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An adaptive modeling method (AMM) that couples a deep neural network potential and a classical
force field is introduced to address the accuracy-efficiency dilemma faced by the molecular simulation
community. The AMM simulated system is decomposed into three types of regions. The first type
captures the important phenomena in the system and requires high accuracy, for which we use the
Deep Potential Molecular Dynamics (DeePMD) model in this work. The DeePMD model is trained
to accurately reproduce the statistical properties of the ab initio molecular dynamics. The second
type does not require high accuracy and a classical force field is used to describe it in an efficient way.
The third type is used for a smooth transition between the first and the second types of regions. By
using a force interpolation scheme and imposing a thermodynamics force in the transition region,
we make the DeePMD region embedded in the AMM simulated system as if it were embedded in
a system that is fully described by the accurate potential. A representative example of the liquid
water system is used to show the feasibility and promise of this method.
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I. INTRODUCTION

The molecular simulation community are often faced
with the accuracy-efficiency dilemma: the atomic inter-
action in the ab initio molecular dynamics (AIMD) [1]
is accurately modeled by the density functional theory
(DFT) [2–4], but the extensive computational cost that
typically scales cubically with respect to the number of
atoms limits its applications to system size of a few hun-
dreds of atoms and simulation time of a few hundreds
of picoseconds. On the other hand, molecular dynamics
(MD) with atomic interaction modeled by classical force
fields (FFs) can easily scale to millions of atoms, but the
accuracy and transferability of classical FFs is often in
question.

For a large class of MD applications, people have been
addressing this dilemma by multi-scale modeling. In
these applications, only the accuracy of part of the sys-
tem is crucial to the phenomena of interest. Taking
the problem of protein folding as an example, the accu-
racy of modeling the interactions within protein atoms
and the interaction between the protein and nearby
solvent molecules dominates the conformation of the
protein and the folding process. Therefore, a natural
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idea of saving the computational cost while preserving
the accuracy is to model the protein and nearby wa-
ter molecules by an accurate but presumably expen-
sive model, whereas to model other water molecules
by a cheaper model. Methods of particular interest
are the hybrid quantum mechanics/molecular mechanics
(QM/MM) approach [5, 6], which combines QM mod-
els and classical molecular models, and the adaptive-
resolution-simulation (AdResS) technique [7, 8], which
combines atomic models and coarse-grained models. It
is noted that interpolating the force from different mod-
els is commonly used in the multi-scale modeling meth-
ods, for example, the force-mixing QM/MM method [9–
12], the force interpolation AdResS for classical [7, 13]
or path-integral MD [14, 15], and the force-blending
atomistic-continuum coupling methods [16–19].

Recently, machine learning (ML) methods have
brought in another solution to this dilemma [20–28]. Af-
ter fitting the AIMD data, these approaches target at
an accurate and much less expansive potential energy
surface, thereby eliminating the need of calculating elec-
tronic structure information on the fly. A representa-
tive example is the Deep Potential Molecular Dynam-
ics method (in abbreviation, DeePMD) [27, 28] that the
authors recently developed with collaborators. In this
scheme the many-body potential energy is a sum of the
“atomic energies” associated to the individual atoms in
the system. Each one of these “atomic” energies de-
pends analytically, via the deep neural network repre-
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sentation, on the symmetry-preserving coordinates of the
atoms belonging to the local environment of each given
atom. Upon training, DeePMD faithfully reproduces the
distribution information of trajectories from AIMD sim-
ulations, with nuclei being treated either classically, or
quantum mechanically (by path-integral MD).

