design and engineering community, where data fragmentation has been 

recognized as a major challenge to data sharing. As shown in the case study, designers and engineers can 

access both a building information model and empirical data in an integrated manner through VIFI. This 

strategy enables designers and engineers to access a larger pool of data that are not only more relevant to 

improving their simulations, but may also set the foundation for future applications of advanced methods 

such as machine learning to transfer knowledge that is gained during building operations back to new 

building designs.  

This study only examined the functional capabilities of the open computing infrastructure,  and 

many other aspects related to the infrastructure require further research. For example, our case study was 

implemented with the help of computer scientists who are technical experts in deploying and 

implementing applications using VIFI. Looking ahead, it is critical that the VIFI platform is useful to 

those in design and engineering domains who do not have the technical background to understand 

technical details of the proposed infrastructure such as the PAC and registry. Therefore, a user-friendly 

workflow process is important to develop for future VIFI implementations.  In addition, while the VIFI 

platform does not need data owners to share data per se, a certain level of access to data needs to be 

granted to outside users in order for the VIFI analytics to work on the datasets. This requirement goes 

beyond the issue of addressing data privacy and security issues, bringing forth more fundamental 

questions about the motivation and benefits of sharing data. Rich datasets are needed for access by VIFI 
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analytics in order to realize the full benefits of the proposed infrastructure, and the incentives for creating 

and sharing such datasets must be improved.  For example, “information as commodity” (Smith 1983) 

provides an interesting idea to drive data creators and users to share data. Such an idea can be pilot-tested 

in a small community, such as those working on the development and initial applications of VIFI. 

Experimentation with this idea may shed more light on how to increase the sharing of data, which is 

important to other VIFI functions. Another important issue to be explored is the quality of metadata, 

which plays a significant role in searching for, reusing, and executing analytics on the VIFI platform. 

Although metadata are not addressed in this case study, this topic has been discussed for decades in the 

buildings research community and as a result many metadata schemas are available, for example: 

gbXML, Industry Foundation Classes (IFC), obXML, and CityGML. The VIFI research community must 

develop a strategy for building from such existing metadata schemas and integrating new concepts as 

needed to support VIFI applications. Finally, there is a need to develop a set of performance metrics to 

measure the benefits and risks of using the VIFI infrastructure; these metrics should include technical, 

economic, and social measures at the individual, company, and society levels.      
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