With the promising features of the ML methods, sev-
eral problems have motivated us to develop an adaptive
method that concurrently combines an ML model with a
classical FF. Throughout this paper we use the DeePMD
method as an example. First, accurate training data is
expensive and the amount of data is often limited to small
number of atoms and conformations. In addition, for
large and complex systems usually we do not have the full
QM description but only a part of it. Therefore, a practi-
cal expectation on the DeePMD model should be that it
is trained to be accurate in the important regions under
study, whereas the remaining regions could be described
by a more simplified classical model. Second, since the
DeePMD model is essentially a many-body potential, the
evaluation of energy, force, and virial requires much more
floating point operations than classical pairwise poten-
tials. Taking the liquid water system for example, the
DeePMD model is about two orders of magnitudes more
expensive than classical TIP3P [29] water model [28].
Therefore, given the same computational resource, the
maximal system size that is tractable by the DeePMD
model is two orders of magnitudes smaller than that is
described by the TIP3P model, or the longest simulation
time achievable is two orders of magnitudes shorter than
that of the TIP3P model. This imposes a limitation on
the spacial and temporal scales of the problem if it is only
described by the DeePMD model. Finally, the energy de-
composition scheme adopted by the DeePMD model and
many other ML methods provides a natural way of doing
adaptive modeling. This would make the boundary prob-
lem in QM/MM due to boundary conditions adopted by
electronic computations much less severe. It should be
noted that, electronic structure information, as a natural
output of the QM/MM method, will be missing when we
perform MD using only an ML model or a classical FF
model. Therefore, we shall limit ourselves to cases that
are well described by the potential energy surface and are
less sensitive to electronic degrees of freedoms.

In this work, we introduce an adaptive modeling
method (AMM) and numerically prove its feasibility in
terms of adaptively changing the model for a molecule,
depending on its spacial position, from the DeePMD
model to a classical model, or vise versa. The system
is divided into DeePMD regions and classical regions.
Different regions are bridged by transition regions where
the model of a molecule changes smoothly. The equilib-
rium between the regions are ensured by the thermody-
namic force applying in the transition region. We demon-
strate, by using liquid water as a representative example,
that the density profile, the radial distribution functions
(RDFs), and angular distribution functions (ADFs) in
the DeePMD region is in satisfactory agreement with the

corresponding subregion of a full DeePMD reference sys-
tem. Therefore, the DeePMD region is embedded in the
AMM system as if it were embedded in a full DeePMD
system. The statistics of the DeePMD region approx-
imates the grand-canonical ensemble in the thermody-
namic limit.

II. METHOD

The AMM simulation region is decomposed into three
types of non-overlapping regions: DeePMD regions ΩD

where the many-body atomistic interactions are modeled
by the DeePMD scheme [28] , classical regions ΩC where
the interactions are modeled by a classical FF model, and
transition regions ΩT of uniform thickness dT that bridge
the DeePMD regions and the classical regions. See an
illustrative example in Fig. 1. Here we only consider one
DeePMD region, one classical region, and the transition
region between them. The case of multiple DeePMD or
classical regions can be generalized without substantial
difficulty.

We define a reference system, whose only difference
with the AMM system is that it is fully described by the
DeePMD model in the whole simulation region. Our goal
is to embed the DeePMD region in the classical region as
if it were embedded in a system that is fully modeled by
the DeePMD. In other words, the equilibrium statistical
property of the DeePMD region should mimic that of
the corresponding subregion in the reference system. In
this sense, since the subregion of the reference system
is subject to the grand-canonical ensemble as the size of
the system goes to infinity, the statistics in the DeePMD
region approximates the grand-canonical ensemble, and
the AMM is a grand-canonical-like molecule dynamics
simulation.

In the AMM scheme, we use a force scheme to fulfill
the goal. We define the force F i on each atom i as a
summation of three components:

F i = F I
i + FL

i + FT
i , (1)

where F
I
i is an interpolated force between the DeePMD

and the classical model, FL
i is a stochastic force from a

Langevin thermostat that controls the canonical distri-
bution, and F

T
i is a thermodynamic force that balances

the density profile of the whole AMM simulation region.

In the following we define and discuss in more details
the three terms in the definition of F i. For the inter-
polated force F I

i, we define a position dependent char-
acteristic function w(r), which takes a constant value 1
in the DeePMD region and 0 in the classical region, and
changes smoothly from 1 to 0 in the transition region.
The way of defining the characteristic function w(r) is
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not unique, and here we use:

w(r) =



















1 r ∈ ΩD

1

2
(1 + cos

[πd(r,ΩD)

dT

]

) r ∈ ΩT

0 r ∈ ΩC,

(2)

where d(r,ΩD) = mins∈ΩD
|r − s| is the closest distance

from the position r to the boundary of the DeePMD
region. Then F I

i is defined as a linear interpolation,
through w(r), between the DeePMD force and the clas-
sical force, i.e.:

F
I
i = w(R(r i))F

D
i + [ 1− w(R(r i)) ]F

C
i (3)

where FD and FC denote the DeePMD force and the
classical force, respectively, and R(·) denotes the char-
acteristic position of atom i. In general, R(·) can be
directly defined as an identity mapping. However, in
our test example of the water system, we observe that
defining R(·) as a mapping from the atomic position to
the molecular center-of-mass (COM) will stabilize the nu-
merical issue caused by the rigidness of the classical wa-
ter model. Based on similar considerations, for macro-
molecules, R(·) can be, e.g., a mapping from atomic po-
sitions to the residue COM. In addition, we note that
instead of a force-interpolation scheme, it is possible to
do an energy-interpolation scheme, which conserves the
total interpolated energy at the cost of momentum con-
servation [30]. The equivalence of the two approaches in
terms of equilibrium statistical properties is extensively
discussed in Ref. [31]. Here we focus on the force inter-
polation approach.
The Langevin term FL

i is defined as

FL
i = −γpi +

√
miσẆ , (4)

where pi andmi denote the momentum and mass of atom
i, respectively. W denotes the standard Wiener process,
the friction γ and the noise magnitude σ are related by
the fluctuation-dissipation theorem σ2 = 2γkBT , with
kB being the Boltzmann constant and T being the tem-
perature.
The accuracy of the AMM is investigated by compar-

ing the statistical properties of the DeePMD region with
those of the corresponding region in the full DeePMD
reference system. Due to the difference in the defini-
tion of the DeePMD model and the classical model, an
imbalance of pressure on the transition region exists,
which in general will result in an unphysical gap of den-
sity profile of different regions, and other higher-order
marginal distributions of the configurational distribution
functions. This can be systematically improved by re-
quiring the marginal probability distributions of differ-
ent orders in the transition region identical to those in
the full DeePMD model [32]. The first-order marginal
distribution, the density profile, is corrected by the one-
body thermodynamic force FT

i [13]. In practice, FT is

FIG. 1: Schematic plot of an adaptive model system. From
left to right, are the classical, transition, DeePMD, transition
and classical regions. The blue curve presents the shape of
the characteristic function w(r).

computed by an iterative scheme:

F
T
k+1(R) = F

T
k (R)− α

κρ2
∇ρk(R), (5)

where ρ denotes the equilibrium number density, ρk(R)
denotes the density profile at the k-th iteration step, κ
denotes the isothermal compressibility, and α denotes
a damping prefactor. By using the iterative scheme of
Eq. (5), the converged thermodynamic force will lead to
a flat density profile in the system, which indicates the
equilibration between the DeePMD region and the clas-
sical MD region. Higher-order corrections in the transi-
tion region, e.g. the correction of the radial distribution
function (RDF), are possible by using the RDF correc-
tion to the transition like that proposed in Ref. [33]. In
this work, we do not consider the RDF and higher orders
corrections, and demonstrate, by the numerical example,
that the properties in the DeePMD region is satisfac-
torily accurate by only using the thermodynamic force
correction.

III. SIMULATION PROTOCOL

In this work the AMM scheme is demonstrated and
validated by a water system. In total 864 water
molecules are simulated in a cubic cell of size 7.4668nm×
1.8667nm× 1.8667nm and subject to periodic boundary
conditions. As shown in Fig.1, the model only changes
along x axis. In a copy of the simulation cell, the
DeePMD region of width 2.0 nm locates at the center
of the simulation region xc = 3.7334 nm, and the thick-
ness of the transition region is dT = 0.3 nm. It is noted
that this thickness is smaller than those usually used in
AdResS methods [7, 8], i.e. twice of the cutoff radius.
Therefore, on average there are roughly 115, 70, and 678
water molecules in the DeePMD region, the transition
region, and the classical region, respectively. The damp-
ing prefactor and the compressibility in Eq. (5) are set
to 0.25 and 4.6 × 10−5 Bar−1, respectively. The rest of
the system belongs to the classical region, in which the
water molecules are modeled by a flexible SPC/E force
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field [34]. The details of the force field are provided in Ap-
pendix A. In this work, the atoms are modeled by point-
mass particles in both of the DeePMD and classical water
models. The whole system is coupled to a Langevin ther-
mostat of lag-time 0.1 ps (as a rule of thumb, the friction
is set to 10 ps−1 [35]) to keep the temperature at 330 K.
One practical but important issue is that, the equi-

librium covalent bond length of the DeePMD model is
not identical to that of the classical force field. When a
molecule leaves the DeePMD region and enters the tran-
sition region, the classical force field switches on, and the
mismatched bond length will lead to a bond force with
large magnitude. This may cause the difficulty of equili-
brating the bond length in the transition region. One so-
lution is to use a small enough time step, so the prefactor
w(R(r i)) is small to suppress the large bond force as the
molecule enters the transition region. Another solution,
which we use in this work for the simulation efficiency, is
to slightly modify the force interpolation scheme (3) as

F̃ i

I
= w(R(r i))F

D
i + [ 1− w(R(r i)) ]F

C,nb
i

+max{εp, 1− w(R(r i)) }FC,b
i , (6)

where F
C,nb and F

C,b are the non-bonded and bonded
contributions to the classical force field, respectively. εp
is the shape protection parameter, and we take εp = 0.01
in this work, if not stated otherwise. With the shape
protection parameter, the force in the DeePMD region

is thus modified as FD
i + εpF

C,nb
i , so the molecular

shape of the classical force field is partially preserved in
the DeePMD region, thus the equilibration of the bond
length is much easier when the molecule enters the tran-
sition. Since the protection parameter εp is small, the
molecular configuration in the DeePMD region is not
substantially perturbed. It is noted that in the numerical
example, we do not observe any difficulty of equilibrating
the covalent bonds when a molecule leaves the classical
region and enters the transition region, because the in-
tramolecular part of the DeePMD interaction is much
softer than the classical force field.
The data for training the DeePMD water model was

generated by a 330 K NVT AIMD simulation of a 64-
molecule bulk water system with PBE0+TS exchange-
correlation functional under periodic boundary condi-
tion. The total length of the AIMD simulation is 20 ps,
and the information of the system was saved every time
step of 0.5 fs, thus 40,000 snapshots of the system is
available. Among the data, 95%, i.e. 38,000 snapshots,
are used as the training data, while the rest 2,000 snap-
shots are used as testing data. The cut-off radius of
the DeePMD model is 0.6 nm. The descriptors (net-
work input) contain both the angular and radial infor-
mation of 16 closest oxygen atoms and 32 closest hy-
drogen atoms. The descriptors contain only the radial
information for the rest of neighbors in the cut-off ra-
dius. The deep neural network that model the many-
body atomic interaction has 5 hidden layer, each of which
has 240, 120, 60, 30, 10 neurons from the input side

0.92

0.96

1.00

1.04

1.08

-3 -2 -1  0  1  2  3

ρ(
x)

 / 
ρ 0

x - xc [nm]

DeePMD SPC/ESPC/E
Trans.Reg.Trans.Reg.

FIG. 2: The density profile of the AMM simulation. The den-
sity is averaged along the y and z directions, and the profile is
displayed against the x axis. The solid line is the density pro-
file, and the light shadow denotes the statistical uncertainty
of the density profile at the 95% confidence level.

to the output side, respectively. The model is trained
using the DeePMD-kit package [36]. The detailed de-
scription of the training process is available in Ref. [36].
At the end of the training, the root-mean-square errors
of the energy and force evaluated by the testing set are
0.44 meV (i.e. 0.042 kJ/mol, normalized by the number
of molecules) and 2.4× 10−2 eV/Å (23 kJ/mol/nm), re-
spectively.

IV. RESULT AND DISCUSSION

Since our goal is to make the DeePMD region in the
AMM system as if it were embedded in a full DeePMD
system, the essential check should be made by comparing
the configurational probability density of the DeePMD
region of the AMM system with that of the correspond-
ing subregion of a full DeePMD reference system. The
high-dimensional configurational probability density de-
fined in the phase space can not be easily compared, but
the marginal probability densities can be directly com-
puted from MD trajectories, and compared with those
from the reference system. The agreement of the first-
order marginal probability density is checked by the den-
sity profile along the x-axis, because the system is homo-
geneous on the y- and z-directions. The agreement in the
second-order marginal probability density is checked by
comparing the oxygen-oxygen (O-O), oxygen-hydrogen
(O-H), and hydrogen-hydrogen (H-H) RDFs. In addi-
tion, we check the agreement of the third marginal prob-
ability density in terms of the ADFs of oxygen atoms
defined up to several cut-off radii. In this work, both the
AMM system and the full DeePMD reference system are
simulated for 2000 ps. The first 200 ps of the trajectories
are discarded, and the rest of the MD trajectories are
considered to be fully equilibrated. The configurations
of the systems are recorded every 0.1 ps, and the den-
sity profile, RDFs, and ADFs are computed from these
configurations.
We report the density profile of the AMM system along

the x-axis, and compare it with the equilibrium density of
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FIG. 3: The RDFs of the DeePMD region of the AMM simu-
lation (solid lines) compared with the RDFs of the reference
simulation (DeePMD, dotted lines). The RDFs of the AMM
simulation are presented by solid lines, while those of the
reference simulation are presented by dotted lines. The in-
sert of the bottom panel presents the error in the O-H bond
length distribution. The solid green line shows the case of
dT = 0.3 nm and εp = 0.01, while the dashed green line
shows the case of dT = 0.9 nm and εp = 0.001.

the DeePMD model (denoted by ρ0) in Fig. 2. The equi-
librium profile in the DeePMD region is almost a constant
and is in satisfactory agreement with the equilibrium den-
sity of the full DeePMD result. The density profiles in
the transition regions and in the SPC/E region are also
very close to the equilibrium density. The worst-case
deviation, with the statistical uncertainty considered, is
4% from the equilibrium density. This indicates that the
DeePMD region is embedded in the AMM system with
a similar environment as a full DeePMD system, in the
sense that the density profile of the environment is close
to the equilibrium density of the DeePMD model.

The O-O, O-H, and H-H RDFs of the DeePMD re-
gion in the AMM system is reported in the top panel of
Fig. 3. All the RDFs are compared with the those com-
puted from the corresponding subregion of the reference
system, and the differences are presented in the bottom
panel of Fig. 3. The AMM scheme reproduces the inter-
molecular parts of the RDFs with satisfactory accuracy.
It is noticed that the O-H RDF at around 0.1 nm, which
corresponds to the intramolecular O-H bond length dis-
tribution, deviates from the reference system. This devi-
ation is due to the introduction of the shape protection
term in the force interpolation (6). In other words, when
a water molecule diffuses from the classical region to the
DeePMD region, a relaxation time is needed to equili-
brate the O-H bond length. As pointed out by the
anonymous referee, it is possible to alleviate the problem
by using a larger transition region. In this study, we test
the case of transition region width dT = 0.9 nm, which

 0
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FIG. 4: The ADFs of the DeePMD region of the AMM simu-
lation (solid lines) compared with the ADFs of the reference
simulation (DeePMD, dotted lines). In the top panel, the
ADFs of the AMM simulation are presented by solid lines,
while those of the reference simulation are presented by dot-
ted lines. In the bottom panel, the difference between the
ADFs of the AMM and reference simulations are shown.

allows a protection parameter that is 10 times smaller,
viz. 0.001. With this milder shape protection, the O-H
bond distribution is restored in a better quality in the
DeePMD region (see the insertion of the bottom panel
of Fig. 3). It is noted that the protection parameter can
be further reduced by using a larger transition region,
however, the computational cost of the AMM simulation
will also increase correspondingly. This issue will be dis-
cussed later in this article.
The ADF is defined by

Prc(θ) =
1

Z

〈

∑

i

∑

j,k∈N (i,rc)
j 6=k

δ(θ − θjik)
〉

(7)

where N (i, rc) denotes all the neighboring atoms of i
within a cut-off radius rc, θjik denotes the angle formed
by the atoms j, i and k, 〈·〉 denotes the ensemble av-
erage, and Z denotes the normalization factor so that
∫

Prc(θ)dθ = 1. In Fig. 4 we report the oxygen ADF of
the DeePMD region of the AMM system at various cut-
off radius rc = 0.270, 0.370, 0.456, and 0.600 nm. All
the results are compared with the reference system, and
the differences between the AMM and the reference sys-
tem are presented in the bottom panel of the figure. The
ADFs of the DeePMD region in the AMM system is in
satisfactory agreement with the reference system.
In addition, we further investigate the RDF and ADF

as a function of positions, and plot the error of the RDF
and the ADF investigated in different subregions of the
DeePMD region. As shown by Fig. 5, the overall devia-
tions of either the RDF or the ADF compared with the
benchmarks are very small. However, also as expected,
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FIG. 5: The error of the O-O RDF (top panel) and ADF
(rc = 0.37 nm, bottom panel) investigated in different subre-
gions of the DeePMD region, i.e. regions I and II. The whole
DeePMD region is of width 2.0 nm. The region I is of width
1.0 nm, and the region II is of width 0.5 nm.

the deviation in the region closer to the transition region
(Region II) is larger than the deviation lying inside the
DeePMD region (Region I).
The computational cost of AMM simulation is domi-

nated by the computation of the atomic interactions, and
is estimated by T = TD + TC, where TD and TC denotes
the computational costs of the DeePMD and classical
forces, respectively. Since both the DeePMD and clas-
sical forces are linearly scalable, the costs are estimated
by TD = CD(ρ)ND and TC = CC(ρ)NC, where ND and
NC denotes the number of atoms on which the DeePMD
and classical forces are computed, respectively. CD(ρ)
and CC(ρ) are density dependent parameters, which are
independent with the number of molecules. We assume
the system is well equilibrated, so that the number of
atoms are estimated by ND = ρ(VD + VT + VB), where
VD and VT denote the volumes of DeePMD and transi-
tion regions, respectively. The DeePMD force depends
on the network derivatives of the neighbors in the cut-
off radius rc [36], therefore, the network derivatives are
evaluated for the atoms in a buffering region of width rc
outside the transition region, and the computational cost
of this part is estimated by ρVB . Similarly, the compu-
tational cost of the classical force evaluation is estimated
by NC = ρ(VC + VT). In the end, we have

TAMM = C̃D(ρ)(VD + VT + VB) + C̃C(ρ)(VC + VT) (8)

where C̃D(ρ) = ρCD(ρ) and C̃C(ρ) = ρCC(ρ). The con-

stants C̃D(ρ) and C̃C(ρ) can be estimated by short sim-
ulations of small DeePMD and classical systems of the
same density. It is noted that using a larger transition

region improves the accuracy of AMM, but at the same
time, the extra computational cost grows linearly with
respect to the size of the transition region. Thus, the
size of the transition region should be kept as small as
possible, as long as the accuracy of AMM is still satisfac-
tory.
The ratio of the computational cost of the AMM over

the full DeePMD simulations is

TAMM

TDPMD
≈ VD + VT + VB

Vsys
+

C̃C(ρ)

C̃D(ρ)

VT + VC

Vsys
, (9)

where Vsys = VD+VT+VC is the volume of the whole sys-
tem. At the limit of infinitely large classical region, the
ratio converges to C̃C(ρ)/C̃D(ρ), while at the limit of in-
finitely fast classical force field evaluation, the ratio con-
verges to (VD + VT + VB)/Vsys. Therefore, C̃D(ρ)/C̃C(ρ)
and Vsys/(VD + VT + VB) are the highest acceleration ra-
tion that one obtains from using the AMM method, at
the corresponding limits.
In our example, the constants C̃D(ρ) and C̃C(ρ) are

7.6×10−3 s/nm3/step and 1.2×10−3 s/nm3/step on one
core of an Intel Xeon Gold 6148 CPU. It is noted that
the performance of our in-house code of the classical force
field is not optimized. As a comparison, the constant of
Gromacs 5.1.4 [37, 38] is 7.0 × 10−5 s/nm3/step, which
is 17 times faster than the in-house code. The estimated
computational time by Eq. (8) is 0.124 s/step, while mea-
sured wall-time on the same CPU is 0.134 s/step, which
validates the estimated (8). The computational cost of
a full DeePMD simulation is 0.200 s/step, so the AMM
saves 33% (or 38% by estimate (8)) computational cost
of the full DeePMD simulation. This may be not signifi-
cant at the first sight, because the volume VD + VT + VB

takes 51% of the whole system, then the AMM cannot
save more than 49% of the computational cost. More-
over, the sub-optimized force field code also makes the
AMM slower. The acceleration of the AMM will be fur-
ther improved if the DeePMD region becomes smaller,
the classical region becomes larger, or the code of the
classical force field is further optimized.

V. CONCLUSION AND PERSPECTIVES

In summary, we introduce a promising tool for concur-
rent coupling of the DeePMD model and a classical force
field. It should be clear that the same strategy should
also be applicable to general cases, where an expensive
model is concurrently simulated with a cheap model. The
requirement for the expensive model is that the part
dominating the computational expense is computed in
a short-range manner.
Future work of this adaptive modeling method is to

study biomolecules solvated in water, where one could
use DeePMD to only parameterize the potential for the
biomolecules and nearby water molecules, and couple it
to a less expensive water model. It is worth investigat-
ing the accuracy in the systems where long-range electro-
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TABLE I: The parameters used in the flexible SPC/E water
model.

Parameter Value unit

C12 2.6331 × 10−6 kJ mol−1nm12

C6 2.6171 × 10−3 kJ mol−1nm6

qH 0.4238 e
qO −0.8476 e
r0OH 0.1 nm
kOH 3.45 × 105 kJ mol−1nm−2

θ0HOH 109.47 deg
kHOH 3.45 × 105 kJ mol−1rad−2

static effect plays an important role. In this situation, the
long-range electrostatic of the ML model should be in-
cluded by, for example, learning the partial charge based
on the atomic environment [39], and then the point-
charge electrostatic is efficiently computed by fast Ewald
algorithms [40, 41]. It is also of particular interest to in-
vestigate the accuracy of the dynamical properties, like
auto-correlation functions, upon concurrently coupling of
different models [42, 43].
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Appendix A: The flexible SPC/E force field

A flexible SPC/E water molecule is modeled by three
point-mass particles [34]. The interaction is composed
by the non-bonded and bonded parts:

U = Unb + Ub (A1)

The non-bonded interaction has the Coulomb and van
der Waals contributions:

Unb = UCoulomb + Uvdw (A2)

Both of the Coulomb and van der Waals contributions
are pairwise additive, i.e. they are of the form U =
∑

i6=j U(rij), where rij is the distance between atoms
i and j. The Coulomb interaction between an oxygen
atom and a hydrogen atom of distance r reads

UCoulomb,OH(r) =
qOqH
4πǫ0ǫr

1

r
(A3)

where qO and qH are partial charges of the oxygen
and hydrogen atoms, respectively, which are defined
in Tab. I. The Coulomb interaction of oxygen-oxygen
and hydrogen-hydrogen atom pairs are defined analo-
gously. The oxygen atoms in the system interact with
the Lennard-Jones 6-12 potential:

ULJ,OO(r) =
C12

r12
− C6

r6
(A4)

where r is the distance between the oxygens, and C12 and
C6 are force field parameters given in Tab. I. The bonded
interaction has the bond stretching and the angle bending
contributions:

Unb = Ubond + Uangle. (A5)

The bond stretching of the O-H covalence bond is mod-
eled by a harmonic potential:

Ubond,OH(r) =
1

2
kOH(rOH − r0OH)

2, (A6)

where rOH and r0OH are the the O-H bond length and
the equilibrium bond length, respectively, and kOH is the
spring constant. The bending of the H-O-H angle is mod-
eled by a harmonic potential of the angle

Uangle,HOH(θ) =
1

2
kHOH(θHOH − θ0HOH)

2, (A7)

where θHOH and θ0HOH are the the H-O-H angle and the
equilibrium angle, respectively, and kHOH is the spring
constant. The values of the parameters of the flexible
SPC/E model is provided in Tab. I.
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